MOUSETRAP: Ultra-High-Speed Transition-Signaling Asynchronous Pipelines*

Montek Singh and Steven M. Nowick

Department of Computer Science
Columbia University, New York, NY 10027
{montek,nowick } @cs.columbia.edu

Abstract

A new asynchronous pipeline design is introduced for high-
speed applications. The pipeline uses simple transparent latches
in its datapath, and small latch controllers consisting of only a
single gate per pipeline stage. This simple stage structure is
combined with an efficient transition-signaling protocol between
stages.

Initial pre-layout HSPICE simulations of a 10-stage FIFO on
a 16-bit wide datapath indicate throughput of 3.51 GigaHertz in
0.25p CMOS, using a conservative process. This performance is
competitive even with that of wave pipelines (25, 11, 14], with-
out the accompanying problems of complex timing and much de-
sign effort. Additionally, the new pipeline gracefully and robustly
adapts to variable-speed environments. The stage implementa-
tions are extended to fork and join structures, 1o handle more com-
plex system architectures.

Keywords: Asynchronous pipelines, high throughput, transi-
tion signaling, transparent latches, gate-level pipelines, fine-grain,
clocked CMOS.

1. Introduction

A new asynchronous pipeline, called MOUSETRAP, is introduced
for high-speed applications. The pipeline uses blocks of static
logic for processing data, and simple transparent latches to sep-
arate data items.

An asynchronous, or clockless, circuit style [23] was chosen
for several reasons. First, while synchronous designers are cur-
rently capable of achieving multi-GigaHertz clock distributions,
the task involves the ever-increasing challenges of design time,
verification effort, clock skew and clock power management, and
interfacing with different timing domains. Second, since an asyn-
chronous pipeline has no global clock, it has a natural elasticity:
the number of data items in the pipeline is allowed to vary, and
the speeds at each interface can vary. As a result, the pipeline
can interface with varied environments operating at different rates,
thus facilitating modular and reusable design. Finally, the local-
ized control of asynchronous pipelines is an excellent match for
very high throughput fine-grain datapaths.
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The new pipeline is characterized by simplicity of its structure
and operation, as well as by ease of design. The datapath uses stan-
dard transparent latches which are small and fast, and the control
consists of only a single gate per pipeline stage. Pipeline stages
communicate only with immediate neighbors, and the timing con-
straints are all local, simple and one-sided.

While the pipelining scheme is quite general, a special focus of
this work is to target extremely high throughput. In particular, fine-
grain, or “gate-level,” pipelines are proposed, where each stage is
only one gate deep. At this granularity, the shortest cycle times
are obtained: the critical cycle consists of a single logic gate plus
a small amount of control logic (e.g., 2-3 component delays). As
an additional optimization, the critical cycle is further shortened
by merging logic and storage elements, using a circuit style called
clocked-logic, or clocked-CMOS (C*MOS)[1]. This technique has
the benefit of reduced critical delays, smaller chip area and lower
power consumption. In each case, a highly concurrent protocol is
used; as a result, a basic MOUSETRAP FIFO has a cycle time of
only 5-6 CMOS gate delays (3—4 components).

The pipeline builds on, and extends, the more conservative ap-
proaches proposed in [13, 22, 3]. The MOUSETRAP pipeline
generates an earlier completion signal, and also we propose new
extensions to handle complex pipelining (forks/joins), as well as
a “waveform shaping” strategy, elimination of critical inverters
through dual-rail control, and use of a clocked-CMOS style.

The name MOUSETRAP stands for Minimal-Overhead Ultra-
high-SpEed TRansition-signaling Asynchronous Pipeline. There is
another reason why our pipelines are so called: the latching action
is somewhat analogous to that of a mousetrap. When a pipeline
stage is waiting for data, its latch remains transparent; as soon as
data enters the stage, it is captured by closing the latch behind it.
While there have been other asynchronous pipelines that have used
this kind of latching action [22, 3], each has its own limitations. In
effect, our goal in this work has been to build a “better mousetrap.”
Initial pre-layout simulations using HSPICE are quite encourag-
ing: a 3.51 GigaHertz throughput using a conservative 0.25um
process.

The paper is organized as follows. Section 2 covers some
related work. Section 3 introduces the new pipeline, some
performance-oriented optimizations, and extensions to handle
forks and joins. Section 4 gives a more in-depth comparison with
related techniques. Preliminary simulation results are presented in
Section 5, and finally, Section 6 gives conclusions.
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Figure 1. Basic MOUSETRAP pipeline without logic processing
2. Related Work The published results were all for fabricated IPCMOS control cir-

Synchronous Pipelines. Several synchronous pipelines have been
proposed for high-throughput applications. In wave pipelining,
multiple waves of data are propagated between two latches [25,
11, 14]. However, this approach requires much design effort, from
the architectural level down to the layout level, for accurate balanc-
ing of path delays (including data-dependent delays), and remains
highly vulnerable to process, temperature and voltage variations.
Other aggressive approaches include clock-delayed domino [26],
skew-tolerant domino (9, 4] and self-resetting circuits [15, 4].
These all require complex timing constraints which are difficult to
verify; they also lack elasticity and still require high-speed global
clock distribution.

Asynchronous Pipelines. The classic asynchronous pipelines
introduced by Sutherland are called micro-pipelines [22]. This
style uses elegant control, but has slow and complex capture-
pass latches which hinder performance. A number of vari-
ants using alternative control and latch structures have been pro-
posed [3, 27, 12}, but in each case the performance is limited due
either to excessive control delays or to sizable latch delays. Very
recently, a new style, GasP, has been proposed which obtains even
higher throughputs [21, 5]. However, their approach aims for fine-
grain transistor sizing to achieve delay equalization for all gates
in the control circuitry, and the protocol has more complex timing
constraints. In contrast, MOUSETRAP pipelines do not require
delay equalization and have simpler one-sided timing constraints.

There have been a number of alternative asynchronous ap-
proaches that dispense with explicit latches altogether [24, 20, 19].
These designs typically use dynamic logic for the datapaths, and
rely instead on the inherent latching properties of dynamic gates.
Throughputs up to 1.2 GHz in 0.6um technology have been re-
ported.

The fastest designs reported so far are the IPCMOS
pipelines [17], with throughputs of 3.3 GHz for normal process.’

I'Throughputs of up to 4.5 GHz have been reported, but these are only
for extreme process cases (Leﬁ' = —20 and low V4).
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cuits which are capable of driving paths typical of 64-bit multi-
plier stages. A definitive quantitative comparison of IPCMOS with
MOUSETRAP is not yet possible for a number of reasons. First,
the IPCMOS results were obtained with an IBM high-performance
0.18uum process, while MOUSETRAP results used a 0.25um
TSMC process. The TSMC process is significantly slower than
the IBM one not only because of a larger feature size, but also
due to an inherently slower silicon technology. In addition, we
currently only provide pre-layout simulations, while the [IPCMOS
results are post-fabrication. Finally, our simulations do not yet in-
clude logic processing, while IPCMOS simulations do.

However, MOUSETRAP has several inherent advantages over
IPCMOS which we expect will be realized in fabricated chips.
First, IPCMOS uses large and complex control circuits which have
significant delays; in contrast, our designs use much simpler con-
trol which should have better performance than IPCMOS in a com-
parable process. In particular, IPCMOS has 12 levels of CMOS
logic plus one pass-gate in its critical cycle. A MOUSETRAP cy-
cle, on the other hand, has only 5 levels of CMOS logic plus one
pass-gate (two latches and one XNOR). Even with the fork and
join extensions of Section 3.7, MOUSETRAP at most has only 8
levels of CMOS logic. Second, IPCMOS makes use of extremely
aggressive circuit techniques which require a significant effort of
design and verification. For example, one of the gates in their
“strobe circuit” may potentially have a short circuit through its
pull-up and pull-down, depending on the relative arrival times of
inputs from multiple data sources. Their approach relies on a ratio-
ing of the transistors to ensure correct output. Finally, MOUSE-
TRAP has much simpler timing constraints. In fact, in addition
to setup and “datapath bundling” constraints [8], there is only a
single one-sided constraint to be satisfied.

3. The MOUSETRAP Pipeline

This section first introduces the basic structure and operation of the
MOUSETRAP pipeline (Sections 3.1-3.2). Then, several imple-
mentation issues are discussed in detail, and performance and tim-
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Figure 2. MOUSETRAP pipeline with logic processing

ing constraints are derived (Sections 3.3-3.5). In addition, an op-
timization is introduced that increases pipeline performance under
steady-state operation by carefully “shaping” the controller output
so as to reduce critical delays (Section 3.6). Finally, the basic lin-
ear pipelines are extended to handle forks and joins (Section 3.7).

Initially, to simplify discussion, Sections 3.1 and 3.2 focusona

basic pipeline without logic processing, i.e. a simple FIFO. Later,
Section 3.3 shows how logic processing is added to the pipeline.

3.1. Basic Pipeline Structure: A Simple FIFO

Fig. 1 shows the structure of the basic pipeline without logic pro-
cessing. Three pipeline stages are shown. Each stage consists
of a data latch and a latch controller. The stages communicate
with each other using “requests” (req’s) and *“acknowledgments”
(ack’s).

The data latch is a simple transparent latch. The latch is nor-
mally transparent (i.e., enabled), allowing new data to pass through
quickly.

A commonly-used asynchronous scheme, called bundled
data [18, 2], is used to encode the datapath: a control signal, reqn,
indicates arrival of new data at stage N’s inputs. For correct op-
eration, a simple requirement must be satisfied: reqgn must arrive
after the data inputs to stage N have stabilized.? Once stage N
has latched the new data, donen is produced, which is sent to its
latch controller, as well as to stages N — land N + 1.

The latch controller enables and disables the data latch. It con-
sists of only a single XNOR gate with two inputs: the done from
the current stage, stage [V, and the ack from stage N + 1.

3.2. Pipeline Operation

Overview. The operation of the pipeline of Fig. 1 is quite simple.
Initially, when the pipeline is empty, all its latches are transparent
and all the done, req and ack signals are low. When the first data
item flows through successive stages of the pipeline, it flips the
values of all these signals exactly once (high). Subsequently, the
second data item flips all these signals once again (low). This
method of signaling is called transition signaling. Each transition,

2If the data has to go through a logic block before arriving at stage NV,
reqn must be appropriately delayed. This is discussed in more detail in
Section 3.3.
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whether up or down, represents a distinct event: the arrival of a
new data item.

Once a data item passes through stage N’s latch, three actions
take place in parallel: (i) the data is passed forward to the next
stage for further processing, along with the corresponding request,
reqn+1; (ii) an acknowledgment, ackny -1, is sent to the previous
stage, freeing it up to process the next data item; and finally (iii)
stage /V’s latch itself is quickly made opaque to protect the current
data from being overwritten by new data produced by stage N — 1.
Subsequently, when an acknowledgment, acky, is received from
stage NV + 1, the latch in stage NNV is re-enabled (i.e., made trans-
parent).

Note that while transition signaling is used to signal the flow of
data (one transition on each req/done/ack per data item), as shown
above, the latches themselves require two transitions per data item:
one to capture (make opaque), and one to release (make trans-
parent). The first transition takes place when data passes through
stage N’s latch (done changes value); the second when the same
data passes through stage NV + 1’s latch (acky changes value).
Thus, the XNOR gate acts like a phase converter: it converts
the transition signaling done’s and ack’s into level control for the
transparent latches.

There is another interpretation of the behavior of the latch con-
troller, which is useful for understanding the pipeline operation:
the XNOR gate is simply an “equality tester.” When stages N and
N + 1 have the same data item, stage N is effectively “empty,”
and its latch is enabled (made transparent). When the stages have
distinct data items, stage N is effectively “full,” and its latch is
disabled (made opaque).

The latching action by a pipeline stage is analogous to the oper-
ation of a household mousetrap: latches remain transparent before
data arrives; they are closed (i.e., made opaque) as soon as data
passes through. It is important to note that this behavior is very
different from that of most synchronous, and many asynchronous,
pipelines in which latches are opened only after new data arrives.

Detailed Operation. A local timing constraint must be satisfied
for correct operation. Since a transition on doney is also a transi-
tion on ackn -1, there is a race condition between the disabling of
stage N’s latch and the reception of new data from N — 1. To en-
sure that the contents of stage /N are not corrupted, stage N’s latch
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must be disabled fast enough, i.e., before the stage N — 1 can pro-
vide new data. This is a simple one-sided timing constraint that
can easily be satisfied in practice. (For a more detailed analysis,
see Section 3.4.2.)

Note that the choice of a hybrid protocol-—transition signaling
for the handshake signals, and level signaling for the latch enable
signal—combines the advantages of both the signaling schemes:
(i) much less handshaking overhead since there is no wasteful
“return-to-zero” phase, and (ii) small and fast transparent latches,
since they are level-controlled. While several transition signaling
schemes have been proposed—some with phase conversion {22, 3]
and others without [27]—the pipeline presented here has much
less overhead. (Refer to Section 4 for a detailed comparison.)

In summary, the new pipeline protocol is very simple, and the
operation quite fast. The forward latency of an empty pipeline is
low because all the latches are initially transparent. The cycle time
of the pipeline is short because the pipeline is highly concurrent:
as soon as data enters stage NV, stage N — 1 is freed up for its entire
next cycle.

3.3. Pipeline Implementation: Adding Logic Pro-
cessing

So far, only pipelines without logic processing, i.e., simple FIFO’s,
have been considered. It is now shown how logic processing can
easily be added to the pipeline. First, a basic implementation with
explicit latches is presented. Then as a special case, gate-level
pipelines are considered: each stage is only a single gate deep,
with no explicit latches.

3.3.1. General Pipeline Implementation

Fig. 2 shows how logic processing can be added to the pipeline.
Blocks of combinational logic and matching delay elements are
simply inserted between pipeline stages. The standard asyn-
chronous bundled data scheme is again used: reqx must arrive at
stage IV after the data inputs to that stage have stabilized. There-
fore, the latency of the delay element must match the worst-case
delay through the combinational block. An advantage of this ap-
proach is that the datapath itself can use standard single-rail (syn-

(b)
Figure 3. Clocked-CMOS (C>MOS) logic
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-3.3.2. Special Case:

output output

Example 1:
C2MOS AND-gate

Example 2:
C2MOS latch
(identity gate)

(c)

chronous style) blocks, which are allowed to be hazardous, as long
as the req arrives after data has stabilized.

There are several common ways to implement a matched de-
lay. One technique is to simply use an inverter chain, or a chain of
transmission gates; the number of gates and their transistor sizing
determines the total delay. A more accurate technique duplicates
the worst-case critical path of the logic block, and uses that as a
delay line ([6] and, in a different context, [16]). If the duplicated
critical path is placed in close proximity to the logic block, it can
provide good delay tracking even for a wide variation in environ-
mental and process variations. However, this technique is more
area-expensive than using a chain of inverters or other standard
gates. Bundled data has been widely used, including in a commer-
cial Philips 80C51 asynchronous microcontroller [8].

Gate-Level Pipelines Using Clocked-
CMOS (C*MOS)

As a special case, our goal of extremely high throughput is best
achieved by gate-level pipelines: the datapath is sectioned into the
finest-grained stages, each consisting of only a single level of logic
with no explicit latches. As an additional benefit, the absence of
latches also translates into savings of chip area and power con-
sumption.

Clocked-logic, also known as clocked-CMOS (CZMOS), is a
particularly attractive approach to gate-level pipelining [1]. In this
scheme, the latches are eliminated altogether; instead, a clock is
applied directly to the logic gate. Fig. 3 shows the structure of
several C*MOS gates. The clock input, En, directly controls the
gate through two transistors, one each in the pull-up and the pull-
down network. When En is asserted, the gate is enabled and a new
output is produced. When En is de-asserted, the gate holds its out-
put value. Typically, an inverter pair providing weak feedback is
attached at the gate output to provide a more robust hold operation.
While C2MOS has been proposed as a synchronous technique [1],
it can easily be adapted to very high-speed asynchronous pipelines
using handshaking signals to replace the clock.

Fig. 4 shows a C2MOS implementation of the MOUSETRAP
pipeline. The explicit data latches of Fig. 2 have been eliminated;
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Figure 4. C°MOS implementation of gate-level MOUSETRAP pipeline

instead, C2MOS gates provide both logic as well as latching func-
tionality. Note that the “clock” input is actually the locally gen-
erated En signal. Both En and En are needed for the control of
C?MOS gates. This suggests the use of a dual-rail XNOR gate,
which is the topic of the next subsection.

3.3.3. XNOR Optimization: Dual-Rail Implementation

Since many transparent latches as well as C>MOS gates require
both true and complemented enables, a useful optimization for
both of our pipeline schemes (Figs. 2 and 4) is to implement the
XNOR as a monotonic dual-rail gate, providing both XOR and
XNOR outputs. As highlighted in Fig. 4, the XNOR now has two
dual-rail inputs—(dore, done) and (ack, ack)—and a dual-rail out-
put (En, En). While this approach increases the overall control
area, it directly improves the performance: two inverters are elim-
inated from the critical cycle (from XNOR inputs and its output).

3.4. Pipeline Performance and Timing Constraints

This section presents an analytical evaluation of both pipeline per-
formance and timing constraints.

3.4.1. Performance

Two key measures of the performance of the pipeline are dis-
cussed: forward latency and cycle time.

Forward latency is the time it takes a data item to pass through
an initially empty pipeline. Since, in an empty pipeline, all the
latches are transparent, the pipeline latency per stage, L, is simply
the stage’s latch delay plus logic delay:

L = tr + tiogic (1)

Cycle time is the time interval between successive data items
emerging from the pipeline when the pipeline is operating at max-
imum speed. A cycle of stage N, from one enabling of its latch
to the next, consists of three events: (i) new data passes through
the latch and the stage’s logic block, (ii) the data passes through
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stage N + 1’s latch, producing acky , and (iii) ackn causes stage
N’s latch controller to re-enable.stage N's latch. Therefore, the
analytical cycle time T is:

T @)

3

i

trs + tiggic + tor + txnort
= 2-tu + togic + txnort

where t1ogic is the delay through the logic block, and txnor+ is the
time it takes the XNOR gate to enable the latch.

For the special case of C?MOS pipelines, there are no explicit
latches. If the delay through a C2MOS gate is denoted by tezposs
the latency and cycle time are given by:

LCZMOS te2mos 4
Termos = 2-tezpmos + txnory &)

The cycle times of Equations 3 and 5 are quite good, and would
be difficult to surpass with synchronous schemes. For example, a
standard synchronous pipeline, with alternating latches controlled
by complementary clocks, and with logic between every adjacent
latch pair, will have a cycle time of at least 2 - £7, + 2 - tlogic, Plus
adequate margins to compensate for clock skew and jitter.

3.4.2. Timing Constraints

Two simple one-sided timing constraints must be satisfied for the
correct operation of the pipeline: serup time and data overrun.

Setup time. Once a latch is enabled and receives new data at its
inputs (along with a req signal), it must remain transparent long
enough for data to pass through. Thus, the path from regny to En
de-asserted (XNOR switching low) must be longer than the setup
time, tsu:

(6)

treqN—wdtmeN + txnorn i > tsu

This constraint is easily satisfied because the delay from reqy to
done typically exceeds the setup time.



Data overrun. Once data enters a stage, it should be securely
captured before new data is produced by the previous stage. If
this condition is violated, stage N’s data will be overwritten by
new data. Therefore, since ackny—1 and donen are generated in
parallel, the path from ackny—-1 to stage N’s data inputs must be
longer than the time to close N’s latch, plus a hold time, tpq4:

Q)

The left terms represent the shortest path through the XNOR to the
arrival of new input from stage N —1. The right terms represent the
path to disabling stage N’s latch. The equation can be rewritten to
simplify the constraint:

txnory 1T F iy 3 + tlogicy _, > txnory L T thold

®

Assuming txnory_,1 = txnory |, the right expression in paren-
theses is cancelled. The result is a simple hold time constraint,
which is easily satisfied because the latch and logic delays through
stage N — 1 usually exceed the hold time.

3.5. Handling Wide Datapaths

An important issue is the handling of very wide datapaths, where
control signals must be broadcast across many latches. This con-
trol distribution may introduce sizable delays in the critical path,
slowing down the operation of the pipeline. There are two prac-
tical solutions proposed for efficient pipelining of wide datapaths:
(i) datapath partitioning, and (ii) control kiting.

In the first approach, datapath partitioning, a wide datapath is
divided into several smaller independent streams. The pipeline
control is replicated for each stream, and each stream has its own
sequence of completion generators and matched delays. As a re-
sult, the requirement of buffering is significantly reduced: in each
stage, the latch controller generates a latch enable signal which is
broadcast to only a small number of bits, i.e. to only those bits that
lie inside that partition. This approach is typically applicable to
bit-slice datapaths, such as plain FIFO’s and logic function units
(e.g. bitwise AND, OR, etc.).

The second approach to handling wide datapaths, called con-
trol kiting, allows the datapath to be skewed with respect to the
control [27, 12]. No partitioning is used; instead, buffers are in-
serted to adequately amplify the latch enable signals which drive
the datapath latches. However, the latch enables for the completion
generators do not need this amplification; they are simply tapped
off from before the buffers. As a result, much of the overhead of
broadcasting the latch enable to the datapath is hidden, occuring
in parallel with other pipeline operations.

Figure 5 shows how the second approach is implemented, for
example, for a MOUSETRAP FIFO. Since the insertion of buffers
only delays the latching (and unlatching) of the datapath, the com-
pletion signal of each stage, regq, is actually produced a buffer de-
lay earlier than the data outputs. The reader can verify that, assum-
ing uniform buffer delays across all stages, the pipeline of Figure 5
operates correctly, and has exactly the same cycle time and timing
constraints as those derived in Section 3.4 for narrower datapaths.
3.6. Pipeline Speedup: Optimized Control Genera-

tion by ''Shaping'' XNOR Output
This subsection focuses on a low-level circuit optimization to fur-

ther improve the pipeline’s performance under steady-state oper-
ation. The main bottleneck to pipeline performance is that the

tL‘N-l + thgiCN_l > (tXNORNl - tXNORN«IT) + thold
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Stage N-1 Stage N ~Stage N+1
Figure 5. Handling wide datapaths in MOUSE-
TRAP pipelines

XNOR’s must switch twice for every data item flowing through
the pipeline, causing the latches to repeatedly close and open. The
proposed solution is to prevent the XNOR’s output from falling
completely to a “0” value, and thus to avoid closing the latches
fully, in steady state operation. This effect is achieved by slowing
down the fall time of the XNOR, through transistor sizing. As a
result, in steady-state, both the critical up-transition of the XNOR,
and the re-enabling of the latch have shorter delays due to reduced
voltage swing.

Interestingly, this optimization is analogous to the behavior of
a sliding door at a building entrance: the closing action of the door
is deliberately slowed down, so that, when there is a steady stream
of people, the door never closes fully, allowing speedier passage.
It is interesting to note how slowing down one action speeds up
the overall operation of the pipeline.

There is one caveat, though: this circuit optimization may make
the timing constraint of Equation 8 (data overrun) more difficult to
satisfy. In particular, slowing down the latch disable and speeding
up the latch enable means higher txnor , | and lower txnory_,1»
making the term (txwox,w — tXNORN_lT) now a non-zero positive
quantity. As a result, the margin available to satisfy the inequality
is somewhat reduced. In practice, though, experiments indicate
that this constraint can still be satisfied safely.

The net impact is that the steady-state performance is as fast as
that of a wave pipeline [25, 10], and yet the new pipeline provides
much greater robustness and require much simpler timing require-
ments. Consider the interface of a MOUSETRAP pipeline with its
right environment. Whether the right environment suddenly stalls
or speeds up, the pipeline gracefully handles these variations. If
the right environment is slow and cannot respond with an ack, the
rightmost pipeline stage quickly makes its latch opaque (since no
ack is received by its XNOR), thus preventing an overrun from
the left stage. If the right environment is very fast, it is correctly
stalled until the rightmost stage can deliver it data, since the en-
vironment is waiting for the stage’s req signal. The same reason-
ing also applies to the internal stages in the pipeline, making the
pipeline robust to internal delay variations as well.
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3.7. Non-Linear Pipelining

The previous section has focused on linear pipelines, which have
many practical applications. However, in complex system archi-
tectures, there is often a need for non-linear pipelining as well
(Figure 6). We now propose two simple primitives —fork and
join—which extend the applicability of MOUSETRAP pipelines.

Figures 7 and 8 show simple structures for fork and join com-
ponents, respectively. In the fork, the data output and correspond-
ing “req” (matched done output) are both simply forked to the two
or more destination stages. In turn, the two or more “ack” sig-
nals are combined through a Miiller C-element. A C-element is an
“event ANDer”: its output makes a transition when all of its inputs
change exactly once [22].

In the join, the “ack” is simply a forked wire, communicat-
ing with all sender stages. The “req’s” and their accompanying
data inputs are combined as follows. The various data inputs are
simply merged into one stream and latched together. The “req’s”
(matched done inputs) are merged using an enabled (i.e. “asym-
metric”) C-element [7]. Whenever the “latch enable” is asserted,
the component’s output is 1 when all of the merged “req’s” are 1,
and is O when all of the merged “req’s” are 0. At all other times
(when the “latch enable” is de-asserted, or if the req’s are not all
equal), the component simply holds its value. At the transistor
level, the pulldown network is a single series stack with one tran-
sistor for each req, as well as a transistor for the “latch enable”.
Similarly, the pullup network is a single series stack with one tran-
sistor for each req, and with a transistor for the complemented
“latch enable”?

3We are currently developing optimized versions which obtain higher
performance using logic decomposition.
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4. Comparison with Other Transition-

Signaling Asynchronous Pipelines

This section compares the operation of MOUSETRAP in more
detail with that of several other asynchronous pipelines. These
pipeline designs fall into two categories: those that use phase con-
version [22, 3, 13], and those that do not [7, 27].

The pipelines of [22, Fig. 14] and [3, Fig. 10], called mi-
cropipelines, both use phase conversion. Similar to our design,
a micropipeline stage uses transition signaling and transparent
latches (see Fig. 9). However, both of these approaches have sig-
nificantly more complex control. Each has two extra components
per stage: a C-element and a Toggle element. The Toggle ele-
ment routes transitions received on its input to one of two outputs
alternately, starting with the output labeled with a dot. The crit-
ical paths are also much longer than MOUSETRAP: from regy
to reqn 41 there are 4 component delays (the C-element, XNOR,
latch, and Toggle), and from ackx to the input of the C-element
(to half-enable it) there are 3 component delays (the XNOR, latch
and Toggle). In contrast, our pipeline has only a single latch delay
for the first path, and only an XNOR delay for the second path.

Closer to MOUSETRAP, the “Charlie boxes” {13] include sim-



pler designs, such as the § style. Our MOUSETRAP pipeline
can be regarded as a more optimized—and less robust—version of
some Charlie boxes. MOUSETRAP generates an earlier comple-
tion signal, and also we have proposed new extensions to handle
complex pipelining (forks/joins), as well as a “waveform shaping”
strategy, elimination of critical inverters through dual-rail control,
and use of a clocked-CMOS style, none of which appeared in [13].

There are several alternative approaches to using phase conver-
sion. In [7], Furber and Day propose three distinct 4-phase pro-
tocols for asynchronous pipelines: fully-decoupled, long-hold and
semi-decoupled. In the first two, pipeline control is significantly
more complex than in MOUSETRAP. The best of their designs,
semi-decoupled, introduces a highly-concurrent protocol, but still
has a minimum of 4 components on the critical cycle. These com-
ponents are all C-elements, two of which have stack depth of 3,
and additional inverters are actually implied for correcting polar-
ity. In contrast, MOUSETRAP only has 3 components on the criti-
cal cycle (2 D-latches and an XNOR), no stack depths of 3, no im-
plied inverters, and avoids the extra switching activity of 4-phase
communication.

A final alternative approach is to retain transition-signaling
control, but replace the transparent latches with dual-edge-
triggered D-flip-flops (DETDFF’s) [27): data is latched each
time the latch control is toggled. While this approach avoids
the overhead of phase conversion, it incurs a heavy performance
penalty because DETDFF’s are significantly slower than transpar-
ent latches, and are also much larger.

5. Preliminary Results

This section presents initial pre-layout simulations, using
HSPICE, for a basic MOUSETRAP pipeline. A simple 10-stage
FIFO was simulated (with no logic processing) on a 16-bit wide
datapath. The FIFO was designed and simulated in two differ-
ent CMOS technologies: (i) a 0.25um TSMC process, and (ii)
a 0.6um HP process. For the first technology, only the unopti-
mized pipeline style was used: we did not include the “waveform
shaping” optimization of Section 3.6. For the second technology,
both the optimized and the unoptimized versions of the pipeline
were simulated. In each case, careful transistor sizing was used
to improve performance. (These initial simulations do not include
parasitics; we are currently working on layouts and post-layout
simulation.) '

The first simulation, using the 0.25um TSMC process, was
performed assuming a 2.5V power supply, 300K temperature, and
a normal process corner. Simple custom cells were designed: a
pass-gate implementation of an XNOR/XOR pair, and a standard
6 transistor pass-gate dynamic D-latch.

Table 1 summarizes the results of pre-layout simulation. The
overall pipeline cycle time T, is given, as well as a breakdown
of a cycle into latch delay, ¢;,, and controller gate delays, txnor7
and txnor). The initial results are quite encouraging: a 3.51 Gi-
gaHertz throughput. Post-layout simulations, currently underway,
are needed to truly evaluate the performance and overheads of par-
asitics and layout issues.

These numbers compare favorably to the IPCMOS style of
Schuster et al. [17]. Their reported results of 3.3 GHz are for a
high-performance IBM 0.18um process, which in practice is sig-
nificantly faster than the 0.25um TSMC process we used. Al-
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Figure 10. Waveforms

though our designs do not include logic processing, we anticipate
competitive performance with IPCMOS using a comparable pro-
cess when logic is included. As indicated earlier, the IPCMOS
critical path is made up of 12 levels of CMOS logic, plus a pass-
gate. In contrast, MOUSETRAP only uses 5-6 levels of CMOS
logic on its critical path (plus 2 if there are forks and joins in the
datapath). In addition, MOUSETRAP has the benefit of much sim-
pler circuit components and timing constraints.

The second simulation was performed to evaluate the wave-
form shaping optimization of Section 3.6. Currently, the simula-
tion has only been performed in 0.6um (HP CMOS technology,
3.3V, 300K, normal corner). We plan to carry these simulations to
the 0.25um technology in the near future. The simulations indicate
the benefit of the wave shaping approach. A plain FIFO was eval-
uated both with and without the optimization. The XNOR/XOR

-pair was once again designed with pass gates, but the latch was

designed in the clocked-CMOS style (Figure 3(c)).

Table 2 shows the results of the second simulation. The unop-
timized FIFO has a throughput of 1.67 GHz, and the optimized
one has a throughput of 1.92 GHz, for a performace improve-
ment of 15%. In addition, the timing constraint of Equation 8
(data overrun) is easily met: {1, = 0.20ns, tjogic = Ons, and
txnory — txnort = 0.06ns.

Figure 10 gives waveforms for 3 adjacent stages (N —1, N, and
N +1) for a single simulation of the FIFO, in 0.25pm TSMC tech-
nology. The simulation includes the done signals for each stage,
as well as the “latch enable” for stage N (i.e., output of the stage’s
controller). This latch enable waveform indicates that stage N’s
latch is disabled (enable=0) soon after stage N indicates it is done
(alternating 0 and 1 values), for every data item in the simulation.
Similarly, the latch enable for stage N is re-enabled (enable=1)
soon after stage N + 1 indicates it is done, for every data item as
well. Observe that the one-sided timing constraint between stage
N and N — 1is clearly satisfied, even though no processing logic
is present (such logic would improve margins): as shown at the
right-hand side of the simulation, stage /N’s latch enable is dis-
abled approximately 45 picoseconds before stage N — 1 produces
a new data token (done asserted).



Table 1. Performance of MOUSETRAP FIFO (0.25.m TSMC technology)

Pipeline latch delay XNOR delay Cycle Time, T Throughput
Design trs (ps) txXNORT (psitXNORL (ps) || Analytical Formula | (ps) || (GigaHertz)
WOUSETRAPL 10 | 65 | 63 [ 2 tu+txwors [285 ] 351 |

Table 2. Performance of MOUSETRAP FIFO’s using clocked-CMOS logic (0.6.m HP technology)

Pipeline C?MOS logic delay XNOR delay « Cycle Time, T’ . Throughput
Design tezpos (09) txnort (NS) 1 txnory (ns) || Analytical Formula l (ns) (GigaHertz)
MOUSETRAP 0.22 0.16 0.13 2 te2pog T+ txnort | 0.60 1.67
MOUSETRAP ;¢ 0.20 0.12 0.18 2 te2pmos T txnort | 0.52 1.92

6. Conclusions

A new pipeline design style was introduced for high-throughput
applications. The pipeline uses simple structures for both latches
and control, and an efficient and highly-concurrent event-driven
protocol. In steady-state operation, the pipeline performance is
comparable to that of wave pipelines, and yet the new pipelines are
more robust and require much less design effort. In the future, we
also plan to lay out and simulate pipelines with logic processing,
e.g. pipelined adders and multipliers, and also evaluate our “wave
shaping” optimization in greater detail.
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