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ABSTRACT  
Silicon compilers are often used in conjunction with Field 
Programmable Gate Arrays (FPGAs) to deliver flexibility, fast 
prototyping, and accelerated time-to-market. Many of these 
compilers produce hardware that is larger than necessary, as they 
do not allow instructions to share hardware resources. This study 
presents an efficient heuristic which transforms a set of custom 
instructions into a single hardware datapath on which they can 
execute. Our approach is based on the classic problems of finding 
the longest common subsequence and substring of two (or more) 
sequences. This heuristic produces circuits which are as much as 
85.33% smaller than those synthesized by integer linear 
programming (ILP) approaches which do not explore resource 
sharing. On average, we obtained 55.41% area reduction for 
pipelined datapaths, and 66.92% area reduction for VLIW 
datapaths. Our solution is simple and effective, and can easily be 
integrated into an existing silicon compiler. 

Categories and Subject Descriptors 
C.1.3 [Processor Architectures]: Other Architectural Styles 

General Terms 
Algorithms, Performance, Design 

Keywords 
Compiler, Field-Programmable Gate Array (FPGA), Integer 
Linear Programming (ILP), Resource Sharing 

1. INTRODUCTION 
Recent advances in sub-micron technology have enabled the 
widespread use and deployment of reconfigurable embedded 
systems, namely Field Programmable Gate Arrays (FPGAs). 
Compilers that target FPGAs are empowered with the ability to 
customize the FPGA configuration to best accelerate the 
performance of an application or set of applications. Compilers 
that transform high-level programs into FPGA configuration files 
must generate custom hardware that can fit into fixed-area device. 
The problem of generating a set of custom instructions for a given 

application has been studied extensively in recent years [1] [2] [4] 
[5] [6] [8] [11] [16] [17]. The instructions are then synthesized 
and programmed onto an FPGA. Due to area constraints, only a 
limited subset of instructions can be implemented in hardware.   

To pack the greatest number of operations into a fixed-size 
device, a compiler must aggressively minimize total design area. 
Many compilers, however, estimate the area associated with 
individual instructions, but do not consider area savings due to 
resource sharing. They produce sub-optimal solutions because 
they fail to incorporate resource sharing into their area estimates, 
therefore dramatically overestimating the cost of the resulting 
datapath. This is especially true of compilers that model the 
problem using integer linear programming (ILP). 

This paper presents a compelling argument against ILP-based 
solutions to the problem of determining which instructions to 
synthesize. The primary contribution is an efficient and accurate 
polynomial-time heuristic that uses resource sharing to minimize 
the area required to synthesize a set of instructions. The heuristic 
uses a two-phase hierarchical decomposition to select the 
resources that are shared. This algorithm is applied to the 
synthesis of both pipelined and VLIW FPGA configurations.  

The paper is organized as follows. Section 2 discusses related 
work; Section 3 introduces background material; Sections 4, 5, 
and 6 present the contributions of the paper. Experimental results 
are detailed in Section 7. Section 8 concludes the paper. 

2. RELATED WORK 
 Huang and Malik [9] recently studied resource sharing to reduce 
reconfiguration overhead using datapath merging. . Coarse-grain 
logic blocks perform computations, and reconfigurable logic is 
used to provide an interconnection network between blocks and 
storage. Datapaths are merged one at a time to optimize 
interconnection sharing. At each step a maximum bipartite 
matching problem is solved to maximize interconnection sharing 
between blocks. Moreano et. al. [14] extend Huang and Malik’s 
work with a technique that relies on solving the Maximum Clique 
Problem, which is NP-Complete [7]. Consequently, the quality of 
their results depends on the quality of the clique-finding heuristic. 
Our work differentiates itself from [9] and [14] in that we begin 
with a set of customized instructions, which are modeled as 
directed acyclic graphs (DAGs), not general graphs. Our goal is to 
maximize area reduction, not the sharing of interconnections, 
although we could reformulate the problem to balance both of 
these goals if we so desired. Finally, the instructions that we 
merge do not initially contain low-level details such as the 
location of storage elements (e.g. registers).   
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A related problem is Regularity Improvement [10]. Algebraic 
transformations are applied to a flow graph to improve its internal 
regularity. The techniques in this paper exploit similarities 
between instructions instead of using rule-based manipulations. 

3. PRELIMINARIES 
A Dataflow Graph (DFG) G = (V, E) is a directed acyclic graph 
(DAG), where vertices represent operations and input/output 
ports, and edges represent data dependencies between operations. 
Let G = (V, E) be a DFG. V is comprised of three disjoint subsets, 
Vin (input ports), Vout (output ports), and Vop (operations). Each 
v∈Vin has in-degree 0; every v∈Vout has out-degree 0. Every 
v∈Vop has in-degree 1 (unary operations) or in-degree 2 (binary 
operations), and out-degree > 0. Each vertex v∈V has an integer 
type, t(v), which represents an operation or I/O port. 

Graphs G1 = (V1, E1) and G2 = (V2, E2) are said to be isomorphic 
if there exist functions f: V1 → V2 and g: E1 → E2 such for every 
pair of edges e1=(u1, v1)∈E1 and e2=(u2, v2)∈E2: 

212121 )()()( vvfuufeeg =∧=⇔=   (1) 
 
The problem of determining if two graphs are isomorphic has no 
known polynomial-time solution, but has never been proven NP-
Hard. The problem of determining whether one graph is 
isomorphic to a subgraph of another is NP-Complete [7].  

4. PATH-BASED RESOURCE SHARING 
A path is a DFG v1 → v2 →…→ vk, represented by sequence 
<t(v1), t(v2), … , t(vk)>. Let X = <x1, x2, …, xm> and Y = <y1, y2, 
…, yn> be sequences. Z = <z1, z2, …, zk> is a subsequence of X if 
there is a strictly increasing sequence <i1, i2, …, ik> of indices of 
X such that  

ji zx
j
=  for j = 1, 2, …, k    (2) 

If Z is a subsequence of X and Y, then Z is said to be a common 
subsequence of X and Y. The problem of determining the longest 
common subsequence (LCSeq) of a set of sequences has an 
O(mn/logm) solution [13]. For example, If X = <A, B, C, B, D, 
A> and Y = <B, D, C, A, B, A>, the LCSeq is <B, C, B, A>.  

A substring is defined to be a contiguous subsequence. The 
problem of determining the longest common substring  (LCStr) of 
a set of strings has an O(m + n) solution [18]. The LCStr of X and 
Y in the preceding example is either <A, B> or <B, D>. 

Each path represents a sequence of machine-level operations. 
Each operation must execute on some functional unit, whose area 
is assumed known. For each operation type t(v), we associate two 
quantities, delay(t(v)) and area(t(v)), delay and area estimates for 
all vertices of the same type as v.  The area and delay of a 
sequence X, denoted A(X) and D(X) respectively, are defined to 
be the sum of the areas and delays of each operation within X.  

To maximize area reduction by resource sharing along a set of 
paths, we desire the Maximum Area Common Subsequence 
(MACSeq) or Substring (MACStr) of a set of sequences, as 
opposed to the LCSeq or LCStr. MACSeq and MACStr favor 
shorter sequences of high-area components (e.g. multipliers, 
dividers) rather than longer sequences of low-area components 
(e.g. logical operators), which could be found by LCSeq or LCStr.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Theorem 1. Let ∆ASeq(X, Y, Z) be the area reduction when X and 
Y share resources on MACSeq Z and ∆DSeq(X, Y, Z) be the delay 
increase (along each path) due to multiplexers. Then: 

)(),,()(
2

)( ZAZYXAmuxareamZA Seq ≤∆≤×−  (3) 

)(
2

),,(0 muxdelaymZYXDSeq ×≤∆≤   (4) 

Proof. ∆ASeq and ∆DSeq must account for the resources shared 
along Z as well as the multiplexers that are introduced to the 
datapath. If X and Y are identical, then all resources can be shared 
without multiplexers, justifying the upper bound in (3) and the 
lower bound in (4). In the worst case, if two operations zi and zi+1 
appear consecutively in X and Y, then a multiplexer will not be 
needed on the input to zi+1 (see Figure 1). Since m < n, Z has at 
most m characters and at most m/2 non-consecutive operations. 
At most m/2 multiplexers will be introduced to the datapath.      ٱ 

Theorem 2. Let ∆AStr(X, Y, Z) be the area reduction when X and 
Y share resources on MACStr Z and ∆DStr(X, Y, Z) be the delay 
increase (along each path) due to multiplexers. Then: 

)(),,()(2)( ZAZYXAmuxareaZA Str ≤∆≤×−  (5) 

)(2),,(0 muxdelayZYXDStr ×≤∆≤   (6) 

Proof. The upper bound in (5) and the lower bound in (6) are 
justified by the proof of Theorem 1. Now, observe that the 
MACStr of paths X and Y adds at most 2 multiplexers to the 
datapath, one on the first operation that is matched, and another to 
select between the outputs. (see Figure. 2). ∆AStr(X, Y, Z) and 
∆dStr(X, Z) must only account for two multiplexers, which 
justifies the lower bound in (5) and the upper bound in (6).         ٱ 

5. Resource Sharing for DFGs 
Figure 3 shows a polynomial-time heuristic that combines a set of 
DFGs into a supergraph, called a Consolidation Graph (CG). The 
ideal CG will minimize total system area when synthesized; 
unfortunately, the problem of constructing a minimal cost 
weighted supergraph of a set of graphs is NP-Complete [3].  

Figure 1 If zi and zi+1 match consecutive characters in X and 
Y, then a mux is necessary on the input to zi (top). Otherwise, 

muxes are necessary on the inputs to zi and zi+1 (bottom). 
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Figure 2. If Z is a common substring of X and Y, then only 
two multiplexers must be inserted into the datapath. 
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Algorithm: Construct_Consolidation_Graph( G ) 
Input:  G = {G1, G2, … Gk} : a set of DFGs 
Output:  Gc = (Vc, Ec) : CG 
Local Variables: P, Pc : Set of sets of paths 

Pi∈P, PC(i)∈Pc, P* : Set of paths 
  GP*  : Set of DFGs 

  
1. P ← Φ 
2. For i ← 1 to k  

a. Decompose Gi into set of paths Pi. 
b. P ← P∪ Pi 

3. (P*, GP*) ← Construct_GP*( P ) 
/***** Global Phase *****/ 
4. While |G| > 1 and P* ≠ Φ 

a. Merge the DFGs in GP* into a CG Gc along the paths in P*. 
b. For every DFG Gj∈GP*  

i. G ← G – Gj; P ← P – {Pj} 
/***** Local Phase *****/ 
c. While there are at least two disjoint paths in Gc that  

have a non-empty MACSeq/MACStr 
i. Decompose Gc into set of sets of paths Pc, excluding  

 shared vertices, where Pc(i) contains vertices from Gi. 
ii. (Pc

*, Gc*) ← Construct_GP*( Pc ) 
iii. Discard Gc* /***** Not needed *****/ 
iv. Merge all of the paths in Pc

*, and update Gc accordingly. 
d. Decompose Gc into a set of paths Pc.  
e. G ← G∪ Gc; P ← P∪ Pc; 
f. (P*, GP*) ← Construct_GP*( P ) 

5. Return  Gc 
 
Subroutine: Construct_GP*( P ) 
Input:  P : Set of sets of paths  

Pi, Pj ∈P : Set of paths 
   pi∈Pi :  Path 

Output:  (P*, GP*) : (Set of paths, Set of DFGs) 
Local Variables: ∆Amax : Integer 

S, Smax : Subsequence/Substring 
   
   /***** Determine which paths to merge *****/ 

1. ∆Amax ← 0; Smax ← Φ; P* ← Φ; GP* ← Φ 
2. For every pair of paths paths pi∈Pi, pj ∈Pj, i ≠ j 

a. S ← MACSeq/MACStr of pi and pj 
b. If area(S) > ∆Amax 

i. Smax = S; ∆Amax = area(S) 
3. For each set of paths Pi∈P 

a. If Smax is is subsequence/substring of some path pi∈  Pi 
i. P* ← P*∪ {pi} 

ii. GP* ← GP*∪ {Gi} 
4. Return (P*, GP*) 

 

 

The input to the CG Construction Algorithm is a set of DFGs G = 
{G1, G2, …, Gk}. The algorithm begins by enumerating all of the 
paths in each DFG using a depth-first search in lines 1-2. Let P = 
{P1, P2, …, Pk}, where Pi is the set of paths enumerated from DFG 
Gi. The subroutine Construct_GP*() performs a pair-wise 
comparison of all paths in P×P that do not originate from the 
same DFG; each comparison entails computing the 
MACSeq/MACStr S of the pair of paths. At each comparison, S is 
compared to Smax, the MACSeq/MACStr found so far that 
maximizes area reduction. Construct_GP*() builds a set of paths 
P*, containing at most one path from each DFG having Smax as a 
subsequence (or substring); GP* is the subset of DFGs that 

contributed paths to P*. When selecting paths from a given DFG, 
priority is given to paths that are exact substring matches over 
subsequence matches (MACSeq implementation only).  

The rest of the algorithm is divided into Local and Global Phases. 
During the Global Phase, all of the DFGs in GP* are merged along 
shared operations in Smax into a CG, Gc. Gc is further refined 
during the Local Phase of the Heuristic. After the Local Phase, all 
of the DFGs in GP* are removed from G and are replaced by Gc 
instead. The Global Phase continues until Gc is the only graph left 
or no further area reduction is possible.  
The Local Phase is similar to the Global Phase, but does not 
consider any DFGs outside of those in GP*. The remaining 
(unshared) vertices in Gc are decomposed into a set of sets of 
paths, Pc = {Pc(i)}, where Pc(i) contains vertices from DFG Gi. 
Consequently, all paths in Pc include vertices from one DFG in 
GP*. Construct_GP*() performs a pair-wise comparison of paths in 
Pc, returning a set of paths Pc

*. All of the paths in Pc
* are merged 

in the same manner as the Global Phase. The Local Phase iterates 
until all vertices are shared or no further area reduction is 
possible.  

5.1 Complexity Analysis 
Several assumptions are made to simplify notation. The first 
assumption is that all k input DFGs have exactly the same number 
of vertices, |V|; the second is that all DFGs are composed of the 
same number of paths; and finally, that all paths have equal 
length, denoted L. Let n be the total number of paths in all DFGs.  

Theorem 3. The time complexities of the CG Construction 
Algorithm implemented with MACSeq and MACStr are: 












L
LnVk

O
log

22

     and ( )LnVkO 2   (7) 

Proof. There can be at most O(k) global iterations of the 
algorithm since at least one DFG must be added to GP* per 
iteration. There can be no more than O(|V|) local iterations, since 
at least one vertex of the selected DFG must be merged with a 
vertex in GP* each iteration. The complexity of Compute_GP*() is 
dominated by the for-loop in line 2, which performs an O(n2) 
pair-wise comparison between paths from different DFGs. The 
respective time complexities of computing the MACSeq and 
MACStr are O(L2/logL) [13] and O(L) [18].              ٱ 

5.2 Example  
As an example of CG construction, consider the two DFGs G1 and 
G2 shown in Figure 4 (a). They are decomposed into  sets of paths 
shown in Figure 4 (b). Assuming that area(+) < area(x) < area(%), 
Smax is determined to be <%, +>; the corresponding vertices are 
shaded in all of the paths in which they occur. The CG is shown 
in Figure 4 (c). Each remaining un-shared vertex is marked with a 
1 or 2 as to whether it originates from G1 or G2. These vertices 
must be considered for further resource sharing. 

The Local Phase is shown in Figure 4 (d). Smax is <x, +>; the 
corresponding vertices are shaded as in Figure 4 (b). The resulting 
CG is shown in Figure 4 (e) after one iteration of the Local Phase; 
it is shown again after a second iteration in Figure 4 (f). The area 
cost is the sum of the costs of 3 adders, 2 multipliers, and 1 
divider; without resource sharing, the costs would be 5 adders, 4 
multipliers, and 2 dividers. 

Figure 3.  Consolidation Graph Construction Algorithm 
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6. DATAPATH GENERATION 
The CG is an imprecise model of a datapath containing functional 
units and interconnections between units. The CG is imprecise 
because it lacks a formal description of many low-level details, 
such as bitwidth information, multiplexers, and registers. The CG 
is a macro-computation that contains within it the functionality to 
implement each of the instructions described by the original set of 
DFGs. This section describes how to generate both pipelined and 
VLIW datapaths from a CG.  
Generating a pipelined datapath is simple. Each vertex in the CG 
is bound to a separate functional unit without any further resource 
sharing. Pipeline registers are placed between functional units. 
Multiplexers may need to be placed on the inputs of certain 
functional units in order to route data appropriately between units 
to implement each instruction.  
The most area-efficient approach to generating VLIW hardware 
would be to use one instance of each functional unit. To improve 
performance, latency-constrained scheduling can be used to 
estimate the number of functional units required for the design. 
Latency-constrained scheduling is an NP-Complete Problem [7], 
but many polynomial-time heuristics have been proposed over the 
past twenty years. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pipelined and VLIW datapaths for the CG in Figure 4 (f) are 
shown in Figure 5 (a) and (b) respectively. Both examples are 
somewhat oversimplified in that they assume that all functional 
units require one clock cycle to execute. The schedule shown in 
Figure 5 (b) determines that 1 functional unit of each type is 
needed for the VLIW datapath. Templates for the original 
instructions in Figure 4 (a) can be inferred from the Figure 5 (b). 

6.1 Multiplexer Insertion 
For a pipelined datapath, some given functional unit F may have a 
large number of predecessors. Any machine-level operation (e.g. 
addition) will require at most two predecessors and one successor. 
Consequently, multiplexers may be required on both inputs of F. 
We divide functional units into three classes: unary operators (e.g. 
negation), binary, non-commutative operators (e.g. subtraction, 
division), and binary commutative operators (e.g. addition, 
multiplication).  
Unary operators are trivial. All inputs must be multiplexed.  
Let •  be a binary non-commutative operation. In other words, 
one cannot infer that a• b ≠ b• a. Each input to the operator must 
be appropriately labeled as to whether it is the left or right 
operand of • . Exactly two multiplexers are needed for the left 
and right input ports of the functional unit in the final design. Of 
course, if there is no more than one input to either the left or right 
port of the FU, the multiplexer can be omitted. 
Figure 6 demonstrates the process of inserting multiplexers for 
unary and binary non-commutative operations. 
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Figure 5.  Pipelined (a) and VLIW (b) datapath generation 
for the CG in Figure 4 (f). 

Figure 4.  CG Construction Example 
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Figure 6.  Multiplexer insertion for unary (a) and binary 
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A binary commutative operator o  exhibits the property that for 
all inputs a and b, a o b = bo a. Let G = {G1, …, Gk} be a set of 
DFGs, and let Gc = (Vc, Ec) be their CG. For each DFG Gi = (Vi, 
Ei), let fi: Vi → Vc and gi: Ei → Ec define a mapping from Gi onto 
a subgraph Si ⊆  Gc. Let v+∈Vc be a binary commutative 
operator. Define set Uc = {uin∈Vc| (uin, v+)∈Ec} to be the set of 
input vertices to v+, and G(v+) = {Gi |∃ v∈Vi ∋ v+ = fi(v), 1 < i < 
k} to be the subset of DFGs that have a vertex that maps to v+.  
Finally, define a conflict graph, Gconflict = (Uc, Econflict), where: 
 

=conflictE      (8) 

U
)(

22112121 })()(,|),{(
+∈

==∋∈∃
vGG

iii
i

uvfuvfVvvuu  

u1 o u2 enforces the constraint that u1 must be connected to the left 
multiplexer and u2 to the right, or vice versa. u1 or u2 could be 
connected to both multiplexers, if necessary. The occurrence of 
u1 o u2 in a DFG implies that there is an edge (u1, u2) in Econflict..  
Let L and R be the two input multiplexers to v+ in the final 
datapath D. All inputs are either connected to L, R, or both. The 
vertices of Uc are partitioned into three disjoint sets:  

U1 = {u∈Uc | (u, L) ∈D, (u, R) ∉  D}   (9) 

U2 = {u∈Uc | (u, L) ∉D, (u, R) ∈  D}   (10) 

U12 = {u∈Uc | (u, L) ∈D, (u, R) ∈  D}  (11) 
Define Bconflict = (U1∪ U2, {(u1, u2)|u1, u2∈U1×U2})⊆Gconflict. 

Theorem 4. Bconflict is bipartite.  

Proof. Assume to the contrary that Bconflict is not bipartite. Then 
∃  vertex u with adjacent edges e1 = (u1, u) and e2 = (u2, u), where 
u1∈U1 and u2∈U2. u1 is thus connected to L but not to R, and u2 
is connected to R but not to L. To satisfy conflict edges e1 and e2, 
u must be connected to both L and R, therefore u∈U12.         ٱ 
Given a binary commutative operator v+ ∈Vc, its input vertices 
Uc, and a conflict graph Gconflict, we wish to minimize the area of 
the resulting multiplexers that must be inserted into the datapath. 
This requires us to effectively balance the number of connections 
to the left and right multiplexers.  
The number of selection bits, Bleft, and Bright, required for the left 
multiplexers are given by: 

( ) ||||log 1212 UUBleft +=     (12) 

( ) ||||log 1222 UUBright +=    (13) 

To minimize the total area due to multiplexers, we must minimize 
Bleft + Bright,. This is analogous to finding the Maximum Induced 
Bipartite Subgraph of Gconflict, which is NP-complete [7]. Since 
there will be many binary commutative operators, we employ a 
simple linear-time breadth-first search heuristic [15]. 
Figure 7 (a) and (b) show a conflict graph, Gconflict, with optimal 
and sub-optimal solutions. The induced bipartite subgraphs 
contain the edges shown in bold. For both solutions, Bleft = 2; for 
the sub-optimal solution, Bright = 3, and for the optimal solution 
and Bright = 2. In many cases, it may not be possible to achieve a 
perfect balance between the left and right multiplexers.  
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7. EXPERIMENTAL RESULTS 
To realize a set of customized instructions in hardware, we 
generated a VHDL component library for a Xilinx VirtexE-1000 
series FPGA using Xilinx Coregen [19]. Next, we converted the 
VHDL files to edif netlists using Synplicity Synplify Pro 7.0 [20]. 
We then placed and routed each netlist using Xilinx Design 
Manager [`9], which provided area estimates.  
Next, we selected 11 source code files from the MediaBench [12] 
application suite. To generate a set of custom instructions, we 
integrated an algorithm based on the work of Kastner et. al. [11] 
into the Machine SUIF compiler framework [21]. We used this 
software to generate a library of custom instructions for each 
application. These libraries are summarized in Table 1. We also 
developed a lightweight tool that allowed us to estimate the costs 
of synthesizing pipelined and VLIW instructions, as described in 
Section 6. Finally, we implemented the CG Construction 
Algorithm using MACSeq, as described in Section 5. 
We compare the area estimates resulting from our resource 
sharing technique to the additive estimates utilized by ILP-based 
selection algorithms. Instead of trying to select an optimal subset 
of instructions, we simply synthesized all custom instructions for 
each application. Table 2 presents results for synthesizing both 
pipelined and VLIW datapaths. 
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Figure 7.  Multiplexer insertion for binary commutative 
operators. Optimal (a) and sub-optimal (b) solutions. 
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Table 1.  Custom Instruction Library Summary 
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The columns labeled ILP in Table 2 list the total area (in slices) 
that would be estimated by ILP-based approaches to selection that 
assume additive area costs. The columns labeled CG + Synthesis 
show the estimates achieved by our resource sharing technique.  
The ILP invariantly overestimates the cost of synthesizing the 
instructions. The overestimates ranged from 19.53% (Exp. 6) to 
78.90% (Exp. 4) for pipelined datapaths, and from 51.96% (Exp. 
6) to 85.33% (Exp. 4) for VLIW datapaths. On average, the ILP 
over-estimated area costs by 55.41% for pipelined datapaths and 
66.92% for VLIW datapaths. 
Experiment 6 yielded the smallest area reductions in both 
experiments. Of the five instructions generated, only two 
contained multiplication operations (1 and 3 operations 
respectively). After resource sharing, 3 multipliers were required 
for the pipelined datapath and 2 were required for the VLIW 
datapath; the area of the remaining multipliers dominated the 
other elements in the datapath. 
The Xilinx VirtexE-1000 FPGA has 12,288 SLICES. Experiment 
11, with all instructions synthesized independently, had pipelined 
and VLIW areas of 21,794 and 21,122 slices respectively, far in 
excess of the capacity of the VirtexE-1000. Resource sharing 
reduced the area estimates for this benchmark to 9,781 and 7,673  
slices respectively, both well within the capacity of the target.  

8. CONCLUSION 
A silicon compiler must rely on high-level area estimates of 
custom instructions in order to determine how many can be 
synthesized on the device. In this work, we have demonstrated 
that the assumption of additive instruction area (inherent in ILP 
formulations which do not allow resource sharing) leads to 
hardware which is much larger than necessary.  This paper has 
contributed an efficient and accurate polynomial-time heuristic 
that aggressively shares resources while synthesizing a set of 
given instructions.  Experiments with eleven MediaBench [] 
applications indicate that standard ILP formulations (without 
resource sharing) overestimate area costs by as much as 78.90% 
and 85.33% for pipelined and VLIW datapaths respectively, and 
55.41% and 66.92% on average.by as much as 78.90% and 

85.33% for pipelined and VLIW datapaths respectively, and 
55.41% and 66.92% on average.  
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 Pipelined Datapath VLIW Datapath 

  
Exp. 

ILP 

(Slices) 
CG + Synthesis 

(Slices ) 
ILP      

(Slices) 
CG + Synthesis 

(Slices) 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

10238 

3060 

5087 

6967 

8117 

2990 

9719 

5740 

10449 

10304 

21794 

5930 

1652 

1946 

1470 

2924 

2406 

2810 

2630 

4861 

3768 

9781 

6412 

2760 

3190 

4466 

5920 

2831 

6265 

3852 

7880 

7167 

21122 

2601 

1284 

1276 

655 

1318 

1360 

1292 

1283 

2618 

2029 

7673 

Table 2.  Area estimation results. 
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