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Four State Asynchronous Architectures

Anthony J. McAuley

Abstract— This paper describes a new approach to high-
performance asynchronous architectures offering significant
advantages over conventional clocked systems, without some
of the drawbacks normally associated with asynchronous
techniques. As the level of integration increases, an asynchronous
wavefront array designed using the techniques described will
have three important advantages over the equivalent synchronous
systolic array: faster throughput (rate at which data are clocked
through a system), reduced design complexity, and greater
reliability. While the latter advantage is well known (1], the
first two, which are a consequence of this new approach, make
self-timed systems much more attractive for high-performance
applications. The cost of our proposed asynchronous architecture
is silicon area, which will be at least double that of the equivalent
synchronous design. The benefits and drawbacks of using our
asynchronous technique are highlighted using three wavefront
arrays: two one-dimensional multipliers and a two-dimensional
sorter. All three can be built using just one basic building
block, and simulations in 2 ym CMOS show they are capable
of throughput of 250 MHz for static logic implementation and
over 400 MHz for a dynamic logic implementation.

Index Terms— High-speed logic design, multiplication, self-
timed system, sorting, VLSI, wavefront array.

I. INTRODUCTION

HIS paper explains how a four-state asynchronous wave-

front array is able to exploit the full switching speed
potential of submicron technology while maintaining small
design complexity.

In the VLSI era, using small, simple, and repetitive building
blocks have contributed to keeping complexity under control.
A good example of this is the bit-level systolic array [2]—[4]
with one cell repeated many times each performing the same
simple operation. Though these systems are capable of fast
paralle]l computations, they suffer a number of drawbacks
associated with the need to drive hundreds, or even thousands,
of cells with a single global clock.

The clock speed must be conservative enough to allow for
worst case logic delay and must include the delay in the clock
drivers themselves. Clock synchronization between cells and
between different phases of the clock is difficult to maintain at
high speeds and can become a source of transient errors [1].
Having all cells in lock-step requires power to be concentrated
at the clock edge, slowing switching speeds, and accentuating
the metal migration problem. Moreover, the design of the clock
drivers and clock distribution is difficult and is not directly
scalable.
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A wavefront array [5], [6] is broadly equivalent to a
systolic array, except that individual cells are data driven and
require no global clock. Instead of having a master controller
choreographing each cell (via the clock line), a wavefront array
cell detects when its inputs are valid to change its outputs.
This distributed choreography is achieved using a variety of
handshaking protocols [7]-[13].

This paper describes a modified approach to wavefront
arrays based on the compiling techniques of Martin [11],
but uses only one basic building block, for lower design
complexity, and uses a more efficient communication code and
logic implementation for higher throughput. The principal ad-
vantages over both synchronous and traditional asynchronous
architectures are increased speed and reduced complexity; it
also offers excellent reliability with no more area than some
of the best traditional asynchronous approaches.

A. Existing Techniques

Those unfamiliar with synchronous and asynchronous com-
munication protocols should first read a good introduction to
self-timed systems: such as Seitz [1]; those familiar with the
field may skip Sections II and III

This paper concentrates on bit-level implementations, be-
cause of their application to low complexity systolic/wavefront
arrays. Section II gives an overview of the differences between
the synchronous and asynchronous techniques, showing that,
as the level of integration increases, asynchronous communi-
cation becomes increasingly attractive for applications where
area is not critical.

Section III overviews two general techniques for communi-
cating asynchronously. When the handshaking and data logic
are separated, we call this “single-rail” logic; and when the
handshaking and data logic are integrated, we call this “double-
rail” logic.

B. New Approach to Asynchronous Communication

The core of our approach to asynchronous logic is four-
state coding using “double-rail” logic. Section IV describes
how data and handshaking information are coded using the
traditional three-state coding [1], [11] and our proposed four-
state coding. To illustrate how the latter works, Section V
describes the design of a simple asynchronous shift register.

The basic cell used in the shift register is an asynchronous
version of the clocked master slave latch, in which the input is
passed to the output after handshaking. Section VI describes
how to design a more general cell using four-state coding
with inputs from many cells mapped into an output, which
may also be received by more than one cell. The design of
an asynchronous 2 : 1 multiplexer concludes this section. Sec-
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tion VII gives examples of three low complexity designs
using just this multiplexer: two multipliers and a sorter.
Section VIII brings in some practical insights from a test chip
fabricated using four-state coding and dynamic logic.

II. A COMPARISON OF BIT-LEVEL ARRAYS

Kung [2] has shown that for high performance and low
complexity it is best to have a network of (identical) simple
cells that pass data in a regular fashion. These bit-level array
architectures are called systolic arrays when they are syn-
chronous and wavefront arrays when they are asynchronous.

The main characteristic of the clocked (synchronous) sys-
tolic arrays is that each cell carries out its computations at the
same time as every other cell. For bit level structures there
are potentially thousands of cells relying on a single global
clock to tell them when valid data are available and when it
can change its output. To ensure the correct inputs are at the
right place at the right time, the distributed clock must be kept
well synchronized throughout the array.

With clockless (self-timed, or asynchronous) wavefront
arrays, data are pumped around in the same direction; but
the timing is controlled by the elements themselves, not
by a common clock. To keep computations ordered, the
asynchronous elements must know when data are valid and
when they can change their output. It is our belief that these
wavefront arrays are inherently less complex to design, faster,
and more reliable.

The asymptotic characteristics of the synchronous and asyn-
chronous techniques are described below. We summarize these
using four key VLSI design factors: design complexity, speed,
area, and reliability. Section VIII also describes some practical
differences. A more complete discussion of timing problems
is given by Seitz [1].

A. Design Complexity

A key lesson VLSI designers learned from software de-
signers is to divide a problem into modules that can be
designed separately. To reduce complexity, it is necessary for
the boundary between modules to be well defined and simple.
An important boundary condition is to know when the data
communicated are valid.

Synchronous systems force all data to be valid at the edge of
a global clock. The designer must allow for clock skew, either
between cells or between different phases of the clock. Also,
each element has fixed setup and hold times. Overcoming
these timing problems is far from trivial and is frequently
the cause of devices being either slow, unreliable, or not
working at all [1]. Furthermore, the clock driving circuit
and clock distribution network (e.g., the number and size of
the various stages in the clock buffer) do not scale linearly
with the main array. As technology allows bigger and bigger
arrays, maintaining synchronization, while trying to achieve
maximum performance, will grow significantly more com-
plex [5].

Asynchronous designs have no global clock, so each cell
keeps time to itself; however, they have complexities of
their own. First, races and hazards [14] need more careful
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consideration. Second, the logic to detect when data are valid
requires extra circuit design. :

We show that the asynchronous complexity problems can
be overcome using a standard cell approach.

B. Speed

Though not always appreciated, the global clock can sig-
nificantly limit the performance in a large system. Even
today, the logic delay in a bit-level systolic element is typically
half that of the “safe” clock frequency. There are several
reasons for this difference:

1) The large load on the clock buffer, driving thousands of
gates, causes significant delay between the chip clock
input and the buffered clock signal.

2) Propagation delay down distribution lines means that
cells furthest away from the buffer receive the clock later
than those nearest the buffer. As technology advances,
the clock distribution time becomes a more significant
fraction of the switching time.

3) Part of the clock period must be set aside to allow for
skew.

4) The clock speed must be a conservative worst case, both
in terms of fabrication and environmental parameters, if
the chip is to operate reliably.

5) Cells switch virtually simultaneously, causing the power
supply lead inductance to become a more significant
limitation on switching speed.

Some of these problems can be minimized. For example, using
many power pins and wide power tracks reduces the effect of
the current spike at clock edge. But, as technology advances,
allowing more and faster cells to be fabricated onto a single
chip, synchronous inefficiencies will become increasingly sig-
nificant. Reducing the minimum feature size does not affect
the diffusion delay per minimum feature size [2]; but, if the
total area remains constant, the delay between the clock at the
driver output and cell input increase. As the number of cells (n)
increases, this speed reduction is approximately proportional
to log n; where this logarithmic factor is observed principally
in the increased clock buffer delay.

Asynchronous systems do not need a global clock and
different cells switch with a more even distribution over time;
therefore, provided data communication remains localized, the
delay is independent of the number of cells used. Traditionally,
the delay in an asynchronous cell is significantly greater
than the equivalent synchronous cell, because it performs the
function and detects when the state should change. Also, it is
more difficult to exploit the speed advantage of dynamic logic
[14], because we cannot guarantee minimum state refresh.

We will show that asynchronous logic can be made faster
using four-state codes and more efficiently designed detection
logic. Also Section VIII describes the use of dynamic logic
to improve basic switching speed. The combination of these
techniques makes asynchronous logic faster than the equiva-
lent synchronous designs for either large arrays or arrays built
using fast switching elements.

C. Area

In a synchronous systolic array, all cells can share the same
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clock generation and buffer circuits; so cell design is kept
simple, since they can assume data are valid on the clock
edge. As the number of cells gets larger, the size of the final
clock buffer stage grows proportionately. For n cells the area
of the clock buffer circuitry grows at a rate of about n/3,
assuming a 1:3 step up ratio between the driver and the load
(see section 7.5 of reference [1]).

Every asynchronous wavefront array cell requires its own
circuitry to detect when data are valid; therefore, as the number
of cells increases, the total area of this detection logic will
grow at the same rate. For n cells, the area of the detection
circuitry is directly proportional to n.

The inherent area advantage of synchronous designs cannot
be overcome; however, both grow at the same rate (linearly)
with increased system size. Furthermore, we show that the area
disadvantage of wavefront arrays can be kept within reason-
able limits, even for bit-level cells, by careful logic design.

D. Reliability

The clock in a synchronous circuit can be a source of
transient and permanent errors [1]. Even when modules com-
municate correctly under ideal or typical conditions, timing
problems can still arise. Changes in speeds, caused by pro-
cessing or the environment, can make the system fail even if
we chose a conservative clock speed. For example, it could
exaggerate clock skew and require increased setup and hold
times. For systems running at their maximum clock frequency,
this means reduced reliability.

In synchronous schemes, where all elements switch at the
same time, there is a large current spike just after the clock
edge: particularly for a bit-level systolic designs where each
bit has its own latch. This current spike makes the chip more
susceptible to metal migration which is dependent on peak
current.

Another, less well known problem associated with the clock
occurs in circuits designed with fault tolerance. If the clock
lines are left nonswitchable a short in the clock line will
completely kill the device, independent of any data switching
mechanisms. Fault tolerant circuits require bad elements to
be switched out [15]; but, it is not desirable to switch lines
carrying a large current, such as the clock line, since it is costly
in area and significantly degrades performance.

Asynchronous arrays do not have the robustness problems
associated with a clock. However, the design must be done
carefully to avoid races and hazards. Also, the detection cir-
cuitry requires more average power than a clock driver, though
its requirements are more distributed over time. Furthermore,
because of their larger area, an asynchronous array is more
subject to soft errors caused by radiation and hard errors
caused by processing defects.

We believe that asynchronous circuits have an inherent
reliability advantage, provided they are well designed using
compiler like techniques, such as those originally proposed by
Martin [11] and adapted here.

III. ASYNCHRONOUS LoGIC

Transferring one bit of binary information (i.e., a “1” or “0”)
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asynchronously without a global clock can be done in a variety
of ways [1]. A one way control scheme transmits data between
cells, together with information telling the receiver when new
data are on its way. The receiving cell must process the data as
it arrives or store it in an elastic buffer. For bit-level wavefront
arrays, it is too costly to store data inside every cell; therefore,
with the possible exception of the chip interface cells, some
form of handshaking is preferable.

This section briefly describes two classes of handshaking.
Our distinction is based on whether the handshaking logic is
integrated with the data logic: “single-rail” logic keeps data
separate, “double-rail” logic combines it.

A. “Single-Rail” Logic Handshaking

“Single-rail” logic has two separate, almost independent,
pieces of logic: the data logic and the handshaking logic. The
handshake logic communicates with the data logic through the
local “clock” (each cell has its own independent clock, whose
definition is strictly local). The clock can be stopped synchro-
nously and started asynchronously (see section 7.8.4 of [1] for
more detail). The data logic is designed in exactly the same
way as for a synchronous system, except for the clock source.
Input latches store the incoming data and combinational logic
maps this latched data into the cell’s output data. Because
each binary variable is represented by a single wire, we call
this “single-rail” logic.

The handshaking logic generates the clock for the input
latches using a local clock and a handshake protocol with cells
that transmit and receive its data. The derived clock is used
to latch data in, knowing that the input data are valid and the
previous output is no longer required. This technique assumes
that data are not significantly delayed between cells, relative to
the handshaking signal. If it were, the receiver may sample the
data at the wrong time. Fortunately, with current technology
this race condition is not a problem inside the chip; especially
when data are only communicated to nearest neighbors.

“Single-rail” logic handshaking was first used in wavefront
arrays by Kung. The scheme [7], [8] works well; however,
it is slower than the equivalent synchronous system, since it
requires over two local clock periods to latch the incoming
data.

B. “Double-Rail” Logic Handshaking

“Double-rail” logic integrates the handshaking and data
logic, eliminating all clocks. To define when data are sampled,
it is necessary to use more than two states to represent a
single bit of information. For binary logic cells, each input and
output requires a pair of wires containing both the data and
the handshaking information; hence, we call this “double-rail”
logic. The handshaking information, contained within the wire
pairs, disables output changes until two conditions are met:

1) The previous output has been used by all cells that

receive it.

2) All the new inputs are valid.

The next section describes two codes used to represent the
data and handshaking information.
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IV. “DOUBLE-RAIL” CODES

This section describes three-state [11] and four-state coding
of data and handshaking information. Even though four-state
requires an extra state, it is faster.

A. Three-State Coding

Three-state coding has been used in a number of designs
[7], [16], where the code has three detectable states: logi-
cal 1, logical 0, and a null state N. After transmitting each bit
of data (1 or 0), a null (V) is transmitted as a separator. Data
are defined as the value between two successive nulls, and a
null is defined as what is in-between two bits of data: in both
cases without reference to time.

Data are a wave of ternary signals of varying duration
with every odd signal being data and every even signal a
null. It is possible to implement ternary logic directly, using
say +Vdd, Vss, and —Vdd to represent the three levels. The
resulting cells, however, are larger and more complex than
their equivalent binary representation; so ternary signals (1, 0,
and N) are coded using two binary digits. One representation
[7] is

00 = acknowledge—null (N),
01 = data value—logical 0 (0),
10 = data value—logical 1 (1),
11 = Not allowed.

This particular coding prevents both wires from switching at
the same time: so the output goes through a Gray scale [17].
Fig. 1(a) illustrates how data are mapped into this two-bit,
three-state code and shows that only one bit changes in each
transition—preventing hazardous operation.

The use of nulls to define data simplifies the detecting logic,
but is inefficient. It limits throughput because two signals
(data and a null) must be propagated serially for every bit of
useful information transmitted. Thus, in the example shown in
Fig. 1(c), three-state coding requires four times as many bits
to pass the same information as a synchronous data stream.

B. Four-State Coding

The four-state coding scheme proposed here allows the data
wave to be in one of four states: two representing logical 1
(P1 and Q1) and two representing logical 0 (PO and QO):
where P and Q) can be thought of as two phase representations.
To transmit data, we alternate between the P and () phases.
Because there is always a transition, a null is no longer needed
to delimit the data. For example, the coding of the series
0,1,1,0,0,1 would be PO, Q1, P1, QO0, PO, Q1.

Four-state coding (P1, @1, PO, and Q0) can be coded in
binary logic using two digits. One such representation is

00 = data value :
01 = data value :
10 = data value :

11 = data value :

With this coding, the left bit represents the parity (p) and the

logical 0 (P0)
logical 1 (Q1)
logical 0 (Q0)

logical 1 (P1).
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i'th input 00
Mapping a 0 input (even)
0 — 10 0 Mapping a 0 input
i+1'th input
(odd) 10
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(data 1)
(€)] (b)

Data stream 0 1 1 0 0 1
3-state coding (a) OOI 10 00101 00 I01 00 I 10 00110 00 [01
4-state coding (b) 00 01 11 10 00 01

©

Fig. 1. Double rail code, with three-state and four-state coding (a) Three-
state. (b) Four-state. (c) Example.

right bit the data (d). The logical exclusive-OR (XOR) of p and
d represents the even (P) and odd (Q) phases.

Alternate between the P and () phase representations, we
guarantee to change exactly one bit for every transition—so
the output is again Gray scale: that is, either p or d changes,
but not both. Every even bit transmitted is 00 for “0” and 11
for “1”; while every odd bit transmitted is 10 for “0” and 01
for “1”.

Fig. 1(b) summarizes the mapping and transitional informa-
tion for four-state coding. By comparing the example, shown
if Fig. 1(c), of coding in both three-state and four-state, it
can be seen that four-state requires half the number of bits
to communicate the same information. Four-state code also
reduces the area required to implement a cell, because it does
not store null values.

The wave is thus a series of four level signals of variable
duration defined without reference to time. An odd segment is
defined as what is in-between two even segments and an even
segment is defined as what is in-between two odd segments
of data.

V. FOUR-STATE ASYNCHRONOUS SHIFT REGISTER

To illustrate the four-state asynchronous coding scheme we
shall describe a simple example. The hardware is based on the
Muller C element [1], [6], [11] with four-state “double-rail”
logic handshaking. The example is analogous to a clocked
shift register based on a master—slave latch. Because it is
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asynchronous, however, the input and the output are inde-
pendent: so it functions as a first-in-first-out (FIFO) buffer.
This section describes the operation using a simplified timing
model. A simulation, based on a real CMOS transistor layout,
is described in the Appendix.

A. The C11 Cell

C11 is our four-state finite state machine corresponding to
a clocked master slave latch. Fig. 2 shows its block diagram
and Table I shows its set—reset state table. The two inputs
(A[¢ — 1], A[¢ + 1]) and one output (A[s]) each have a pair of
wires coded to represent the four-state double-rail code.

Fig. 4 shows the C11 cells tied together in a chain, like a
clocked shift register. In this arrangement, A[7] is the output
(ad[i]) and (ap[i]) of the cell itself, A[¢ — 1] is the output
(ad[i — 1]) and (ap[¢ — 1]) from the previous cell to the left,
and A[i + 1] is the output (adfi + 1]) and (ap[i + 1]) from
the next cell to the right.

Of the 16 possible input states, half change the output state.
The truth table shows that each cell only accepts odd phase
data when the previous (left) cell has odd data and the next
(right) cell has even phase data. Also, the cell only accepts
even phase data when the previous cell has even phase data
and the next cell has odd phase data. Each cell in the chain
alternatives between odd and even phases, as shown in the
asynchronous shift register description below.

B. An Asynchronous Shift Register

Figs. 4, 5, and 6 shows 18 “time frames” of the four-stage
asynchronous shift register. In the description that follows,
each time frame looks like a separate clock period. Though
this simplifies the description, it is important to realize that
events in different cells occur at their own pace and are not
synchronized.

In the first time frame (equivalent to the first clock pulse),
shown at the top of Fig. 4, all C11’s are reset to the 00 state
and the input from their left and right are also 00. Table I
shows that this is a stable state, since every C11 outputs a 00
when both inputs are 00.

Fig. 3 shows the input waveform applied to the first (left-
most) C11, representing a 1001100 information stream, and
the outputs of various C11 cells which result from this
waveform. Each frame number, labeled at the bottom of Fig. 3,
corresponds to a time frame (F) in Figs. 4, 5, or 6. Fig. 3
and Figs. 4—6 are two different representations of the same
information.

The first input is a logical 1; since the first phase is odd a
01 is input to the first cell (F" = 2). This first C11 now has the
input conditions shown in row three of Table 1, so its output
changes to 01 (¥ = 3). This is not a stable state as the second
C11 now has an input corresponding to row three of Table
I; so its output will go to 01 (F' = 4). At the “same time,”
the input to the first cell can now be changed, since we know
the first data have been latched: that is, the first cell has odd
phase (01) on its output. The next input is a 0, so a 00 (the
second phase is even) is input to the first cell (£’ = 4).
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Fig. 2. C11 block diagram.
TABLE 1
C11 Stare TABLE
Ali-1] | Ali+]) Ali]
(ap,ad) | (ap,ad) (ap,ad)
00 01 00
00 10 00
01 00 01
01 11 01
10 00 10
10 11 10
11 01 11
11 10 11
else No change
11
Data
(())é) Input
10
(p.d) | | (1[0 ](0)](1) (1) (0) (0) | (data)
11 Output
01 of
First
00
(p.d)
11 Output
01 of
Second
00
(p.d)
11 Output
01 of
Final
C])g C11
1234567 8 9101112131415161718
Frame Number

Fig. 3. Asynchronous FIFO timing diagram.

The effect of the first input change ripples through to the
third C11 cell, which changes state like the first two (F' = 5).
At the “same time” the first C11 has inputs corresponding to
the first row of Table 1, so its output changes to 00 (F' = 5).
In time frame 6 (' = 6), the 01 from the third cell propagates
to the fourth C11 at the end of the shift register. Also,
the second cell has inputs corresponding to the first row of
Table I, so its output changes to 00. Meanwhile, because we
know the leftmost C11 has accepted the second data input (its
output is even phase), the next input, a O (see Fig. 3) is loaded;
s0 a 10 (the third phase is odd) is input to the first cell (F' = 6).

Moving on to time frame 7 (¥ = 7), at the top of Fig. 5,
the third cell and first cells change their inputs corresponding
to rows one and five of Table I, respectively. Note that now
the fourth C11 cannot change state unless the input from
the right-hand side (00) changes: that is, until its output has
been acknowledged the fourth C11 maintains a 01. Also,
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Fig. 4. First six “time frames” for an asynchronous FIFO.

because the third cell does not receive an (even) acknowl-
edge from the fourth cell, it will keep a 00 on its output.
This blocking continues back down the chain, until in time
frame 10 (F' = 10) we are again in a stable position with the
data values 1,0,0,1 stored in the four cells and a 1 waiting
to come into the chain. No more data can be loaded into the
shift register until we start strobing the right hand input.

In time frames 11-15, the data are removed. Thus, we
acknowledge the first output by putting odd phase data (01)
on the right-hand input (¥’ = 11). We acknowledge the second
input by putting even phase data (00) on the right-hand input
(F = 13). In time frame 15 (F' = 15) we acknowledge the
third input with an odd phase (01). In the last three time
frames, we both load data into the left-hand side and read
it out of the right-hand side.

The four C11 cells operate as a elastic storage medium,
with data loaded (if there is room) and removed (if there is
data available), independently.

VI. GENERAL PURPOSE ASYNCHRONOUS CELLS

Every cell in the asynchronous shift register alternated
between even and odd phased data. To keep the even and
odd phases separate, a cell changes state only when the two
surrounding cells were of opposite phase; ensuring that the old
data were read and there is new data to read. The conditions
necessary for successful handshaking can be summarized by
rules al and bl, or alternatively by rule c1:

al) The downstream receiving cell must have latched the
data.
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Fig. 5. Second six “time frames” for an asynchronous FIFO.

bl) The upstream transmitting cell must have new data.
cl) The upstream and downstream cells must have opposite
phase.
Limiting the cell to just one input and driving just one output
is clearly too restrictive. More generally, there are inputs from
many cells and the output goes to many cells. This output is
defined by a mapping of the inputs, while keeping the same
phase as the inputs. The restrictions necessary to ensure the
data are kept separated can be generalized from the three rules
above:
a2) All the downstream receiving cells must have latched
the data.
b2) All the upstream transmitting cells must have new data.
c2) All the upstream cells must be in one phase and all the
downstream cells must have the opposite phase.

To design our basic wavefront array cell, we use just one
type of cell—the multiplexer cell (MC). No separate combina-
tional logic gates used; instead, even the simplest gate is built
from a sequential MC. This both reduces complexity (only
one cell to design) and improves throughput (increasing the
number of pipeline latches). The design technique is analogous
to designing sequential logic using just 2: 1 multiplexers, with
a master—slave latch on each output.

A. Acknowledge Combination

A transmitting cell does not need to know both the down-
stream cell’s data and parity; all it requires is one bit indicating
its phase. Thus, if a cell transmits to just one receiver, it
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requires only the receiving cell’s phase: e, which we say is
low for even phases (00 and 11) and high for odd phases (01
and 10). Thus, e is the exclusive-OR (XOR) of p and d.

A cell broadcasting to multiple receivers must ensure that
all receiving cells have processed the information by waiting
for all the receiving cells to be in the same phase. Phase
information from individual cells is combined in a single latch,
which is set if all the phases are high and is reset if all the
phases are low.

B. Mapping the Inputs

Fig. 7 shows the most general type of an asynchronous
cell, CxyZ. 1t has z pairs (p and d) of inputs (labeled
A —I), y 1-bit (e) feedbacks (labeled R — W), and an output
pair (labeled M) which does the mapping Z on the inputs
when the handshaking is complete. The state only changes
when all inputs have the same phase and all acknowledges
have the opposite phase; therefore, the more inputs there are,
the sparser the set—reset state table becomes. For example,
Table II shows the truth table for a C22F with two in-
puts (4, B) and two outputs (R, S) performing the function
F(A, D).

The truth table must be modified if the number of transmit-
ters and receivers, or the function changes. Since the design
of these asynchronous cells is nontrivial, we opt instead to
design just one type of cell and build all others from this
basic building block.
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M=FA,B, ...
al I
ad »
bp ) lese
Wy CxyZ
ip
id ) lgwe
mp md
x¢.= xp XOR xd|
Fig. 7. CryZ block diagram.
‘TABLE 1II
C22 STATE TABLE
A B R S M
(ap.ad) (ap.ad) (re) (s¢)|  (mpmd) |
00 00 1 1 F(0,0)
00 11 1 1 F(0,1)
01 01 0 0 F(1,1)
01 10 0 0 F(1.,0)
10 01 0 0 F(O,1)
10 10 0 0 F(0,0)
11 00 1 1 F(1,0)
1 11 1 1 F(1,1)
else No change

F(i,j) = Output mappingwith ad=i & bd=j

C. The Multiplexer Cell

Fig. 8 shows the asynchronous 2: 1 multiplexer cell (C32M
or MC), with three data inputs (of two bits each) A, B, and
C, two acknowledge inputs R and S (of one bits each), and
an output M (of two bits). When the inputs and acknowledge
obey the restrictions necessary for successful handshaking, the
output mapping (}) is defined by the normal multiplexer
function:

M=(AaNDC') OR (B ANDC)

where C is the select line. This MC is the key to our simplified,
low complexity approach to asynchronous designs.

With combinatorial logic, it is possible to design any func-
tion efficiently using a tree of 2:1 multiplexers. We will use
the same principle for asynchronous logic by building all
function from MC’s. Simple circuits, such as a pass mapping
(M = A), an OR mapping (M = A OR B), or an exclusive-
OR mapping (M = A OR B), can be built from one MC.
More complex functions can build using a tree of MC’s. Sec-
tion IV-D discusses the design of these trees.

Using a multiplexer to build a pass gate (i.e., for an
asynchronous master slave latch) is somewhat redundant.
However, the complexity reduction makes up for the extra
serial transistor in the serial path (it does not change the
number of logic levels). It is also redundant to use two
acknowledges where only one is required; but, again, the
complexity reduction was deemed more important.

A further reason for not building a large library of asyn-
chronous gates (e.g., AND, OR, and exclusive-OR) is that
four-state asynchronous logic is much less amenable to mini-
mization. It is not possible to combine sum-of-product terms,
since every term which changes the state is “surrounded” (in
the Karnaugh map sense) by terms which do not change the
state. Furthermore, many alternative techniques to minimize
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Fig. 8. Multiplexer (C31M).

the number of transistors, using exclusive-OR gates for ex-
ample, produce critical races. Consequently, the area/transistor
difference between a customized AND cell and an AND cell
built from an MC is small.

1) The MC Truth Table: Table III shows the truth table for
the multiplexer. The handshaking makes our four-state im-
plementation significantly more complex than that for the
equivalent synchronous multiplexer. The truth table may be
implemented in different ways. However, before consider-
ing alternative logical implementations we must ensure the
sequential logic is free from races and hazards.

2) Hazards and Races in Asynchronous Cells: Hazards and
races are a well known problem in asynchronous circuit
design [17]. We have already encountered this problem when
choosing the binary representations for our four-state coding
(to ensure Gray scale transitions). Here we look at another
possible source of races: the way the logic is implemented.

Consider just one cell in isolation. Assume the inputs are
connected through combinational logic to the set and reset
inputs of a latch. If the rest of the circuit is designed correctly,
then an input variable changes at most once for every change
in state and there is only one possible change of state for any
allowable change in variables. Even when these conditions
are met, however, there is still a possibility of a race if the
combinational logic is poorly designed.

Take as an example part of a possible asynchronous mul-
tiplexer cell shown in Fig. 9. Driving ¢ low (with all inputs
initially high), there should logically be no change in the output
(either at f or ). But, because of finite gate delays, e goes high
before d goes low. The resulting low spike on f may, if it lasts
long enough, set z high causing the circuit to malfunction.

In the above example, the hazardous race was possible
because there existed two paths from the ¢ input to the latch
set input (f). To ensure no races of this kind it is sufficient [17]
to ensure that only one path exists from any input to the set or
reset inputs of the latches. This is the technique we adopted.

3) Logic Implementation: The best method of implementing
the MC truth table of Table III without races (i.e., without mul-
tiple paths) depends on the technology and the requirements
(e.g., is speed, area, or reliability the critical factor). Because
of the area overhead associated with handshaking we chose
CMOS technology which permits a high level of integration.
For our purposes, we decided that the primary requirement
for the MC was reliability, followed by speed, then area, and
finally complexity. The latter being, for once, at the bottom of
the list because the cell contains only a handful of transistors
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TABLE 111
MULTIPLEXER STATE TABLE

A B C [RTS
(ap,ad) (bp,bd)(cp.cd) | (re)| (se)} (m
00 00

00
00 00 11
00 11 00

11 11
00 11

o
2
S
COCOOD DD =+ e i i
OO D — e
S

00
11
11
11
11
10
10 10 01
10
10
01
01
01
01

else No change

If ¢ goes low, then for a short time there will be a low spike on f. If this
lasts long enough, the circuit would malfunciion and set x high.

Fig. 9. Example of hazardous asynchronous circuit.

which are replicated over and over again.

We designed a dozen different variants of the MC cell with
static and dynamic logic. Some expanded the number of states
and others used carefully considered architectural assumptions
to simplify the logic. Two implementations were particularly
good:

1) A fast dynamic version, dubbed MC',

2) A reliable static version, dubbed MC".

MC' and MC" use full CMOS logic swings. They have only
one logic level between data input and data output, and two
levels of logic between their data inputs and the acknowledge
signal: where each logic level has at most three transistors in
series. Both MC' and MC" differ from the truth table shown
in Table IIT; however, for the purposes of this paper, we can
assume MC and MC" are identical to MC.

D. MC-Graphs

Design of sequential logic using only MC’s is analogous to
designing in combinatorial logic using only multiplexers.

1) Simple Functions: Like normal multiplexers some input
lines are tied to 0 or 1 to build simpler functions (such as an
AND gate). Fig. 10 shows the symbolic form of some simple
“gates” that we can make from an MC. How these functions
are derived by tying down certain inputs to the power rail is
omitted for simplicity. However, one key to their design is the
way MC and MC” were built. Both MC' and MC" allow the
data or phase of the input or output to be inverted, without
any cost in area, delay or complexity.
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Fig. 10. Examples of asynchronous mappings built from one MC.

2) Complex Functions: We make some simplifications to our
architecture diagrams. First, we only use one wire to represent
the pair of wires used in our four-state coding; second, we
do not explicitly draw in the acknowledge lines. Since the
acknowledge lines can be drawn in only one way after we have
fixed the MC’s, there is no information gained by explicitly
drawing them. The result of these simplifications is an MC-
graph, like those in Fig. 13, showing how each MC are
connected together and what mapping is done (each box has
a label to describing the function, such as a NOR gate from
Fig. 10). How to design the MC-graph is best shown through
examples.

VII. FOUR-STATE ASYNCHRONOUS ARCHITECTURES

This section describes the design of MC-graphs through
three bit-level wavefront arrays: two multipliers and a sorter.
Layout is simpler than for synchronous standard cell designs
because we have only one basic building block and no clock
distribution problems.

If the cells in the MC-graph are connected in a simple tree,
with no loops, data can flow through without hindrance at the
maximum rate allowed by the technology (assuming data are
not blocked at the leaf nodes). Here, the delay between an
MC receiving data and being able to receive the next bit of
data is three gate delays (i.c., three combinational logic levels).
This can best be seen in the shift register example, where a
cell receiving data must wait until the data have propagated
through itself (1 gate), the next cell (1 gate), and wait for
the acknowledge from the receiving cell (1 gate). Thus, the
average time between successive bits of data is three gate
delays. With a 1 ns delay per gate, this is equivalent to a
static synchronous system running at over 333 MHz. (The
Appendix describes an optimized shift register designed using
MC  running internally at over 400 MHz in 2 um CMOS.)

To achieve maximum throughput when an architecture
contains loops (i.e., has “memory”), the MC-graph must be
carefully designed to avoid bottlenecks in the data flow. To do
this, it is sometimes necessary, if performance is critical, to
add extra MC’s into a path to act as buffers. This is analogous
to placing extra pipeline latches to improve throughput in a
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synchronous system. In the three examples below, there are
no bottlenecks, so they run at the maximum rate allowed by
the technology, independent of the number of stages used.

It is suggested that on first reading, the reader should
concentrate on the example which (s)he best understands (e.g.,
Section VII-Al, Section VII-A2, or Section VII-B) and just
skim the other two.

A. Asynchronous Serial Parallel Multiplier

Multiplication is a common operation required for sig-
nal processing. There are many ways to implement this in
hardware, but a popular [18]—[20] one is the Serial Parallel
Multiplier (SPM). Fig. 11(a) shows a block diagram of a four-
stage systolic SPM. It consists of a chain of four identical
elements, one for each bit of the multiplicand. Each element,
as shown in Fig. 11(b), has an input and an output for reading
and writing one bit of the product (A4), the multiplier (B), and
the multiplicand (D) from its nearest neighbors. One reason
this systolic version of the SPM is so attractive is that the
clock is the only global signal.

The wavefront version of the systolic SPM is the same, with
the added benefit of having no global signals of any kind. With
four-state coding, each line in Fig. 11 is physically two lines
going in the direction of the arrow (for parity and data) and an
acknowledge (for phase) going in the opposite direction. Each
element is composed of a number of MC’s. The MC-graph
depends on whether we want to do polynomial multiplication
[see Fig. 13(a)] or integer multiplication [see Fig. 13(b)].

1) Polynomial Multiplier Element: This section describes the
design of an Asynchronous Polynomial SPM element. A
typical application of this type of multiplier is in error cor-
rection coding [21]. Polynomial multiplication is a multiply
without carries. For example, the product (s) of two three-bit
polynomials (the multiplicand d and the multiplier b) is

s4 = (d2 AND b2)

53 = (d2 AND b1) XOR (d1 AND b2)

52 = (d2 AND b0) XOR (d1 AND b1) XOR (dO XOR b2)
s1 = (d1 AND b0) XOR (dO AND b1)

s0 = (d0 AND b0)

where
s=sd-14+83 -2+ 82 2% +5s1-zt +50.2°
d=d2-z>+dl-z' +d0-2°
b=02-2%+ bl -zt +b0-2°

and z is an indeterminate; “+” and “-” refer to the addition
and muitiplication operators; and AND and XOR refer to the
logical AND and exclusive-OR operators.

Fig. 13(a) shows one element of the asynchronous polyno-
mial SPM built using just four MC’s. The MC at the top of
Fig. 13(a), labeled “P”, operates the same as the shift register
cell (C11) described earlier. After everything has been reset,
the n-bit multiplicand (D) is loaded serially from the left, least
significant bit (Isb) first. Every element of the SPM accepts a
bit of the multiplicand on “dz,” passes this through its MC, then
out onto “do” for the next element: passing the multiplicand
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Asynchronous serial parallel multiplier. (a) Four-bit serial parallel
multiplier. (b) One serial parallel multiplier stage.
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Fig. 12. Asynchronous bubble sorter. (a) 8-bit bubble sorter. (b) 2-bit sorter
stage. (c) Delay/buffer stage.

down the line from left to right. This continues on down the
chain, exactly as in the shift register loading process, until the
Isb reaches the rightmost cell. Since the rightmost cell receives
no acknowledge, it blocks the end of the chain. After n bits are
loaded into the multiplicand (d) line, we know each element
has one bit of the multiplicand stored in their respective MC’s
with the Isb stored in the rightmost element of the chain.

With the multiplicand in place, the multiplier is loaded in
from the right, also Isb first. The rightmost cell receives this
on its “bi” line, passes it through a second MC (also labeled
P-MC), then out onto “bo” for the next element [see the se-
cond row from the top of Fig. 13(a)].

The rightmost element now ANDs together the Isbs of the
multiplier and multiplicand and stores this result in a third
MC (labeled “&”). Note that the multiplicand input is constant.
Therefore, the &-MC must ignore its phase information (which
is represented by the * in Fig. 13). The next bit of the
multiplier is loaded after both the next cell’s P-MC and its
own &-MC have acknowledged they no longer need to see
the Isb.

The final MC does an exclusive-OR (XOR) mapping to
generate the partial product by calculating

@0 = ai XOR {bo AND do).

By following through the flow of data, it can be seen that
the output of the a-line of the SPM will be the polynomial
product: coming out serially Isb first.
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Notation Multipliers Sorter

ai Partial Product Input
Partial Product Output

Multiplier Input

Data Input
Most Significant Bit Output

ao
bi

Data Input

bo Multiplier Output Least Significant Bit Output

ca Carry Save -

ci - Control Input

co -
di
do

Control OQutput

Multiplicand Input =

Multiplicand Output -

© = Invert parity (ie pd -> p'd), * = ignored parity

Fig. 13. One stage of wavefront array built from MC’s. (a) Polynomial

multiplier. (b) Integer multiplier. (c) Packet sorter.

2) Integer Multiplier Element: This section describes the de-
sign of an asynchronous integer SPM element, performing part
of a general multiply with carries between levels. Fig. 13(b)
shows one element built with six MC’s. The function of the top
three MC’s is identical to that for the polynomial multiplier,
so we shall continue the description after the Isbs have been
ANDed together.

The MC below the &-MC, labeled “+”, performs an
exclusive-OR (XOR) mapping whose output is the intermediate
sum

zo = (bo AND do) XOR ca

where ca is the carry from the previous cycle. The circle at
the ca input, which represents phase inversion, is necessary
because the ca result of the previous cycle will have the
opposite phase to the other input.

Having zo allows us to calculate the sum, ao, with an XOR
MC. The output of this MC, which is shown at the bottom of
Fig. 13(b), is

ao = ai XOR (bo AND do) XOR ca

ao = ai XOR xo.

The final MC, which uses a full multiplexer mapping (X -MC),
calculates and stores the carry, ca, for the next cycle. Thus,

ca = (ai AND (bo AND do))
OR (ca AND (bo AND do)) OR (ca AND az)
ca = (ca AND z0') OR (ai AND zo0).

By inverting the parity of the ca feedback, we are able to make
the X-MC act like a carry register.
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By following through the flow of data, it can be seen that
the output of the a-line of the SPM is the integer product:
coming out serially Isb first.

B. An Asynchronous Sorter

Sorting numbers into ascending order is a common opera-
tion required for signal processing. There are many alternative
techniques, trading speed, area, and complexity. We chose to
implement a simple exchange sorter, similar to the bubble
sorter [22]. To improve efficiency, more efficient designs, such
as the Batcher sorter [23], [24], can be built using the same
2 X 2 sorting element.

Fig. 12(a) shows a block diagram of an eight-input sorter. It
consists of four rows and eight columns of the basic 2 x 2 sort
element, with each element having three inputs (ai, bi, and ci)
outputs (ao, bo, co). The a and b lines hold two serial streams
of data, while the c line delimits the packets. The ¢ signal
travels horizontally from cell to cell, so it is not drawn
explicitly in Fig. 12(a). The wavefront version of this sorter
has no global signals of any kind.

1) Sorter Element: Fig. 13(c) shows the MC-graph for the
bit-level wavefront sort element, based on a synchronous
packet sorter designed at Bellcore [25]. The two main serial
inputs (a: and bi) arriving most significant bit (msb) first.
The function of the cell is to route the input with the largest
magnitude to the bottom (bo) and the smallest to the top (bo).

There are two “memory” cells in the packet sort element.
The first, with select as its output, determines whether the data
input (aé or bt) pass or cross. The second, with word-decision
as its output, determines whether a decision has been made.
The output select only changes state when word-decision is
low.

Initially assume everything is reset, so that all outputs are
low. The element is ready to accept the two data streams (A
and B) and a control stream (C). The five MC’s in the first
column of Fig. 13(c) change state first. The top two MC’s and
the bottom MC (all labeled “P”) buffer their respective inputs
(“pipelining” to improve throughput). At the “same time”
(though each cell keeps its own pace), the fourth cell (labeled
“+7”) exclusive-ORs the two data inputs. Its output, bit-decision,
is high only if the two input bits are different. The middle
cell in the first column (labeled “X™) implements the full
multiplexer mapping. Since its control input, word-decision,
is low, it passes the bi onto its output (select).

The second column of MC’s now changes state. The bottom
MC acts as another buffer for the ¢ input. The top two MC’s
do the real data switching. Thus,

bo = ai.
and bo = b,

ao=br and if select was high;

a0 = ai if select was low.

Since the control input, select, is equal to bi on the first cycle,
the inputs will be swapped if bi was high. The final MC
(labeled Z) performs the mapping

word-decision = ¢i’ AND (word-decision OR bit-decision).

Its output tells the next wave of data whether a decision has
been made. A decision has been made if either a decision had
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previously been made (the old word-decision was high) or
the two inputs this time were different (bit-decision is high),
provided this is not the last bit in the packet (ci, is low).

When the second column has latched the first wave of data,
the first column of MC’s see their acknowledge inputs (not
explicitly drawn on Fig. 13) change. The first row is then ready
to repeat the process with a new wave of data; except that, if
a decision was made the first time, the select output will
remain fixed.

If we put two serial streams on the two data inputs (A and
D), the biggest will come out on “eo” and the smallest on “bo.”
At any time we can put in a new packet, without flushing out
or resetting, by setting the control input (cz) high at the end
of the last packet. If ci were to remain high, making each
packet one bit long, word-decision would remain permanently
low. While, if ¢z were to remain low, after word-decision went
high (after the first time the two data inputs were different),
word-decision and select would remain fixed thereafter.

VIII. PrRACTICAL COMPARISON

This section compares our four-state wavefront multipliers
and sorter, with the equivalent clocked systolic arrays. The
comparison is based on CMOS implementation, but in general
is applicable to other technologies.

A. Design Complexity

The asynchronous approach we adopted, using just one
type of cell (MC), leads to a much faster design and layout
than for the equivalent synchronous approach. Even if we
had predesigned synchronous standard cells, there are still
more cell types to route together making the placement more
difficult. Also, because there is only one cell, MC can be
redesigned quicker than a standard cell library. Limiting
ourselves to a multiplexer with a latch at its output in a
synchronous design will approach, though not equal (because
of the clock distribution), the simplicity of our MC-based
asynchronous designs; however, the area of the synchronous
array would grow significantly.

B. Speed

The difference in throughput between the equivalent opti-
mized synchronous and asynchronous arrays depends on the
architecture being implemented. From our experience with
simulations and implementations of 2 um CMOS implemen-
tations, such as those described in the last section, we found
there was typically a 50% throughput (equivalent to clock
speed) advantage in favor of the asynchronous array. In
general, the more complex the basic cell, the greater the speed
advantage of asynchronous arrays. Simulations (see Appendix)
at higher levels of integration with a correspondingly larger
number of cells showed that there was an increased speed
advantage to the asynchronous approach.

C. Area

The area overhead of asynchronous arrays varied from
around two times (for both multipliers) to almost six times
(for the sorter). The reasons include using:



140

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 2, FEBRUARY 1992

rark = 31.87nS, dat - -©.03nS

— Trvert ]

4.750v

M w\ g

Fig. 14. Timing diagram for a synchronous shift register.

1) Three wires (two data and one acknowledge) for every
bit of information,
2) Two latches for every bit of information stored,
3) Redundant logic and logic less amenable to minimiza-
tion,
4) A latch on every gate (not necessary, but desirable for
speed),
5) Only MC (not necessary, but desirable for reducing
complexity).
Nearly half the area overhead associated with the bit-level
asynchronous designs is caused by the handshaking overhead.
Only a small part of the area difference is because of our
decision to use only the MC. Not surprisingly, just as the
relative speed improves as cells get more complex, so their
relative area increases.

D. Reliability

Comparing robustness is not as straightforward as with the
previous three parameters. More work is needed before we
can come to any definite conclusions; particularly about the
relative benefits of fault tolerance. It is likely, however, that
for high-performance applications at high levels of integration,
wavefront arrays will be significantly more reliable [26].

IX. CONCLUSION

This paper describes a modified approach to wavefront
array design. Using a denser four-state code allows double the
throughput, compared to the traditional three-state code. Using
only multiplexing allows reduced complexity: to well below

that of even a synchronous systolic array. Finally, by carefully
optimizing the asynchronous multiplexer, the throughput is
beyond that of even a carefully customized synchronous array.

The area penalty is a major drawback to our technique (and
asynchronous designs in general); however, area is not always
critical, particularly when a chip is pin limited. The area may
be reduced by trading it for speed or complexity; however,
without moving from bit-level to word-level structures, these
techniques do significantly change the area overhead.

We believe that asynchronous logic, such as that described
here, should be considered whenever speed, design complex-
ity, or reliability are more important than area. Certainly, the
almost universal use of synchronous logic in todays systems
needs to be reexamined in the light of faster switching speeds
and greater integration. Though this area/transistor overhead
limits asynchronous logic at current levels of technology, we
believe the benefits will become increasingly attractive for
high-performance applications. Though the ideas have been
principally described for on chip architectures, we believe
the same motivation makes a modified form of this four-state
asynchronous techniques applicable interchip communication
(modified to remove the long acknowledge path and reduce
the number of pins). Indeed, because of the longer, slower
communication path, it may have far more applications for
interchip communications.

APPENDIX
SHIFT REGISTER SIMULATION

This Appendix describes the simulations and implemen-



MCcAULEY: FOUR STATE ASYNCHRONOUS ARCHITECTURES

141

frark = 43 .67nS, dt = @.8@nS

[~ L= Trvert ||

4.982v

>
~
n
<

i

—— ),

gout_bar

cout

m{2)

m(1]

m(z]

m(3]

m{a]

m(s)

m(e)

m{7]

Fig. 15.

tation of two shift registers to highlight some differences
between asynchronous and synchronous arrays. Both the syn-
chronous and asynchronous shift registers were designed using
a dynamic logic implementation, with the layouts optimized
for speed. The simulation results were obtained using a SPICE
like simulator in 2 m CMOS, and confirmed using a test-chip.

The dynamic synchronous shift register was implemented
using nonminimum sized transistors (p devices were 16 um
wide and the n devices were 8 um wide) and large clock
drivers. The delay in the clock drivers was calculated and the
input signal was delayed, so the throughput would not be too
influenced by the delay in the buffers. The resulting simulated
timing diagram for an eight-stage shift register is shown in
Fig. 14. It shows the data as it passes from the input, through
each stage of the register (rn[j].in, is the input to the jth stage
of the register) and on to the output. The maximum frequency
we could clock data was about 350 MHz.

Incorporating dynamic logic into an asynchronous system
is difficult. With a clocked system, each storage node is
refreshed every clock cycle; without a clock we must guarantee
storage nodes are refreshed. Therefore, in addition to avoiding
races and hazards, we must guarantee minimum state refresh.
The implementation details are omitted here, but the dynamic
asynchronous shift register was implemented using the same
sized transistors as for the synchronous shift register. The
timing diagram for an eight-state asynchronous shift register is
shown in Fig. 15. It shows the input and output data, together
with the acknowledges from each stage along the pipeline.
The maximum frequency we could clock data was just over
400 MHz.

Timing diagram for an asynchronous shift register.

Comparing the two timing diagrams shows that the
output changes in the synchronous shift register much more
closely synchronized. Though the power consumption of
the asynchronous shift register was almost twice that of the
synchronous shift register, the peaks were greater for the
synchronous case.

Clearly this one example does not prove asynchronous
logic is faster. However, the shift register case is expected
to be the worst for asynchronous logic, since the overhead
of detecting when to change data is largest. Also, with more
advanced technology simulations the differences were greater.
Therefore, these results do confirm some of the potential for
speed claimed in the paper.
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