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Abstract

To predict the difficulty of testing .a wire stuck-at
fauls, testability analysis algorithms provide an esti-
mated testability value by computing controllability
and observability. In all previous work, signal correla-
tion between controllability and observability is gener-
ally ignored. As a result, the estimated value can be
inaccurate. This paper discusses an efficient method to
take into account signal correlation for testability
analysis. Our experimental results have shown that,
with little run time overhead, significant improvement
of testability analysis can be achieved.

1 Introduction

The objective of testability measurement is to predict
the difficulty for testing a node or a wire. A good mea-
surement can give an early warning about testing prob-
lems so as to provide guidance in improving the
testability of a circuit [6] [15] [17] [20] [21] [22]. In
addition, the testability measurement can also give
hints about the “hardest” inputs in a test generation
algorithm to improve efficiency.

Normally, testability measurement assigns each
node a testability value by computing the node’s con-
trollability and observability. The computation can be

1. This work was partiully supported by National Science Council,
Taiwan R.O.C., Contract NSC 87-2215-E-194-008.
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done by one sweep of the circuit with some rules.
Since only an approximation value is provided, test-
ability measure is less accurate than the time-consum-
ing test generation or fault simulation process. As a
result, for testability analysis to be useful, its runtime
must be very fast. Usually, the analysis needs to be lin-
ear or almost linear to a circuit size.

There has been research [2] [5] [7] [8] [9] [10] [14]
[18] [19] in the area of testability analysis. The algo-
rithm COP [2] computes the signal probability (con-
trollability) value of each node from primary inputs to
primary outputs using a set of formulae. These signal
probability values are then used to derive the observ-
ability of a node by some rules. Due to the reconver-
gent fanout problem, signal probabilities computed by
COP are generally inaccurate. The algorithm PRE-
DICT [19], on the other hand, tries to improve the sig-
nal probability using the concept of super gate. This
results in much higher complexity. The testability anal-
ysis tool SCOAP [9] does not provide probability-like
values; instead, it gives a numeric number that repre-
sents the difficulty for testing a node.

In this paper, we address the problem of testability
analysis by taking into account signal correlation. Our
algorithm starts with testability analysis results such as
COP [4]. For each stuck-at fault, the accuracy of test-
ability will be improved by recursively applying some
simple rules. Each rule is associated with a formula
which characterizes signal correlation. When the con-
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dition of a rule is
analysis result by {

met, we modify the old testability
nsing the associated formula.

Since our emphasis is on detecting correlation
between controllability and observability of a fault, the

proposed algorith

m can benefit from existing algo-

rithms which attempt to improve the accuracy of signal

probabilities such

as the cutting algorithm [14] or the

super-gate analysis [19]. Although, in the following

context, the meth

od is suggested to improve COP’s

results, the same principle can be applied to methods

such as SCOAP. Another advantage of our algorithm is

that the testabiliti
naturally set to zer

>s of many redundant faults can be
0.

This paper is organized as follows. Section 2 dis-
cusses the background. Section 3 reviews the COP
algorithm. Section 4 describes our main algorithm and
Section 5 summarizes our algorithm by an example. In

Section 6, we disc

uss the experimental results. Finally,

conclusions are given in Section 7.

2 Background a

nd Definitions

Our algorithm uses the reasoning of Automatic Test
Pattern Generation (ATPG) to derive formulae for test-
ability analysis improvement. In the section, we

present the backgr
at fault and also gi

ound review for testing a wire stuck-
ve some definitions related to testing

areas. Here, we only consider circuits with AND, OR,
and INV gates. For a complex gate, it can be decom-

posed into AND a

The dominators

nd OR gates first.

[11] of a wire w is a set of nodes

which all paths fiom w to any primary output must
pass through. Given a dominator n of a wire w, the side

inputs of dominatgr n are all immediate inputs of n not

in the transitive fanout of w. The value v of an input to

a node is said to

be controlling if v uniquely deter-

mines the value df n regardless of the values of the
other inputs. The ¢ontrolling value is 1 for an OR gate

and O for an ANI|

D gate. The inverse of a controlling

value is called a noncontrolling or sensitizing value.
The mandatory assignments (MAS) are the value
assignments required for a test to exist and must be sat-
isfied by any test vector. The process of computing
these MAs and checking their consistency is referred
to as implication [1].

We define the MA assigned to the source node of the
target wire to be the activating value. The process of
implication is as follows. The MAs on the side inputs
of a dominator are set to sensitizing values and the MA
on the source node of the target wire is set to the acti-
vating value. These MAs can then be propagated. If the
output of AND {OR} gate is 1 {0}, the inputs are
assigned 1 {0}. Similarly if all the inputs of an AND
{OR} gate are 1 {0}, the output is given 1 {0}. This
process is called simple implication. Additional MAS
can be found by more complicated approaches such as
recursive learning [12].

(1-controllability, observability)
(112, 57/64)
4 Ma=1

(1/4, 1/4) (15/16, 1)

(18, 112)

DD,

(172, U8)
b

(172, 1/8)

MA=0
Testability
Wire COP Exact root MA

a—>d (s-a-1) 1716 0 conflict at a
b—>d (s-a-1) 1716 1/8 a=1, ¢=0, b=0
d—>e (s-a-1) 3/16 1/8 ¢=0, a=1, d=0
c—>e (s-a-0) 1/16 1/8 d=1, a=1, c=1
e—>f (s-u-0) 7716 3/8 a=1, e=1
a->f(s-a-1) 1716 0 conflict at u

Fig. 1 The relation between COP testability and
MAs for a stuck-at fault

If the MAs of a stuck-at fault test cannot be consis-
tently justified, the fault is untestable and, therefore,
the wire is redundant. For example, let us consider
wire a->d stuck-at-1 fault as shown in Fig. 1. To acti-
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vate the fault, node a must be assigned 0 while, to
propagate the fault through f, node a must be assigned
the sensitizing value, 1. Both assignments conflict and
the fault is untestable.

3 Testability Analysis and Its Relation with
Mandatory Assignments

In this section, let us revisit the testability analysis
algorithm COP and also discuss its assumption of sig-
nal independencies. To simplify the discussion, let n;
be a node in the circuit and v; be logic 0 or 1.

Definition 1 The signal probability or v-controllabil-
ity, p(n=v), is the probability to evaluate node n t0 v,
and the multiple signal probability p(ng=vy, n;=vy, ...,
n=vy) is the probability to simultaneously evaluate
each node n; to v;.

Note that, if all signal assignments {ng=vy, n;=vy,
.., M=V} } are structurally independent, we have

p(rp=vy np=Vy, ..., BE=W)
=p(nog=vp ) * p(ng=vy) *...* p(ny =vy).

In a tree-structure circuit, because signal assign-
ments for the immediate fanins of a node are all inde-
pendent, the signal probability of the node can be
exactly computed by multiplying the signal probabili-
ties of the node’s fanins. The observability of a node
can also be exactly computed by some rules. Based on
the assumption of signal independencies, the COP
algorithm estimates the controllability and observabil-
ity of a node using the same tree formulae. Let the
COP observability of a node n be represented by
obv(n). The observability of node d shown in Fig. 1 is
recursively computed by the following formula:

obv(d)

= p(c=0) * obv(e)

= p(c=0) * p(a=1) * obv(f)
=plc=0) * pla=1)

where obv(f) is assigned 1 because node f is a pri-
mary output. Since obv(d) = obv(d->e), the COP test-
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ability for fault d->e s-a-1 is equal to obv(d->e)*
p(d=0). Therefore, the d->e s-a-1 testability is

obv(d) * p(d=0)
= p(c=0) * p(a=1) * p(d=0).

After briefly describing the COP algorithm, we will
discuss a way of using implication to improve the test-
ability analysis.

Definition 2 The roor MAs of a wire stuck-at fault are
the MAs assigned to the side inputs of a dominator
(sensitization) and the MA assigned to the source of
the wire (activation).

For example, in Fig. 1, the root MAs for wire d->e s-
a-1 fault are {c=0, a=1, d=0} where MAs {c=0, a=1}
are to sensitize the fault and MA {d=0} is to activate
the fault. The implied MA {b=0}, however, is not a
root MA.

Lemma 1 For a wire w stuck-at fault, let MAS {ny=v,
ny=vy, ..., m=v) be the root MAs. The testability
analysis computed by COP for w is
p(ng=ve)*p(n;=v)*... *p(n=vy)*Constant.

Given the same example in Fig. 1, the COP testabil-
ity for d->e s-a-1 fault is determined as p(c=0)*
p(a=1)*p(d=0). Note that MAs {c¢=0, a=1, d=0} are
exactly the root MAs for d->e stuck-at-1 fault.

From Lemma 1, COP computes the testability by
individually multiplying the signal probability of each
root MA with some constant. However, because all test
vectors must simultaneously satisfy the root MA con-
ditions, a more accurate estimation for testability anal-
ysis can be done by computing the multiple signal
probability p(rg=vg, n;=v;, ..., np=vy), instead of just
ping=vp)*p(n;=v)*....*p(m=vy) by
assuming signal independencies of root MAs.

computing

For the example in Fig. 1, COP gives a wrong test-
ability of 3/16 for d->e s-a-1 fault while the exact
result should be 1/8. The reason mainly comes from



that p(c=0, a=1, d
p(d=0). One can
p(c=0, a=1, d=0)

4 Derive Signal

=0) is not equal to p(c=0)*p(a=1)*

casily verify that the exact result is

= 1/8.

Correlation from Implication

As mentioned, COP estimates testability by assum-

ing signal indepg

ndencies of root MA conditions.

When those conditions are tightly correlated, the esti-
mation can be very inaccurate. In this section, we dis-

cuss an efficient 4
for p(ng=vg, n;=v,

We assume that
for each node are
rithm then improv
sis of each fault,
perform implicatic
gating root MAs

lgorithm to improve the estimation

s wee RE=VE).

the controllability and observability
derived a priori by COP. Qur algo-
es the accuracy of testability analy-
For each stuck-at fault, we first
n by forward and backward propa-
of the fault. Using the information

from these new implied MAs, we derive a set of rules

to model signal ¢
rule is met, the C(
correlation factor.
until no rule is me
us discuss how an
for signal correlati

Consider again t
1. The COP testa
p(c=0)*p(a=1)*p(
root MAs. This t¢
{fa=1, d=0} are d¢
d=0} leads to {b=
should be equal to
signal assignments
It is easy to see tha

p(c=0, a=1, b=0)
=p(c=0) * p(a=1
= p(c=0) * p(a=1
= {COP testability

rrelation. When the condition of a
DP testability is multiplied by some
The process is recursively applied
. Before we describe those rules, let
implication process can give hints
on.

he example, d->e s-a-1 fault in Fig.
bility of the fault is determined as
d=0) where {c=0, a=I, d=0} are
stability is incorrect because MAs
pendent. One can check that {a=]1,
0}. As a result, p(¢=0, a=1, d=0)
p(c=0, a=1, b=0). Suppose the new
{¢=0, a=1, b=0} are independent.
I

*p(b=0)
* {p(b=0)/p(d=0)] * p(d=0)
result) * {p(b=0)/p(d=0)}

Consequently, to correct the testability result, we
multiply the old value (3/16) with the correlation fac-
tor, p(b=0)/p(d=0) = 2/3. Thus, we obtain the exact
value 1/8. Note that those assignments {c=0, a=1,
b=0} are independent since nodes a, b, and ¢ are pri-
mary inputs. If they are not independent, our algorithm
may recursively apply rules to obtain more accurate
results. We will elaborate this point later.

The success in the above example is to recognize
that {a=1, d=0] leads to {b=0}. This reasoning can be
obtained by using implication of MAs. It is intuitive
that during implication when two signal assignments
“collide” on a node, there is correlation between these
two signal assignments.

We now develop a set of useful rules to resolve the
signal correlation problem. The rules are classified into
three different groups. In the following, we describe
the condition for each rule along with its associated
correlation formula. Though only the case of two-input
AND gate is illustrated in the rules, the same principle
can be extended to rules for other gate types with any
number of inputs. Our goal is to closely approximate
multiple signal correlation, let us consider p(n;=v;
n;=v;) for simplification. The general case can be eas-
ily implied.

Table 1 The condition and correlation factor of a rule.

Rule # The condition of a rule Correlation Factor (CF)
MA=1
Rule 1 | "/ | ) CF = p(m=0)/p(n;=0)
ny A=0
MA=0
Rule2 | n.) CF = 1/p(n;=0)
e ' MA=0
n
"
y )MA:I
Rule 3 CF = I/p(ny=1)
Ny / BAA:l
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4.1 Rules for Improving Testability Analysis

All the rules are shown in Table 1 where the second
column shows the condition and the third column
describes the corresponding correlation factor for each
rule.

The condition for Rule 1 in Table 1 checks that an
AND gate n; has a logic “0” MA while one of its
fanins, n;, has a logic “1” MAL The corresponding
correlation factor for this rule is p(n=0)/p(n;=0)
where n, is the other input of node n;. The reason for
this correlation factor is as follows: Since n;is equal to
1, the only possibility for n; being 0 is that n, must be
0. Therefore, p(n;=0, nj=1) = p(n;=1, ;=0). Our start-
ing point, p(n;=0, n;=1), from the COP result was cal-
culated by p(n;=0)*p(n;=1). After multiplying the
COP result p(n;=0)*p(n;=1) with the correlation factor
p(n=0)/p(n;=0), we can oblain p(nj=])*p(nk=0).
Although this new result p(n;=1)*p(n;=0) may not
equal to the exact solution p(nj=] , n=0), we resolve
this problem by recursively applying rules. This point
will be discussed later.

The condition for Rule 2 in Table 1 checks that the
AND gate n; has a “0” MA and one of its fanins, n;,
also has a “0” MA. Note that in this case, we must
ensure that the MA {n;=0} is not an implied value of
nj=0. Since the MA { nj=0} dominates n;=0, we have
p(n;=0, nj=0) = p(nj:O). In order to obtain p(nj=0)
from p(n,=0)*p( nj:O) that is the COP result, the corre-
lation factor 1/p(n;=0) must be used.

Sometimes, several MAS can imply the same MA. In
Rule 3 of Table 1, we check whether there is a node
whose MA can be implied by several MAs such as its

fanout MAs or its fanin MAs. Consider the case in

Table 1 where two MAs {n;=1, n;=1} can both imply
the same MA {n,=1]. Note that the COP testability

1. For OR gate, we check the output of #; has a logic “1” MA
and one of its fanin has a logic “0” MA.
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assumes p(n;=1, n;=1) = p(m=0)*p(m=1)*p(n=1)*
p(nn=1). Using the same principle as in Rule 1, we
have

pin=1,n=1)

= plm=1, ni=1, ny=1)

=p(n=1) * p(m=1) * p(np=1)

= I/p(ng=1) * {p(m=1) * p(ny=1) * p(m=1) * p(n,,=1)}
= 1/p(n,=1) * {COP testability result).

Thus, when there are ¢ such fanouts, we must multi-
ply g-1 times of the correlation factor 1/p(n;=1).

MA=0
b — ]
D
MA=1 r
a |
(a)
4 — MA=0
b
c | ¢ )MA=0
MA=1
(®)

Fig. 2 (A) Recursively applying the rules. (B) Order of
processing MAs

4.2 Recursive Application of Rules

In Rule 1, we derive the correlation factor by assum-
ing the modified multiple signal probability p(n;=0,
n=1) is equal to p(nk=0)*p(nj=]). However, {n;=0,
n;=1} may be dependent. In our algorithm, this prob-
lem is resolved by recursively applying the rules. Let
us illustrate this scenario by an example for computing
p(d=0, a=1) in Fig. 2(A). It is easy to see that p(a=1,
d=0) is equal to p(a=1, b=0). We start with the COP
testability p(a=1)*p(d=0) and try to get the result in
terms of pfa=1)*p(b=0).

First, we have

COP testability = p(a=1) * p(d=0)



Immediately, Rule 1 condition is met on node d, and
the corresponding correlation factor must be applied as
follows.

Modified testability
= {the Rule 1 CF pn node d} * COP testability
= {p(c=0)/p(d=0)} * p(a=1) * p(d=0)

= pfc=0) * pla=1

In the second gtep, Rule 1 condition again is met
on node ¢, and we have

Final testability
= {the Rule 1 CF ¢n node c} * Modified testability
= {p (b=0)/p(c=0)} *p (¢=0) * p(a=1)

= p(b=0) * pla=1
= {p(c=0)/p(d=0)} * {p (b=0)/p(c=0)} * COP testability

Therefore, by recursively applying Rule 1 twice, we
can gradually modify p(d=0)*p(a=1) into
p(b=0)*p(a=1) that is equal to the target signal proba-
bility, p(d=0, a=1). In this way, we are able to little by
little approximate the multiple signal probability to a
more accurate resuft.

4.3 Results are Independent to Implementations

The entire algorithm is shown in Fig. 3. Given the
COP result, our algorithm first computes the root MAs
for a target stuck-gt fault. Then, we perform simple
implication on thege MAs. Note that the simple impli-
cation has been defined in Section 2. During the impli-
cation process, if| the MAs cannot be consistently
justified, we return| zero for the fault. Otherwise, when
the condition of a nule is met, the corresponding corre-

lation factor is applied. This procedure for the target

fault continues until no rule can be met. Following the
above process, we|are able to enhance the COP test-
ability for each fault under consideration. In addition,
the testabilities of many redundant faults can be natu-
rally set to zero.

The conditions of rules are checked during the impli-
cation process of a stuck-at fault test. Note that the
order of processing MAs for different implementations

/* assume COP is done before this routine */
Improve_testability_analysis_for_a_fault(f))
{
Put_rootMAs_into_stack(f))
while (stack_is_not_empty) {
(n;=v;) = pop(stack)
imply(n;=v;)
I (MA_is_inconsistent)
return 0. /* the fault is redundant */
switch (condition of MAS) {
case rulel : apply CF1
case rule? : apply CF2
case rule3 : apply CF3

)

Fig. 3 The testability analysis enhancement algorithm

can be different even though the final MAs are the
same. This can result in applying different rules on the
same node. Fortunately, we have the following theo-
rem.

Theorem 2 The results of our algorithm are indepen-
dent of the order in processing MAs.

For example, in Fig. 2(B), let us consider the case of
p(c=1, d=0, e=0). Because MAs {e=0, c=1} leads to
MA {b=0}, one may first apply the correlation factor
p(b=0)/p(e=0) of Rule 1 on node e. Then, MA {b=0}
can be implied again from MA {d=0} so the correla-
tion factor 1/p(b=0) of Rule 3 can be applied to node b.
The final correlation factor in this way is [p(b=0)/
p(e=0)}* {1/p(b=0)} = 1/p(e=0). On the other hand,
the MAs can be processed in different order. Suppose
we start by implying MA {d=0} to obtain MAs {a=0,
b=0} and no rule condition is met at this step. It can be
found that MAs {b=0, e=0} satisfy the condition of
Rule 2 on node ¢ and the correlation factor, 1/p(e=0),
of this rule can be applied. Although the processing
order of MAs is different in both ways, we end up with
the same final correlation factor, 1/p(e=0).
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5 A Complete Example

We summarize our algorithm by an example using
the well-known Schneider circuit [16] in Fig. 4. Ini-
tially, the testability analysis is performed by the COP
algorithm and the results of the 1-controllability and
observability for each node are shown in the Table A
of Fig. 4. Consider wire f~>j s-a-0 fault whose COP
observability is 125/1024 and 1-controllability of node
fis 1/4. Thus, before improvement, we have that the
COP testability is equal to 125/4096.

Our algorithm first finds the root MAs {f=1, d=1,
k=0, i=0, h=0}. The implication process is then
applied on these MAs with the detailed steps shown in
Table 2.

In Step 1, we imply MA {f=1}, which results in the
assignments of 1 to both nodes b and c¢. Obviously, no
rule condition is met since nodes b and ¢ were not
given any value before Step 1. In Step 2, we imply
MASs {c=1, k=0}, which results in the assignment of 1
to node g. The Rule 1 condition is met on node k& and
the correlation factog, p(g=1)/p(k=0) = 0.25/0.625 = 2/
5 must be multiplied later. Note that due to the exist-
ence of an inverter at the output of g, the equation for
Rule 1 just applied is slightly different from that in
Table 1. In Step 3, after implying MA {g=1}, we do
not have any new MA assigned. However, MAs {b=1,
d=1} are deduced again. The MA, {b=1} was deduced
from MA {f=1} and MA {d=1} was a root MA. Thus,
Rule 3 conditions are met on nodes b and d and this
must be corrected by the correlation factors 1/p(b=1)
= 2 and I/p(c=1) = 2 of Rule 3. In Step 4, we imply
MASs {b=1, h=0}, which results in the assignment of
logic 1 to node e. Again, the Rule 1 condition is met on
h, the correlation factor p(e=1)p(h=0) = (1/4)/(5/8) =
2/5 must be applied. In Step 5, MA {e=1] is implied
and logic 1 is assigned to both nodes a and c. Since
node ¢ has been assigned logic 1, Rule 3 condition is
met on node ¢ and the correlation factor, 1/p(c=1) =2
must be multiplied to the COP testability. Finally, in
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Table A : controllability & observability

)

Node 1-Controllability Observability
a 0.5 0.233
b 0.5 0.321
c 0.5 0.321
d 0.5 0.233
e 0.25 0.122
7 0.25 0.229
< 025 0.122
h 0.375 0.244
[ 0.375 0.244
j 0.375 0.244
k 0.375 0.244
X 0.847 1

Table B : Testability comparison.

Wire | Fault cop Exact Ours

2>k | s-a0 | 0.0305 0.0625 0.0625

c>k | sal | 00915 0.0625 0.0625

d>; | sal | 0.0915 0.0625 0.0625

a->i | sa-1 | 00915 0.0625 0.0625

757 | 5a0 | 0.0305 0.0625 0.0625 ours

e>h | s-a-0 | 0.0305 0.0625 0.0625

F>1 | s-a-0 | 0.0303 0.0625 0.0625 are the
c->f | s-a-1 0.0573 0.0 0.0 same
75X | sa0 | 00915 0.0625 0.0623

c>e | sal | 00305 0.0 0.0 as the
i>X | sa-0 | 0.0915 0.0625 0.0625 exacts
b->f | sa-1 | 0.0573 0.0 0.0

d>g | s-a-l | 00305 0.0625 0.0625

b->g | sal | 00305 0.0 0.0

a->e | s-a-1 0.0305 0.0625 0.0625

b>h | sal | _0.0915 0.0625 0.0625

->X | s-a-0 0.0915 0.125 00915

%->X | s-a-0 | _0.0915 0.125 0.0915

Fig. 4 An example from [16]



Step 6, we find thaf MA {f=1} dominates the root MA

{i=0}. As a result,

Rule 2 condition is met on node i

and the correlation factor 1/p(i=0) = 8/5 must be
applied. Let us now multiply all these correlation fac-

tors with the origingpl testability:

2

20,8 125 1

SX2X2IXZX2X X ——

5

The new result 1
for f->j s-a-0 fault.

Table 2 Detail st

5 574096 16

16 =0.0625 is the exact testability

eps of the implication process

Step| Implication | Ajpply Rule | On Node(s) | Correlation Factor
if=1} =>
1 None N/A N/A
{b=1,c=1}
{c=1, k=0] => of = p(g=1)/p(k=0)
2 Rule 1 k
lg=1) =215
{g=1} => b, of = 1/p(b=1) =2,
3 Rule 3
{b=1,d=1} d of = l/p(d=1)=2
{b=1, h=0] => = ple= =
4 Rule 1 h o = ple=1)/p(h=0)
le=1) = (I/4)/(5/8) = 2/5
fe=1}=>
5 Rule 3 c of = 1pfc=1)=2
fa=1, c=1}
6 {f=1, i=0} Rule 2 i of = I/p(i=0) = 8/5

For the circuit in
in the Table B. As
are all better than
two of our testabilj
results and four reg
while COP cannot.

Fig. 4, we list the testability results
can be seen, our testability results
he COP results. In addition, all but
ty results are the same as the exact
lundant wires can also be identified

6 Experimental Results

We have implen
tested on a set of

iented the algorithm in Fig. 3 and
MCNC and ISCAS benchmarks.

Each circuit for our experiment is first optimized by

the script “script.bg
AND and OR ¢
tech_decomp -a 10
wire stuck-at fault
different methods.
Decision Diagram

olean” in SIS and decomposed into
rates by using “decomp -good;
D0 -0 1000.” The testability for each
test is then computed using three
The “exact” method uses Binary
(BDD) to obtain the exact testabil-

ity. The COP result is obtained by the algorithm [4],
and our result is obtained by the algorithm in Fig. 3.
The experimental results are shown in Table 3.

In Table 3, the first column shows the name of each
circuit. Note that those C-circuits in ISCAS cannot be
finished by the exact (BDD) method are not listed in
the table. The second column shows the total number
of detected irredundant faults. For each circuit, we
testability by the formula
(f)'—':“ sa)/\faulss| of [13] for the purpose of performance

evaluation. Here, only the testable faults are under con-
sideration. The third column compares the circuit test-

compute the circuit

ability among the COP, exact, and our results. For
example, the circuit testability for “count” is 30070.0
by COP, 14362.7 by the exact solution and 14853.9 by
our algorithm, For this case, COP has 109% error with
respect to the exact result while our result has only 3%
error. Since the circuit testability formula tends to
amplify the effect for a small testability, the results in
Table 3 demonstrate that our algorithm can be much
more accurate for a fault with small testability. The run
time comparison is shown in the fourth column. As
can be seen in the table, our algorithm only requires
little run time overhead for significant improvement.
For example, circuit C5315 can be done in 3.57 sec-
onds under 296 MHz UltraSPARC-IL.

7 Conclusion

We have discussed a testability analysis enhance-
ment algorithm. Our algorithm starts with the COP
results where signal assignments are assumed to be
independent. Our algorithm then improves the testabil-
ity analysis results by considering signal correlation.
Our experiment results show that our algorithm pro-
duces far more accurate results than the results of COP.
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Table 3 Compare the circuit testability.

1
Pd: .
# of testable faults Run time (sec.)
Circuit | faults|
fault
(faults are those testable faults)
Cop Exact Ours copP Exact Ours
9symml 701 180.3 ﬁ4 139.5 0.07 43.90 0.84
C1355 1546 100.7 784 87.0 0.18 9905.12 1.41
C17 28 5.7 6.3 6.5 0.03 0.24 0.02
C1908 1458 380.5 186.1 2184 0.19 2822.66 1.40
C3540 3588 1854.7 168.1 252.0 0.37 | 79726.65 9.98
C432 558 48.5 35.5 31.3 0.08 2555.09 0.68
C5315 5310 122.1 59.9 914 0.57 {10485.02f 3.57
C880 1222 95.2 92.1 90.3 0.13 4231.75 0.75
alu2 1134 5001.4 71.6 866.5 0.14 126.49 3.02
alud 2254 147535.1 932 3521.9 0.25 517.58 8.08
apex6 2273 3524 2591.9 1197.1 0.29 515.37 1.83
apex7 680 89.1 73.3 93.2 0.09 52.12 0.40
c8 384 112.5 73.1 74.7 0.06 13.57 0.23
cht 480 75 6.7 6.6 0.09 19.56 0.26
count 420 30070.0 | 14362.7 | 148539 0.07 17.69 0.29
example2 903 136.3 226.3 125.2 0.13 93.86 0.97
fS1m 426 30.3 209 20.7 0.07 16.85 0.37
frgl 366 1643.5 1770.9 1717.5 0.05 24.36 0.28
frg2 2515 388.7 265.2 262.3 0.29 746.77 3.90
i6 1314 11.3 8.8 8.8 0.18 151.28 2.27
i7 1709 12.4 9.1 9.0 0.21 254.52 3.84
my_adder 576 9.9 6.3 6.6 0.08 46.75 0.27
pair 4782 188.3 406.9 206.3 0.48 5606.68 3.82
rot 1967 190.6 267.4 200.1 0.23 1229.41 1.20
t481 2122 40336.4 | 14515.1 | 12969.0 0.26 444.51 12.66
term1 643 1294.2 614.7 712.6 0.09 43.87 0.49
too_large 1226 7642.8 | 234498.8 | 34361.4 0.12 467.91 1.55
ttt2 656 65.8 115.2 89.2 0.07 44.20 0.49
x1 806 494.7 660.9 842.3 0.11 77.30 0.55
x2 118 48.6 43.6 419 0.04 1.62 0.08
x3 2257 706.8 2132 199.1 0.26 472.41 1.68
x4 1070 34.8 353 26.4 0.13 125.78 0.74
Average Ratio 52.998 1 2.423 1 12776.62{ 10.10
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