
Xtream-Fit: An Energy-Delay Efficient Data Memory
Subsystem for Embedded Media Processing∗

Anand Ramachandran and Margarida F. Jacome
Department of Electrical and Computer Engineering

The University of Texas at Austin
randy|jacome@ece.utexas.edu

ABSTRACT
In this paper we propose a novel special-purpose data mem-
ory subsystem, called Xtream-Fit, aimed at achieving high
energy-delay efficiency for streaming media applications. A
key novelty of Xtream-Fit is that it exposes a single cus-
tomization parameter, thus enabling a very simple and yet
effective design space exploration methodology. A second key
contribution of this work is the ability to achieve very high
energy-delay efficiency through a synergistic combination of:
(1) special purpose memory subsystem components, namely, a
Streaming Memory and Scratch-Pad Memory; and (2) a novel
task-based execution model that exposes/enhances opportu-
nities for efficient prefetching, and aggressive dynamic energy
conservation techniques targeting on-chip and off-chip mem-
ory components. Extensive experimental results show that
Xtream-Fit reduces energy-delay product by 46% to 83%, as
compared to general-purpose memory subsystems enhanced
with state of the art Cache Decay and SDRAM power mode
control policies.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems—media processing, energy
efficiency ; B.3 [Memory Structures]: Cache memories—
software controlled cache, scratch-pad, streaming memory

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
streaming memory, scratch-pad, energy delay product, low
power, media processing, design space exploration, configura-
bility

1. INTRODUCTION
Microprocessor cores, as opposed to packaged, off-the shelf

processors, are being increasingly used in high volume em-
bedded systems [1, 2, 3]. Achieving high energy-delay effi-
ciency, via chip customization, is the main objective driving
this trend. It is well known that the memory subsystem is
responsible for a significant percentage of the overall power
dissipation of most off-the-shelf processors, e.g., more than
40% for the StrongARM-110 [4]. The memory subsystem is
thus a prime candidate for customization to an application’s
requirements by embedded system designers [1, 2, 3].

In this paper, we propose a special-purpose data memory
subsystem architecture, Xtream-Fit (see Figure 1), aimed at
achieving high energy-delay efficiency for streaming media ap-
plications. Xtream-Fit’s high energy efficiency is achieved
through the use of an on-chip software-controlled Streaming
Memory, a Scratch-Pad Memory, and an aggressive exploita-
tion of burst/page mode access and low power modes available
in modern SDRAMs.
∗This work is supported in part by NSF ITR Grant ACI-
0081791, and NSF Grants CCR-9901255 and ECS-0225448.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

Controller

Streaming
Memory

Instruction
Cache

Processor
Core

Memory
Off−Chip

Memory
StreamingScratch−Pad

Xtream−Fit Data Memory Subsystem

SDRAM

Figure 1: Embedded media processing w/ Xtream-Fit

In Xtream-Fit, data transfers (to/from the off-chip SDRAM)
are independent stream-granularity operations executed by a
dedicated Streaming Memory Controller. The relative “pac-
ing” of such data transfers with respect to actual computa-
tions is established via a dynamic synchronization of data
transfer tasks, executing on the Streaming Memory Controller,
and processing tasks, executing on the embedded processor
core.

We will show that, when such tasks are properly defined,
their synchronized execution maximizes opportunities for en-
ergy savings, and exposes critical energy-delay trade-offs, in
two important ways. First, it enables a tight control over
the patterns of off-chip memory accesses/references gener-
ated by the memory subsystem, namely, over their inherent
locality and periodicity, which in turn allows for a better ex-
ploitation of modern SDRAMs’ energy-delay efficient access
modes. Second, it leads to a consolidation of system compo-
nents’ idle/dead times (e.g., off-chip SDRAM and/or specific
regions of the on-chip Streaming Memory), into larger and
more predictable time intervals. As will be seen, this is criti-
cal for optimizing the profitability of energy saving techniques
based on selective exploitation of low power modes.

In contrast to previous approaches, which require the tun-
ing of several (possibly conflicting) customization parame-
ters, the proposed Xtream-Fit data memory subsystem ex-
poses a single customization parameter, thus enabling a sim-
ple yet highly effective design space exploration methodology.
Our extensive experimental results for a representative set of
applications from the Mediabench suite [5], considering two
families of processor cores (namely, ARM and MIPS), em-
pirically demonstrate that Xtream-Fit can reduce total en-
ergy consumption of on-chip and off-chip memories by 43%
to 83% with no negative impact in performance, thus improv-
ing energy-delay product by as much as 83%, as compared to
general-purpose memory subsystems enhanced with state-of-
the-art Cache Decay and SDRAM power mode control poli-
cies, working with a similar processor core [6, 7, 8, 9].

The paper is organized as follows. Section 2 discusses key
characteristics of streaming media applications and introduces
the main concepts/ideas exploited in Xtream-Fit. Sections 3
and 4 describe the main components of the proposed data
memory subsystem and associated energy conservation poli-
cies. Section 5 contrasts Xtream-Fit with previous related
work. Section 6 describes the methodology and experimental
set up used to assess the energy-delay efficiency of Xtream-Fit
and presents detailed simulation results and analysis. Con-
clusions are given in Section 7.

2. XTREAM-FIT PROCESSING MODEL
Input and output streams of media applications are typi-

cally specified as sequences of relatively small basic data ob-
jects, which can be processed/generated (quasi-) independently.

137

9.4

... ...
from input data object (i)

i−2 i−1 i

...... i−3 i−2 i−1

basic data object

basic data object

prefetch next input data object (i)
generated output data object (i−1) and
Task_DT:

 Application Code
Task1_P: Generate output data object (i)

Write back previouslyprimary
output
stream

primary
input
stream

(a) media application with minimum number of tasks

... ...

... ...k−2 k−1 k

i−2 i−1 i

basic data object

basic data object

basic data object

Write back previously

Generate address of

Prefetch next secondary

primary
output
stream

primary
input
stream

secondary
input
stream

secondary input data (k) from input data (i)

 Application Code: Partition 1

 Application Code: Partition 2

generated output data object (i−1) and
prefetch next input data object (i)

Task1_P:

Task2_DT:
 input data object (k)

Task2_P:
from input data objects (i) and (k)

Task1_DT:

Generate output data object (i)

...... i−3 i−2 i−1

(b) media application with four tasks

Figure 2: Task decomposition: key principles

For example, MPEG compression and decompression of frames/
pictures in a video stream is performed on a macroblock ba-
sis (16x16 pixel block), JPEG encoders/decoders work on a
block basis (8x8 pixel block), etc. [5].

Media applications usually perform sequences of complex
operations and transformations on streams of such basic data
objects, often exhibiting high locality of reference yet low data
reuse [10, 11, 12, 13]. In addition, a myriad of constants
(and/or infrequently changed data) are periodically reused
during the processing of those basic data objects – exam-
ples include arrays of quantization, filtering, DCT, IDCT,
FFT and other transform coefficients. Xtream-Fit’s Scratch-
Pad Memory and Streaming Memory (see Figure 1) provide
energy-efficient on-chip storage for these two types of data:
(1) constants and scalars; and (2) low reuse streaming data.

2.1 Processing and Data Transfer Tasks
At the core of this work lies the idea of decomposing the

media application into tasks, which encapsulate continuous
processing loads for one of the two main architectural subsys-
tems, namely, the data memory subsystem (Xtream-Fit) and
the processing subsystem (processor core). Thus, for exam-
ple, once a task begins execution on the processing subsystem,
it will not be stalled waiting for data transfers. Similarly, a
task being executed on the memory subsystem will make full
use of the memory bandwidth until completion.

Accordingly, streaming media applications are decomposed
into at least one data transfer task and one processing task
– the first prefetches and writes back data streams, while the
second processes/generates those streams. Figure 2(a) shows
an application that breaks down into two such tasks. Specifi-
cally, at iteration i, the data transfer task Task DT starts by
storing (writing back) the previously generated output data
object (i.e., data object (i − 1) of the output stream), and
then prefetches the next input data object (i.e., data object i
of the input stream). When the data transfer task ends, a pro-
cessing task, encompassing the entire application code, starts
executing – during such execution, the input data object just
prefetched is processed so as to generate the corresponding
output data object. Note that output data object i will be
written back only at the next iteration i + 1, and so forth.
Many media applications, e.g., JPEG and G721 encoders and
decoders, can be decomposed into only two such basic tasks.

Some applications may however require more than two tasks.
The key rule driving further task decomposition is as follows:

Memory accesses dependent on input or interme-
diate data, when extant, should be organized or
clustered into independent data transfer tasks, such
that continuous workloads on the two subsystems
can be ensured.

For example, consider a media application that requires
one additional input data object from some secondary input
stream, as it processes each data object from the primary
input stream. Assume also that the address of this addi-
tional input data object is encoded in the primary input data
object itself. Data dependent accesses such as this define
the boundaries for further task decomposition. Indeed, one
can only load the secondary data object after its address has
been determined/computed by a processing task, using the
primary input data (namely, Task1 P in Figure 2(b)). Thus,
if one wishes to define data transfer tasks that ensure con-
tinuous workloads on the memory subsystem, the loading of
this secondary data object cannot be performed by the same
data transfer task that loads the primary input data object
(namely, Task1 DT in Figure 2(b)) – or, else, workload conti-
nuity would not be guaranteed, since such a task would stall,
waiting for the address of the secondary data object. Accord-
ingly, an additional data transfer task (denoted Task2 DT in
Figure 2(b)) is defined for that purpose. Similarly, in order en-
sure continuous workloads on the processing subsystem, the
computations/decoding that determines the address of the
secondary data object (using the primary input data) can-
not be executed by the same processing task that eventually
generates the primary output data object. This application
would thus be decomposed into four tasks, interleaved as in-
dicated in Figure 2(b).

The above task decomposition methodology was success-
fully applied to several representative media applications from
Mediabench [5], consistently resulting in the identification of
only a few data transfer and processing tasks. In Figure 3(a),
we illustrate the task decomposition for the MPEG2 decoder
application. Note that, the memory accesses required by the
motion compensation part of the algorithm (represented by
the Predictor block in Figure 3(a)) are conditioned on the
motion vectors extracted from the MPEG2 input stream for
each macroblock. Thus, four tasks are needed for this appli-
cation. The corresponding task graph capturing those basic
data dependencies, i.e., defining the required interleaving be-
tween the tasks, is shown in Figure 3(b).

Once the set of basic tasks is identified, the application code
is partitioned accordingly. For example, the two processing
tasks defined for the MPEG2 decoder, namely, Task1 P and
Task2 P , can be obtained by partitioning the actual applica-
tion code – in our case, the C program available in the Me-
diabench benchmark suite – into the two shaded components
indicated in Figure 3(a). In contrast, data transfer tasks are
specially written small code segments executed by Xtream-
Fit’s Streaming Memory Controller. For example, Task1 DT
is essentially a single Xtream-Fit’s store stream instruction,
which writes back the output data object just generated, fol-
lowed by a single load stream instruction, which prefetches a
fixed size MPEG2 stream segment corresponding to the next
macroblock1.

2.2 Task Granularity and Scheduling
We define task granularity g to be the number of primary

input data objects processed during a single execution of an
application’s task graph. Note that once a set of minimum
granularity (g = 1) tasks is defined for a streaming media
application (using our task decomposition methodology), pa-
rameter g can be easily increased, so that g primary stream
data objects are jointly fetched and then jointly processed by
the subsequent (granularity g) tasks. Figures 4(a) and (b)
show an execution snapshot of MPEG2 tasks with granulari-
ties g = 1 (i.e., one macroblock decoding at a time) and g = 2
respectively. The importance of being able to explicitly vary
task granularity will become evident in Sections 3 and 4.

We now discuss dynamic scheduling policies for data trans-
fer and processing tasks. Although the delay of individual
task types may vary significantly during the execution of
a typical streaming media application, the computation to

1
When dealing with variable size input stream data objects (e.g., com-

pressed macroblocks in MPEG), an upper bound on the maximum size
of such data objects is used by the corresponding data transfer task.

138

Stores previously decoded macroblock
Prefetches next MPEG stream segment

Task1_DT:

{
{

{
{
{

{

Generate decoded MBsTask2_P:
Task1_DT

Task1_Proc

Task2_DT

Task2_Proc

(b)

output region
DEC_MB

g x 384B

secondary input region
g x 384B each

motion compensationM
PE

G
 s

tr
ea

m

(a)

D
E

C
_M

B

motion vectors (MVs)

MPEG Streaming Memory

D_dct_MB

0/1/2 motion compensation macroblocks
Based on motion vectors, prefetches

Task2_DT:

(c)

Extracts Differential DCTed MB, MVsTask1_P: MPEG stream

intermediate data
motion vectors
D_dct_MB

primary input region
g x 128B−1MUX VLD Q−1

? ?

PREDICTOR

IDCT ADD

Figure 3: MPEG2 Decoder block diagram: (a) task decomposition (b) task graph (c) Streaming Memory

memory access rate remains consistently high throughout any
such execution trace. In our experiments we found this ratio
to be between one and two orders of magnitude, for minimum
granularity tasks (g = 1). As task granularity increases, the
dominance becomes even more significant. Those numbers es-
sentially confirm the well known fact that media applications
are computation bound, see e.g. [10, 11, 12, 13].

The delay dominance of one task type over the other has
actually very positive implications. Specifically, it enables the
implementation of very simple dynamic synchronization poli-
cies between processing and data transfer tasks. In order to
illustrate this last point, consider again the MPEG2 decoding
application and assume, a task granularity of 2 macroblocks.
The dynamic scheduling policy for the processing tasks would
be as follows. Task1 P g=2 can commence processing the new
batch of two macroblocks as soon as the first input stream
segment (corresponding to the first macroblock in the new
batch) is stored in the Streaming Memory by Task1 DT 2 (see
Figure 4). Observe that, due to the relative delays between
both tasks, no additional synchronization is needed between
“producer” Task1 DT 2 and “consumer” Task1 P 2.

Similarly, as soon as the motion compensation data for
the first macroblock is stored in the Streaming Memory by
Task2 DT 2, Task2 P 2 can commence the processing of the
corresponding macroblock. As in the previous case, no addi-
tional synchronization is needed between the two tasks. The
dynamic scheduling policy for the data transfer tasks is even
simpler – they are started on completion of the logically pre-
ceding processing task. The delay overhead incurred by those
simple dynamic task scheduling/synchronization policies is es-
sentially negligible – see results in Section 6.

3. XTREAM-FIT ON-CHIP DATA MEMORY
Streaming Memory. Control over (i.e., predictability of)

on-chip memory accesses is enhanced by organizing Xtream-
Fit’s Streaming Memory into a set of regions, each capable
of individually holding one of the input, output or intermedi-
ate data streams used or generated during the processing of a
media application’s basic input data object. The Streaming
Memory for the MPEG2 decoder application, for example, is
organized into six regions, with corresponding sizes parame-

Memory
Subsystem

Processing
Subsystem

Task2_DT
2

Task1_DT
2

2Task1_P 2Task2_P

Memory
Subsystem

Processing
Subsystem

i+1i

i+1i
decode mb ‘i’ and ‘i+1’

Task1_P Task2_P

decode mb ‘i’

Task1_DT Task2_DT Task1_DT

Task1_P

Task2_DT

Task2_P

decode mb ‘i+1’

(b)

input stream
macroblocks ‘mb’

input stream
macroblocks ‘mb’

(a)

SDRAM idle time SDRAM idle time

Figure 4: MPEG2 decoder: Scheduling snapshot

terized by task granularity g – see Figure 3(c). Accordingly, a
Streaming Memory with task granularity 2, has roughly twice
the size of a Streaming Memory with task granularity 1, and
so forth.

Scratch-Pad Memory. Power hungry off-chip data ac-
cesses are minimized in our proposed memory subsystem by
mapping all constants and scalar variables, to an on-chip par-
tition of main memory, i.e., a Scratch-Pad memory [14, 15, 16,
17]. Our analysis and experiments confirm the results of the
study in [17], showing that a memory size of 2 KB is sufficient
to hold all such data for most Mediabench programs.

4. ENERGY CONSERVATION POLICIES

4.1 SDRAM: Burst Access, Low-Power Modes
Modern SDRAMs cache the most recently accessed row of

each bank on a row buffer. While a row is active in the
buffer, an arbitrary number of single-cycle burst mode (read
and write) accesses to the row can be performed [6, 7]. By
aggressively exploiting burst mode, one can substantially de-
crease the average power consumption and delay of memory
accesses to individual stream elements [3, 13].

Xtream-Fit’s data transfer tasks provide the proper scope
for such an exploitation, namely, they allow embedded sys-
tem designers to actually program (that is, statically ensure)
burst mode prefetching and delayed storage of stream seg-
ments of a predefined, optimized size (see Section 4.3 on De-
sign Space Exploration). For example, consider Task1 DT
of the MPEG2 decoder application, which starts by writing
back a previously decoded macroblock and then prefetches a
fixed size input stream segment. A proper (sequential) layout
of the corresponding MPEG2 input and output streams in
the SDRAM enables both of these accesses to be performed
in burst mode. The task granularity parameter g, defined
with respect to the media streams’ basic data objects (e.g.,
macroblocks for MPEG2), establishes the degree to which one
wishes to take advantage of burst mode read/write SDRAM
accesses during the execution of data transfer tasks.

Yet another advantage of our proposed task based process-
ing model is that it ensures well defined, consolidated intervals
of off-chip memory idleness, see e.g., Figure 4(b). This is criti-
cal for effectively exploiting the low power modes of operation
available in such memories, particularly when exit latencies
are non-negligible. In our initial experiments, we considered
two types of off-chip memory, namely, Rambus DRAM mod-
ules [18] (high bandwidth, several low power modes, some
with considerable exit latencies) and low power SDRAM mod-
ules (lower bandwidth, single low power mode with a small
exit latency) [19, 20]. Since the low power SDRAM mem-
ory always provided sufficient memory bandwidth at a much
lower energy cost than the RDRAM memory, solutions based
on the latter were abandoned. We adopted a simple policy,
which switches the SDRAM to its low power mode as soon as
a data transfer task concludes execution, since it consistently
led to minimum energy consumption, with no noticeable im-
pact in performance.

139

4.2 Software Controlled Streaming Memory:
Reducing Leakage Power

The region-based organization of Xtream-Fit’s Streaming
Memory allows for the implementation of simple and yet highly
effective selective memory shut down policies, as tasks ex-
ecute on both subsystems. In Figure 4(b) for example, as
Task1 P g=2 concludes the processing of the 2 compressed
macroblocks sequentially stored in the MPEG2 input stream
region, the corresponding sub-regions where such data is stored
are selectively shut down (that is, clock gated [8]). At the
end of the execution of Task1 P 2, and during the time inter-
val until Task1 DT 2 starts the prefetching of the next batch
of compressed macroblocks, the entire MPEG2 input stream
region will remain shut down. Note also that, as a result
of similar shut down policies implemented by previous tasks,
the MPEG2 output stream and the two motion compensation
macroblock regions will be permanently shut down during the
execution of Task1 P 2. Experimental results in Section 6
show that such low cost task/software driven shut down poli-
cies can considerably reduce leakage/static power dissipation
on the Streaming Memory.

4.3 Design Space Exploration
Given a streaming media application, the selection of a spe-

cific processor core is driven by specific power/performance
targets and other considerations which are beyond the scope
of this paper. Once one or more of such cores are selected,
Xtream-Fit’s design space exploration process, aimed at min-
imizing energy-delay product in the memory subsystem, is
quite simple and systematic, and can be conducted by sim-
ply varying the task granularity parameter g. Specifically, as
task granularity g increases, both power dissipation and av-
erage delay of off-chip data transfers decreases accordingly.
However, the corresponding size of the Streaming Memory,
and thus power dissipation in on-chip memory, increases. As
illustrated in Figure 5 for the MPEG2 decoder application,
by simply varying parameter g, one can systematically move
across those two conflicting energy consumption curves, i.e.,
explore the design space, so as to easily find the point of
maximum energy efficiency, for a particular target proces-
sor/performance.

5. RELATED WORK
Recent work geared towards augmenting general purpose

memory hierarchies with power aware features include dy-
namic policies aimed at minimizing cache leakage, e.g., Cache
Decay [8], and SDRAM dynamic power mode control poli-
cies [6, 7].

Cache/Scratch-Pad partitioning and reconfiguration strate-
gies include [21, 22, 23, 24, 15, 25, 26]. The above tech-
niques focus primarily on performance optimization, as op-
posed to energy-delay product optimization, and this distinc-
tion is critical. Indeed, as evidenced by our experimental re-
sults in Section 6, properly “configured” hardware-controlled
caches typically provide sufficient bandwidth for media ap-
plications, but are not energy efficient – see also [10, 11, 12].
Still, a number of such performance oriented schemes may also
lead to energy savings, a notable example being the general-
purpose Adaptive Line Size Caches [26]. Indeed, when the
variation on “optimal” burst sizes over time can be effectively
“tracked” by the dynamic controller, SDRAM energy savings
are likely to result. However, if the pattern of “optimal” burst
sizes oscillates “quickly” between very distinct values, e.g.,
due to the interleaving of read/write accesses to compressed
vs. decompressed input/output streams, the controller may
end up “stabilizing” on some “average” value over all such
distinct sizes. In contrast, burst sizes in Xtream-Fit are soft-
ware controlled and can be thus “optimally” programmed for
each such individual stream-access, with no “tracking” delays
and associated transition related energy overheads.

Energy-efficiency of on-chip caches has been directly ad-
dressed in recent research, e.g., “Cool Caches” [16] and “Region-
based Caching” [28]. Region-based caching aims at reducing

energy by dividing the cache along OS memory regions (viz.,
stack, global, heap). Cool-Caches reduce energy consump-
tion by eliminating cache tags. Namely, scalars are mapped
to a Scratch-Pad and a compile time speculative approach
(using a small register area) is used to eliminate tag-lookups
for non-scalar accesses. Note that, Xtream-Fit also exploits
“non-conventional” memory subsystem components, namely,
a Streaming Memory and Scratch-Pad Memory. In contrast,
though, one of its key unique strengths is a novel task-based
execution model and associated single customization parame-
ter that exposes opportunities for efficient stream-granularity
prefetching and aggressive dynamic energy conservation poli-
cies targeting, in an integrated way, the energy-delay efficiency
of both, on-chip and off-chip memory accesses.

There is also considerable previous work on methodologies
for designing high-performance energy-efficient custom data
memory subsystems for programmable hardware accelerators,
e.g. [1], as well as work on memory subsystems for high-
performance coprocessors for media kernels, e.g. [12]. Most
such work focuses on sheer performance maximization via an
aggressive customization of processing and memory subsys-
tems, thus targeting a segment of the embedded system’s
market very different from that targeted in this paper.

In conclusion, we claim that Xtream-Fit provides a unique
alternative to: (1) “standard/general-purpose” data memory
hierarchies enhanced with state-of-the-art power-aware fea-
tures found in contemporaneous off-the-shelf processors; and
(2) complex, highly specialized hierarchical data memory sub-
systems found on many programmable hardware accelerators.
Specifically, Xtream-Fit enables an aggressive reduction of
energy-delay product when compared to the first group of
solutions (see Section 6), while greatly simplifying the over-
all customization effort (hardware and software), when con-
trasted to the second group of solutions. Such “middle point”
is likely to be attractive for many segments of the embedded
systems market.

6. EXPERIMENTS AND RESULTS
We evaluated the effectiveness of Xtream-Fit across a wide

range of processor core configurations, data memory config-
urations and benchmarks. Specifically, we considered two
ARM cores (Intel’s StrongARM SA-1110 and XScale) and
a MIPS R10000 core, in order to assess Xtream-Fit’s relative
efficiency across a variety of contexts, ranging from highly
power constrained, less performance demanding embedded
systems, to more performance demanding ones (see proces-
sor configurations in Table 1). The last column of Table 1
shows the corresponding Xtream-Fit based system configu-
rations, parametrized by task granularity g. Each such con-
figuration has a 2 KB Scratch-Pad and a Streaming Mem-
ory whose size depends on g (see Section 3). Columns 2-4
of Table 1 summarize the twelve “general-purpose” reference
embedded system configurations used to empirically evaluate
Xtream-Fit’s energy-delay efficiency. The various cache con-
figurations specified in the table correspond to actual stan-
dard/default configurations for the corresponding cores, plus
a few “promising” variants created by us (e.g., considering a
configuration with a 4 KB L1 D-cache for all the cores ensures
that we always have a reference design point whose on-chip
memory size is very close to the smallest size possibly used
in Xtream-Fit, etc.). In addition, we augmented each such
reference system with state-of-the-art features available (or

Table 1: System Configurations

Reference System Xtream
Core Name L1 Cache L2 Cache Fit

(32B, 4-way) (64B, 4-way)
StrongARM SA-1110 R1a 4KB
width = 2, #ALUs = 2, R1b 16KB None X1-g
in-order, mem lat = 32,1 R1c 32KB

R2a 4KB
XScale, width = 2 R2b 16KB None
#ALUs = 2, R2c 32KB X2-g
out-of-order, R2*a 4KB
mem lat = 32,1 R2*b 16KB 64KB

R2*c 32KB
MIPS R10000, width = 4, R3a 4KB
#ALUs = 4, out-of-order R3b 16KB 64KB X3-g
mem lat = 64,2 R3c 32KB

140

X3−1
X3−2

X3−4
X3−8

X3−16
X3−32

machine configuration (X3−g) execution time (cycles xE8)

0
50

100
150
200
250
300
350

250
260
270
280
290
300
310
320

2.6 2.62 2.64 2.66 2.68 2.7

(a) on− and off−chip energy vs. g

g = 16

g = 32

g = 4

g = 8

g = 2 g = 1

2.72

(b) energy consumption vs. execution time
for different g

E
ne

rg
y

(m
J)

Optimal Point

on−chip memory off−chip dram total energy

Figure 5: Design space exploration, MPEG2

easily implementable) in contemporaneous off-the-shelf pro-
cessors. Note that, Cache Decay [8] policies do not work well
with Adaptive Line Size Cache schemes [26]. Since Cache
Decay is known to deliver significant energy savings in L1
and L2 D-caches for media applications, and the set of me-
dia compression/decompression benchmarks considered in our
experiments is particularly challenging for an Adaptive Line
Size Cache scheme (in that it exhibits significant variations on
“optimal” burst sizes across different streams), Cache Decay
was clearly the most promising technique in terms of energy
savings. Accordingly, Cache Decay [8] and SDRAM power
mode control policies [6, 7] were incorporated in all reference
systems, and properly tuned on a per application basis.

Xtream-Fit’s performance and energy efficiency was con-
trasted to that of the twelve reference systems for three rep-
resentative benchmarks from the Mediabench suite, one from
the audio, one from the video and one from the image com-
pression/decompression domain. The benchmarks, detailed
in Table 2, were compiled with optimizations turned on (−O2)
and simulated using the Simplescalar tool-set for the ARM
and the PISA instruction sets [29], and performance estimates
were obtained for the corresponding input sets.

The dynamic energy consumption for the on-chip caches,
Streaming Memory and Scratch-Pad components, was mod-
eled using CACTI [30]. Similar to [8], we evaluated the leak-
age energy in on-chip memory structures using the low-Vt

data given in Table 2 of [31]. To measure SDRAM energy, a
detailed model of the mobile SDRAM from Micron Technolo-
gies [20], specifically, part number MT48V2M32LFC-8 @ 2.5V,
was integrated into Simplescalar.

6.1 Results: Design Space Exploration
Figure 5 shows a sample of design space exploration re-

sults for the MPEG2 decoder application, considering a MIPS
based embedded system, i.e., the X3-g family of configura-
tions (see Table 1). Figure 5(a) shows the impact of the
customization parameter, i.e., task granularity g, on the to-
tal energy consumed by the on-chip and off-chip memories.
As expected, the energy consumption in on-chip memories
increases while that in off-chip memories decreases with in-
creasing g. For the same input set, Figure 5(b) shows the
total energy consumed in on- and off-chip memories and the
total decoding delay (execution cycles) for different task gran-
ularities. As seen in Figure 6(c), the minimum energy-delay
product for this family of configurations is achieved for g = 2.

6.2 Comparative Evaluation
We now evaluate Xtream-Fit’s effectiveness by comparing

it to the set of alternative configurations specified in Table 1.
We start with the MPEG2 decoder application – Figure 6(a)
plots decoding delays for input stream mobile.mpg, with ex-
perimental results grouped/organized by processor core. For
each core, we normalize the performance of Xtream-Fit to the
best reference configuration. For example, in the left-most

Table 2: Representative Mediabench benchmarks

Program Description Input Description
MPEG2 Video compression decoder mobile.mpg 60 frames video
JPEG Image compression encoder lena.jpg 512x512 image

Voice compression encoder
G721 based on CCITT G.711, clinton.short.pcm 32KB raw data

G.721 and G.723 standards

bar-chart in Figure 6(a), that contrasts reference configura-
tions R1a, R1b, and R1c to Xtream-Fit’s X1-g (i.e., considers
the StrongARM-SA1110 core), the best performing granular-
ity was g = 1, and the best performing reference was R1c.
Accordingly, we annotate X1-1 with the fractional delay rel-
ative to R1c. As it can be seen, Xtream-Fit never performs
worse than the corresponding best reference system.

For the same set of experiments, Figure 6(b) plots total en-
ergy consumption on memory components, i.e., the Streaming
Memory, Scratch-Pad Memory and SDRAM for Xtream-Fit,
and in the cache hierarchy and SDRAM for the reference sys-
tems. As it can be seen, Xtream-Fit consistently outperforms
the best reference configurations, with decreases in total en-
ergy consumption ranging from 43% to 76%.

Finally, Figure 6(c) plots the corresponding energy-delay
product metric, for the same set of experiments. The re-
sults show very substantial improvements for Xtream-Fit –
specifically, it decreases energy-delay product between 46%
and 77%, when compared to the best performing reference
configuration for any particular core. Similarly, Figures 6(d-
i) plot performance, energy consumption and energy-delay
product for JPEG and G721 respectively, showing energy-
delay product improvements ranging from 64% to 83%.

6.3 Analysis of Results
Xtream-Fit’s performance is marginally better than that of

the reference systems in spite of the fact that the scheduling
policy requires all subsequent processing tasks to wait until
the required data has been prefetched into memory by the data
transfer task. Indeed, Xtream-Fit’s ability to take advantage
of burst mode access more than offsets the “on-demand ac-
cess” of modern out-of-order processors.

As shown in Figures 6(b)(e)(h), Xtream-Fit configurations
consume only a fraction (17% to 57%) of the energy consumed
by the best performing reference configuration. A compara-
tive analysis between Xtream-Fit and the reference systems
for the three different energy components is provided below.

On-chip Dynamic energy. The dynamic energy savings
enabled by Xtream-Fit are quite significant (64% to 71% im-
provement). It should be noted that they are not merely a
consequence of different on-chip memory sizes used by both
approaches. Note, for example, that the g = 1 Xtream-Fit
configuration for MPEG2 has a 4 KB on-chip memory (i.e., a
2 KB Streaming Memory and 2 KB Scratch-Pad) which is the
same on-chip memory size used by the reference configuration
with a 4 KB L1 Cache; yet there is a significant difference in
dynamic energy consumption between the two systems. This
difference is due to the hardware simplicity of the (software
controlled) Streaming Memory and Scratch-Pad, in contrast
to the more “power hungry” features of traditional caches,
needed to deliver good performance (e.g., associativity).

On-chip Leakage energy. For the reference configura-
tions, Cache Decay schemes were implemented (for both L1
and L2 caches) and the “kill-windows” were carefully tuned
on a per application and configuration basis, so as to truly
minimize leakage energy, without compromising performance.
Cache Decay schemes work extremely well in “low reuse” me-
dia applications [8]. However, throughout our experiments,
we found that Xtream-Fit’s on-chip memories consistently
consume significantly less leakage energy (44% to 87% im-
provement). This is due to two factors. First, Xtream-Fit’s
Streaming memory stores just enough data corresponding to
the granularity g tasks. Secondly, the organization of the
Streaming Memory into regions allows us to gradually shut
down these regions as the data they hold becomes “dead.”

Off-chip SDRAM energy. Xtream-Fit’s savings in SD-
RAM energy consumption are also very significant (up to 98%
improvement). Recall that, each individual read or write ac-
cess to the SDRAM requires two separate activate/precharge
actions, which consume a significant amount of energy. The
ability to individually control burst sizes for each distinct data
stream, via data transfer tasks, is one of the key advantages
of Xtream-Fit over the reference configurations since it leads
to far fewer accesses to external memory.

141

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a special-purpose data

memory subsystem for embedded media processing. Our re-
sults show that Xtream-Fit delivers up to an order of mag-
nitude improvement in energy-delay product, as compared to
a general purpose memory subsystem enhanced with state-
of-the-art Cache Decay and SDRAM dynamic power mode
control policies. Xtream-Fit’s performance is predicated on
a novel task-based execution model that exposes/enhances
opportunities for efficient stream-granularity prefetching and
aggressive software-based energy conservation techniques.

Xtream-Fit exposes a single customization parameter, thus
enabling a very simple and yet effective design space explo-
ration methodology for energy-delay product optimization on
a per application basis. We are currently extending the ap-
proach to handle multiple applications through an appropri-
ate interleaving of their corresponding tasks.

8. REFERENCES
[1] F. Catthoor et al. Custom Memory Management Methodology:

Exploration of Memory Organization for Embedded Multimedia
System Design. KAP, 1998.

[2] P. R. Panda et al. Data and Memory Optimization Techniques
for Embedded Systems. ACM TODAES, 6(2), 2001.

[3] P.R. Panda et al. Memory Issues in Embedded
Systems-on-Chip: Optimizations and Exploration. KAP, 1998.

[4] J. Montanaro et al. A 160MHz 32b 0.5W CMOS RISC
Microprocessor. In ISSCC Digest of Technical Papers, 1996.

[5] C. Lee et al. MediaBench: A Tool for Evaluating and
Synthesizing Multimedia and Communications Systems. In
MICRO, 1997.

[6] V. Delaluz et al. Scheduler-Based DRAM Energy Management.
In DAC, 2002.

[7] X. Fan et al. Memory Controller Policies for DRAM Power
Management. In ISLPED, 2001.

[8] S. Kaxiras et al. Cache Decay: Exploiting Generational Behavior
to Reduce Cache Leakage Power. In ISCA, 2001.

[9] H. Zhou et al. Adaptive Mode Control: A Static-Power-Efficient
Cache Design. In PACT, 2001.

[10] C. Hughes et al. Saving Energy with Architectural and Frequency
Adaptations for Multimedia Applications. In MICRO, 2001.

[11] C. Hughes et al. Variability in the Execution of Multimedia
Applications and Implications for Architecture. In ISCA, 2001.

[12] B. Khailany et al. Imagine: Media Processing with Streams. In
IEEE Micro, 2001.

[13] S. Rixner et al. Memory Access Scheduling. In ISCA, 2000.

[14] M. Kandemir et al. Dynamic Management of Scratch-Pad
Memory Space. In DAC, 2001.

[15] P. R. Panda et al. Efficient Utilization of Scratch-Pad Memory in
Embedded Processor Applications. In ETDC, 1997.

[16] O. Unsal et al. Cool-Cache for Hot Multimedia. In MICRO, 2001.

[17] O. Unsal et al. On Memory Behavior of Scalars in Embedded
Multimedia Systems. In WMPI, ISCA, 2001.

[18] http://www.rambus.com/.

[19] http://www.micron.com/.

[20] http://www.samsung.com/.

[21] D. H. Albonesi. Selective Cache Ways: On-demand Cache
Resource Allocation. In MICRO, 1999.

[22] L. Benini et al. A Recursive Algorithm for Low-Power Memory
Partitioning. In ISLPED, 2000.

[23] D. Chiou et al. Application-Specific Memory Management in
Embedded Systems Using Software-Controlled Caches. In DAC,
2000.

[24] V. Milutinovic et al. The Split Temporal/Spatial Cache: Initial
Performance Analysis. In SCIzzL, 1996.

[25] P. Ranganathan et al. Reconfigurable Caches and their
Application to Media Processing. In ISCA, 2000.

[26] W. Tang et al. Fetch Size Adaptation vs. Stream Buffer for
Media Benchmarks. In WMSP, MICRO, 2001.

[27] S. VanderWiel et al. When Caches Are Not Enough: Data
Prefetching Techniques. IEEE Computer, 30(7), 1997.

[28] H. Lee et al. Region-Based Caching: An Energy-Delay Efficient
Memory Architecture for Embedded Processors. In CASES,
2000.

[29] D. Burger et al. Evaluating Future Microprocessors: The
SimpleScalar Tool Set Technical Report, University of
Wisconsin, Madison, 1996.

[30] S. Wilton et al. An Enhanced Access and Cycle Time Model for
On-chip Caches. Technical Report, DEC WRL, 1994.

[31] S.-H. Yang et al. An IC/Arch Approach to Reducing Leakage in
Deep-Submicron High-Performance I-Caches. In HPCA, 2001.

dynamic energy (on−chip memory) leakage energy (on−chip memory) SDRAM energy (off−chip memory)

dynamic energy (on−chip memory) leakage energy (on−chip memory) SDRAM energy (off−chip memory)

dynamic energy (on−chip memory) leakage energy (on−chip memory) SDRAM energy (off−chip memory)

0
5e7
1e8

2e8

3e8

1.5e8

2.5e8

0
2e8
4e8
6e8
8e8
1e9

0

2e8

4e8

6e8

8e8

0

2e8

4e8

6e8

8e8

ex
ec

ut
io

n
ti

m
e

(c
yc

le
s)

0
1e2
2e2
3e2
4e2
5e2
6e2

0

5e2

1e3

1.5e3

2e3

0

5e2

1e3

1.5e3

2e3

0

5e2

1e3

1.5e3

2e3

en
er

gy
 (

m
J)

R1a

R1a

R1b

R1b

R1c

R1c

X1−
1

X1−
1

R2a

R2a

R2b

R2b

R2c

R2c

X2−
1

X2−
1

R2*
a

R2*
a

R2*
b

R2*
b

R2*
c

R2*
c

X2−
1

X2−
1

R3a

R3a

R3b

R3b

R3c

R3c

X3−
2

X3−
2

0

5e10

1e11

1.5e11

2e11

0

5e11

1e12

1.5e12

2e12 1.4e12

0
2e11

6e11

1e12

0
2e11

6e11

1e12

1.4e12

en
er

gy
 *

 d
el

ay
 (

cy
cl

es
*m

J)

R1aR1bR1c
X1−

1
R2a R2bR2c

X2−
1

R2*
a
R2*

b
R2*

c
X2−

1
R3a R3bR3c

X3−
2

(c) energy−delay product: MPEG2

(b) energy consumption: MPEG2

(a) performance: MPEG2

0

1e7

2e7

3e7

4e7

0

5e7

1e8

1.5e8

2e8

2.5e8

0
2e7

6e7

1e8

1.4e8

0

5e8

1e9

1.5e9

2e9

2.5e9

0

2e7

4e7

6e7

8e7

0
2e8

6e8

1e9

1.4e9

0

2e7

4e7

6e7

8e7

0
2e8

6e8

1e9

1.4e9

ex
ec

ut
io

n
ti

m
e

(c
yc

le
s)

en
er

gy
 *

 d
el

ay
 (

cy
cl

es
*m

J)

0

2

4

6

8

10

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

en
er

gy
 (

m
J)

R1a

R1a

R1a

R1b

R1b

R1b

R1c

R1c

R1c

X1−
64

X1−
64

X1−
64

R2a

R2a

R2a

R2b

R2b

R2b

R2c

R2c

R2c

X2−
64

X2−
64

X2−
64

R2*
a

R2*
a

R2*
a

R2*
b

R2*
b

R2*
b

R2*
c

R2*
c

R2*
c

X2−
64

X2−
64

X2−
64

R3a

R3a

R3a

R3b

R3b

R3b

R3c

R3c

R3c

X3−
12

8

X3−
12

8

X3−
12

8

(g) performance: G721

(i) energy−delay product: G721

(h) energy consumption: G721

0

2e8

4e8

6e8

8e8

1e9

0

5e6

1e7

1.5e7

2e7

2.5e7

0

1e10

2e10

3e10

4e10

0

2e7

4e7

6e7

8e7

1e8

1.5e10

2.5e10

0

5e9

1e10

2e10

0
1e7
2e7
3e7
4e7
5e7
6e7

1.4e9

0

1e7

2e7

3e7

4e7

5e7

0
2e8

6e8

1e9

ex
ec

ut
io

n
ti

m
e

(c
yc

le
s)

en
er

gy
 *

 d
el

ay
 (

cy
cl

es
*m

J)

0

10

20

30

40

0

1e2

2e2

3e2

4e2

0

1e2

2e2

3e2

4e2

0

10

20

30

40

en
er

gy
 (

m
J)

R1a

R1a

R1a

R1b

R1b

R1b

R1c

R1c

R1c

X1−
2

X1−
2

X1−
2

R2a

R2a

R2a

R2b

R2b

R2b

R2c

R2c

R2c

X2−
4

X2−
4

X2−
4

R2*
a

R2*
a

R2*
a

R2*
b

R2*
b

R2*
b

R2*
c

R2*
c

R2*
c

X2−
4

X2−
4

X2−
4

R3a

R3a

R3a

R3b

R3b

R3b

R3c

R3c

R3c

X3−
4

X3−
4

X3−
4

(d) performance: JPEG

(f) energy−delay product: JPEG

(e) energy consumption: JPEG

100% 100% 100% 100%

100% 100% 100% 100%

100% 100% 100% 100%

100% 100% 100% 100%

100% 100% 100% 100%

100% 100%100% 100%

100% 100%100% 100%

100% 100%100% 100%

100% 100% 100% 100%

17% 34% 36% 33%

24% 43% 46% 57%

23% 42% 45% 54%

33% 34% 35% 35%

33% 34% 35% 35%

94% 98% 99% 96%

100% 98% 98% 98%

99% 100% 100% 99%

17% 35% 38% 34%

Figure 6: Comparative evaluation

142

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

