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Abstract

We propose an elegant formulation of the Maze Routing with
Bu�er Insertion and Wiresizing pr oblem as a graph-the oretic
shortest path problem. This formulation provides time and
space performance improvements over previously proposed
dynamic-programming based techniques. R outing c onstr aints
such as wiring obstacles and restrictions on bu�er locations
and types are easily incorporated in the formulation. Fur-
thermore, e�cient softwar eroutines solving shortest path
problems in existing graph applic ation libraries can be ap-
plied. We construct a BP-Graph such that the length of
every path in this graph is e qual to the Elmore delay. There-
fore, �nding the minimum Elmore delay path becomes a �-
nite shortest path problem. The bu�er choices and insertion
locations are represente d as the vertices in the BP-Graph.
The interconnect wir es are sized by constructing a look-up
table for bu�er-to-bu�er wir esizing solutions. We also pro-
vide a technique that is able to tremendously improve the
runtime. Experiments show improvements over previously
proposed methods.

1 Introduction

Routing has become one of the most challenging tasks fac-
ing VLSI circuit designers as fabrication technology moves
into deep sub-micron territory. It has been shown that, as a
result of scaling, interconnect delays will become the most
signi�cant part of total system delay[1, 8]. Routing informa-
tion is highly desirable at an early stage during the layout
design process for helping designers achieve various perfor-
mance optimizations. Furthermore, with rapidly increasing
number of transistors on chips, routing is likely to become a
computationally expensive stage in the system design pro-
cess.

Maze routing has been a successful method for global
routing tasks. The goal of maze routing is to �nd a route to
connect t w o terminals in a routing area, often represented as
a grid graph. When there are no restrictions on the bu�er
locations in the routing area, it has been shown that the
bu�ered minimum Elmore delay path betw een sources and
sink t can be found by �rst �nding the shortest path from
s to t and then inserting bu�ers and sizing wires on this
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path. How ever, preplaced macro blocks in the routing area
could prevent bu�ers from being inserted at certain locations
in the routing area. In this case, a shortest path is not
necessarily a minimumElmore delay path because the macro
blocks could restrict bu�er locations on the shortest path[9].
In [9] a dynamic-programming based technique was devised
to �nd the bu�ered minimum Elmore delay path in the grid
graph with restrictions on bu�er locations. Although the
technique is able to insert bu�ers and �nd the minimum
delay path in a fairly small amount of time, its performance
degrades rapidly if the interconnect wires in the routing area
are to be sized at the same.

In this paper, we present a formulation of the Maze Rout-
ing with Bu�er Insertion and Wiresizing problem as a short-
est path problem. Previously, dynamic programming based
methods have gained popularity with various bu�er insertion
and wiresizing problems; how ever,dynamic programming
has sev eral drawbacks such as huge memory requirements.
Our formulation is more natural, intuitive and e�cient; it
provides improvements, both in time and space, over pre-
viously proposed dynamic programming based techniques.
We focus on the possible bu�er locations on the routing grid
graph and construct a BP-Graph(Bu�er Planning Graph) in
which the v ertices represen t possible bu�er choices at di�er-
ent bu�er locations. A look-up table is constructed for sizing
wires along the path betw een two bu�ers at di�erent nodes.
Our algorithm �nds the minimum delay path, inserts bu�ers
and performs wiresizing on the path at the same time. Rout-
ing constraints such as wiring obstacles and restrictions on
bu�er types and locations are naturally incorporated in the
formulation. Experiments show improvements in both run-
time and space over previously proposed methods.

The remainder of the paper is organized as follo ws: In
Section 2, w e briey review the Elmore dela y model and
formally de�ne the Maze Routing with Bu�er Insertion and
Wiresizing problem. In Section 3, we propose our formula-
tion of the Maze Routing with Bu�er Insertion and Wiresiz-
ing problem as a regular shortest path problem. The time
and space complexity of the new method will be analyzed.
We also propose a technique that can further speed up the
algorithm. In Section 4, we show our experiments and re-
sults, and provide some concluding remarks.

2 Delay Model and Problem De�nition

In this section we briey review the Elmore delay model and
formally de�ne the Maze Routing with Bu�er Insertion and
Wiresizing problem.

2.1 Delay Model

Elmore delay model has been a popular delay model since it
w as proposed in [3] because of its simple analytical form, �-
delity and other properties[5]. If w e model a wire segment as
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a �-type element (Fig. 1), the Elmore delay of the individual
wire segment is:

twire = rw(
1

2
cw + cd);

where cd is the downstream capacitance for this wire
segment. Similarly, for an inserted bu�er with capacitance
cb, resistance rb, and intrinsic delay tin, the Elmore delay is
computed as:

tbuffer = rbcd + tin:

The total Elmore delay along any interconnect path is
computed by summing together the individual wire delays
and bu�er delays. We will use the Elmore delay model in
this paper.

wire bu�er

twire = rw(
1

2
cw + cd) tbuffer = rbcd + tin

1

2
cw

1

2
cw

rw

cb

rb

Figure 1: Elmore Delay Model.

2.2 Problem De�nition

The goal of maze routing is to �nd a route between two ter-
minals in a routing area, which is often represented as a grid
graph G = (V;E). Some wiring obstacles and restrictions
on bu�er locations and types may be present in the routing
area. Each edge (u; v) in E is considered to represent one
wire segment. Wire library W contains wire choices for siz-
ing the wire segments in G. Bu�ers are chosen from library
B to be inserted at the grid nodes in G. A sample routing
grid graph and a bu�ered minimum delay path is in Fig. 2.

s t

Figure 2: A Routing Grid Graph and a Bu�ered Minimum
Elmore Delay Path. The dark areas represent wiring obsta-
cles. No bu�ers can be inserted in gray areas and dark areas.
Wires, however, are allowed to go through gray areas. The
possible bu�er locations are denoted by the solid circles at
some of the grid line intersections.

The Maze Routing with Bu�er Insertion and Wiresizing
problem can be formally described as follows:

DP-Routing for Bu�er Insertion and Wiresizing

Q f(CL; 0;�1; t)g;
while(Q not empty) do

(c; t; b; u) extract-min(Q);

if c = 0 then
return t;

if u = s then
S  (0; t+RDc; b; u);
add S to Q and prune;

else
for each (u; v) 2 E do

for w = 0 to W � 1
c
0
 c+ cw(u; v);

t
0
 t+ 1

2
rw(u; v)(cw(u; v) + c);

S  (c0; t0;�1; v);
add S to Q and prune;

if p(u) = 1
for b

0
= 0 to B � 1

S  (cb0 ; t+ rb0c+ db0 ; b
0
; u);

add S to Q and prune;

Figure 3: Dynamic Programming for Mazing Routing with
Bu�er Insertion and Wiresizing

Problem 1 (Maze Routing with Bu�er Insertion and
Wiresizing) Given a routing grid graph G = (V;E), a
bu�er library B, a bu�er function p with p(v) = 1 indi-
cating bu�er insertion allowed at node v, a wire library W ,
two nodes s; t 2 V , �nd a bu�ered path P = (v1; v2; : : : ; vn),
with v1 = s, vn = t, b(vi) 2 B [ f�1g where b(vi) = �1 in-
dicates that no bu�er is inserted at vi, and w(vj ; vj+1) 2 W ,
such that the Elmore delay for path P is minimized.

We notice that without restrictions on bu�er locations
this problem can be easily solved by �nding the shortest
path between source s and sink t, and then inserting bu�ers
and sizing wires on the path to minimize the delay. However,
with restrictions on bu�er locations, the shortest path is not
guaranteed to be the minimum delay path.

3 Shortest Path Formulation

In this section we present our formulation of the Maze Rout-
ing with Bu�er Insertion and Wiresizing problem as a short-
est path problem and describe an algorithm for solving this
problem. The running time and space requirement of the
algorithm are analyzed. We also propose a simple technique
to speed up the algorithm.

3.1 Previously Proposed Methods

Previously, Zhou et. al. [9] proposed a dynamic program-
ming based approach for �nding bu�ered minimum delay
path in the grid graph with restrictions on bu�er locations;
however, they didn't consider wiresizing. Although their
method performs well for �nding bu�ered minimum delay
path with bu�er location restrictions, when wiresizing is
taken into account the performance degrades considerably.

Dynamic programming has been a popular method for
various bu�er insertion and wiresizing problems [4,6,7]. The
key procedure of dynamic programming based methods is
the bottom-up, recursive construction of capacitance-delay
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pairs (c; t) { c is the downstream capacitance and t is the
delay. These (c; t) pairs are constructed at each node in the
graph and propagated upstream from sink to source. Let
RD be the driver resistance and CL be the load capacitance.
Initially, there is only one (c; t) pair at the sink with c =
CL and t = 0. For each (c; t) at node u, a new (c0; t0) is
constructed for each of the neighbors of u. Wiresizing is
performed by choosing a wire type from a library W . Bu�er
insertion is also considered for minimizing the delay. A key
observation was made in [4] that (c1; t1) is redundant and
can be safely discarded if there is a (c2; t2) such that c1 � c2

and t1 � t2, because c1, compared to c2, will always incur
a greater delay upstream, and add this delay to the already
greater t1. This observation allows pruning of many (c; t)
pairs and keeps the set from growing too large. The set of
(ci; ti) pairs at the source s is �nally used to select a solution
with minimum delay RD � ci + ti. The pseudo code for the
dynamic programming based method [9] is in Fig. 3.

3.2 Shortest Path Formulation

We will show our formulation of the Maze Routing with
Bu�er Insertion and Wiresizing problem by an example.
Fig. 4 is a simple routing grid graph G = (V;E). The goal is
to �nd a minimum delay path from source s to sink t and to
insert bu�ers and size interconnect wires simultaneously. No
wires are allowed in the dark area as it represents a wiring
obstacle. Wires are allowed to go through the bu�er obsta-
cle area(gray area); however, no bu�ers can be inserted in
this area. The are 6 possible bu�er locations in this grid
graph. For simplicity, we will consider only one bu�er type
b0 for this example.

u t
v

s

x
y

Figure 4: A Simple Routing Grid Graph G.

We proceed to construct our BP-GraphBG = (VBG; EBG)
as follows: First, the vertices in our BP-Graph represent
possible bu�er choices and locations in the graph grid G.
For each node u in grid graph G, we begin by creating a
new vertex in BP-Graph ubi for each bu�er type bi allowed
to be inserted at u. If a bu�er type bj is not allowed at grid
node u, vertex ubj is not created. In graph BG in Fig. 5,
each vertex vbi represents a placement of bu�er bi at node
v in graph G. The weight of edge (ubi ; vbj ) in BG is the
minimum delay between node u and v in grid graph G, with
bu�er bi inserted at node u and bu�er bj inserted at node
v, respectively, and no other bu�ers inserted along the path
from node u to node v. The minimum delay between ubi

and vbj is computed easily because it is a simple function of

ub0 tb0
vb0

sb0

xb0

yb0

Figure 5: Vertex ub0 and Its Connections to Neighbors in
the BP-Graph BG for Grid Graph G in Fig. 4.

the shortest distance between u and v in G, the resistance
of bi, the capacitance of bj , and the wire library W . For
example, w(ub0 ; vb0 ) in BG is equal to the minimum delay
from u to v in G with bu�er b0 inserted at both u and v. A
look-up table stores the bu�er-to-bu�er wiresizing solutions.
The weights between each pair of two vertices ubi and vbj

are computed from the table according to bu�er type bi, bj ,
and the shortest distance between u and v inG. Fig. 5 shows
the vertex ub0 and its connections to all its neighbors in BP-
Graph BG. Notice that no nodes in bu�er obstacle area or
wire obstacle area are included in this graph. The problem
of �nding a minimum delay path is then simply equivalent
to �nding a shortest path from s to t in BG. We can use any
shortest path algorithm to �nd the corresponding minimum
delay path in G.

(b) Multiple Bu�er Types

(a) Single Bu�er Type

u v

u v

ub0
vb0

w(ub0
; vb0

)

w(vb0
; ub0

)

ub0
vb0

ub1 vb1

Figure 6: Construction of BP-Graph with Multiple Bu�er
Types.

Fig. 6 shows the construction of BP-Graph when B has
multiple bu�er types. At node u, for each bu�er type bi, a
vertex ubi is created and connected to all neighboring ver-
tices vbj , if u and v are connected in G.
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SP-Routing for Bu�er Insertion and Wiresizing

for each pair of nodes u; v 2 V do
compute shortest distance d(u; v) in G

for each u 2 V do
for each bi 2 B do

if bi allowed at u

create a new vertex ubi

for each pair of ubi ; vbj

if d(u; v) <1 then
use (bi; bj ; d(u; v)) as index to check

look-up table for wiresizing solution and

bi-to-bj minimum delay mind(i; j; d(u; v));
w(ubi ; vbj ) = mind(i; j; d(u; v));

create sb
�1

for no buffer insertion at s

create tb
�1

for no buffer insertion at t

computer w(sb
�1
; tb

�1
)

for each ubi

use d(s; u) and look-up table to

compute w(sb
�1
; ubi)

for each ubi

use d(u; t) and look-up table to

compute w(ubi ; tb�1
)

Find the Shorest Path from sb
�1

to tb
�1

.

Figure 7: Using Shortest Path Formulation to Solve Mazing
Routing with Bu�er Insertion and Wiresizing

Without wiresizing, the weight of edge (ubi ; vbj ) in BP-
Graph is simply a function of the shortest distance between
node u, v in the grid graph G, the bu�er capacitance of bj ,
and resistance of bi. However, with wiresizing, some com-
putation is needed to produce the wiresizing solutions for
the shortest path from node u to v. Notice that this path
can go through the bu�er obstacle areas because there are
no bu�ered inserted on the path from u to v. Techniques
such as quadratic programming proposed in [2] or dynamic
programming [4,6,7] are suitable for sizing wires between
pairs of bu�ers. We use a look-up table to store the results
to avoid recomputation of the same bu�er-to-bu�er wiresiz-
ing solutions. This look-up table can also be re-utilized for
multi-net routing. Our SP-Routing for Bu�er Insertion and
Wiresizing algorithm is in Fig. 7.

Fig. 8 shows an example of �nding the bu�ered mini-
mum delay path by using the Shortest Path Formulation
of the Mazing Routing with Bu�er Insertion and Wiresizing
problem to solve a Shortest Path problem on BP-Graph and
�nd the shortest path in Fig. 9. The bu�ers on the bu�ered
minimum delay path are indicated by the labels of the ver-
tices in the shortest path P1. The wiresizing solutions are
obtained from the look-up table.

The following theorem proves that Mazing Routing with
Bu�er Insertion and Wiresizing problem is a Shortest Path
problem:

Theorem 1 Maze Routing with Bu�er Insertion and Wire-
sizing Is Shortest Path Problem.

Consider a bu�ered minimum delay path
P = (v1; v2; : : : ; vn), with v1 = s and vn = t in grid graph
G. Assume that bu�ers are inserted at nodes vl1 ; vl2 ; : : : vlm
on the path. It is then obvious that there is a corresponding

s

u

v

x

t

Figure 8: Finding The Bu�ered Minimum Delay Path by
Using the Shortest Path Formulation of the Mazing Routing
with Bu�er Insertion and Wiresizing Problem to Solve a
Shortest Path Problem on BP-Graph and Find the Shortest
Path in Fig. 9.

sbi

ubj

vbk

xbl

tbm

Figure 9: A Shortest Path P1 in BG-Graph. The corre-
sponding bu�ered minimum delay path is in Fig. 8.

path P
0 = (s; vb1 ; : : : ; vbm ; t) in BG. Since P is the mini-

mum delay path in G, P 0 is the shortest path from s to t in
BG.

The following two theorems establish the time and space
complexity of the Shortest Path Formulation of Maze Rout-
ing with Bu�er Insertion and Wiresizing Algorithm:

Theorem 2 (Time Complexity of Shortest Path For-
mulation of Maze Routing with Bu�er Insertion and
Wiresizing) The running time of the Maze Routing for
Bu�er Insertion and Wiresizing Algorithm is O(jV j2 log(jV j)).

For a grid graph G = (V;E), at most jBjjV j new ver-
tices are created in the BP-Graph BG = (VBG; EBG). It
takes O(jV j2 log(jV j)) to compute the shortest distances be-
tween all pairs of nodes in G. The runtime for computing
the weights in BG is O(jVBGj

2). The runtime of the dy-
namic programming based technique depends on the maxi-
mum number of sub-solutions, ctmax, at each node. When
wiresizing is considered, the number of sub-solutions grows
rapidly along the path.

Theorem 3 (Space Complexity of Shortest Path For-
mulation of Maze Routing with Bu�er Insertion and
Wiresizing) The space complexity of the Simultaneous Maze
Routing and Bu�er Insertion Algorithm is O(jBj2jV j2).
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DP-Routing SP-Routing

Memory Time Memory Time

name (Mb) (s) (Mb) (s)

SRL1 2.88 741 0.524 35.3

SRL2 2.71 919 0.318 18.2

SRL3 2.70 827 0.355 19.5

SRL4 3.09 1044 0.740 51.0

SRL5 3.08 1306 0.672 60.2

SRL6 2.69 961 0.572 38.1

SRL7 2.82 969 0.767 46.1

SRL8 2.88 767 0.384 25.5

SRL9 2.85 868 0.479 22.6

SRL10 3.48 1243 0.869 71.0

Table 1: SP-Routing vs. DP-Routing.

Graph BG is a dense graph with O(jBjjV j) vertices. The
space complexity for dynamic programming based technique
is O(jV jctmax). When the number of wire choices is in-
creased, dynamic programming could require a huge amount
of space to store the sub-solutions.

A simple observation is made to reduce the size of VBG.
First, the shortest distance dst between s and t is computed.
We can use this shortest distance to limit the number of
vertices in VBG by observing that a node u is not on the
minimum delay path from s to t if dsu+dut > dst. Since the
size of VBG is one of the deciding factors for the performance
of the Shortest Path Formulation, this is very helpful for
improving both runtime and space requirements.

4 Experimental Results and Concluding Remarks

We tested our formulation and algorithm on a set of rout-
ing areas. Routing obstacles and macro blocks are ran-
domly generated and placed in these routing areas. We
used the technology parameters in [8]. The driver resis-
tance is set to be 100
, the load capacitance 1fF , respec-
tively. We test our method with four bu�er types with
capacitance cb ranging from 0:13fF to 9:92fF , and resis-
tance rb ranging from 1990
 to 90830
. There are �ve wire
choices in our wire library W with 1:3
 < rw < 121:1
 and
1:72fF < cw < 55:13fF . Our experiments were conducted
on a Pentium Pro machine with 64 megabytes of memory.

We compare our SP-Routing algorithm with original DP-
Routing algorithm. Table 1 shows the results for 10 dif-
ferent routing areas with 3-8 obstacles and macro blocks.
Both methods are used to route from randomly generated
source s to sink t and insert bu�ers and size interconnect
wires at the same time. Dynamic programming is used to
construct the look-up tables. The technique mentioned in
Section 3 for reducing the size of BP-Graph is implemented
in our program. Our method consistently outperforms the
original DP-Routing algorithms. The look-up tables for
bu�er-to-bu�er delays for these test cases are constructed
within less than 30 seconds. With wiresizing, the sizes of
the sub-solution sets for dynamic programming increase sig-
ni�cantly. Furthermore, the same sub-solutions are scat-
tered among di�erent nodes in the grid graph, increasing
both runtime and space usage. In contrast, our SP-Routing
algorithm uses a look-up table to avoid storing identical sub-
solutions, and is more e�cient than dynamic programming.

Another set of results can be found in Table 2. Again
our method is able to compute the exact routing, bu�er
insertion and wire sizing solutions faster than the original
DP-Routing algorithm.

The shortest-path formulation also allows consideration

DP-Routing SP-Routing

Memory Time Memory Time

name (Mb) (s) (Mb) (s)

TRL1 1.70 292 0.190 11.3

TRL2 1.66 387 0.126 5.1

TRL3 1.61 322 0.151 6.1

TRL4 1.88 432 0.327 15.2

TRL5 2.01 522 0.355 18.2

TRL6 1.72 406 0.250 13.4

TRL7 1.77 420 0.384 17.2

TRL8 1.68 337 0.110 5.6

TRL9 1.72 393 0.226 9.6

TRL10 1.66 374 0.197 7.3

Table 2: SP-Routing vs. DP-Routing.

of congestion avoidance in the routing area by assigning
weights to the vertices representing bu�er locations. This
is also helpful for bu�er zone planning. The lookup-table
construction only needs to be done once and can be re-used
in multi-net maze routing.
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