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ABSTRACT 
Reversible logic has applications in many fields, including 
quantum computing. Synthesis techniques for reversible circuits 
are not well developed, even for functions with a small number of 
inputs and outputs. This paper proposes an approach to reversible 
logic synthesis using a new complexity measure based on shared 
binary decision diagrams with complemented edges (instead of 
truth tables or PPRM forms, as in the previous algorithms). The 
approach can be used with arbitrary libraries of reversible logic 
gates and arbitrary cost functions. Experiments show promising 
results in comparison with the known approaches. 

Categories and Subject Descriptors 
B.6.3 [Logic Design]: Design Aids – Automatic Synthesis 

General Terms 
Design, Theory. 
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1. INTRODUCTION 
Recently, reversible computing has become a fast developing area 
of research. It has attracted attention of researchers because of 
new perspectives to build almost energy loss-less, ultra-small, and 
ultra-fast quantum computers. Moreover, there are some tasks in 
other areas, including cryptography, digital signal processing, 
communication, and computer graphics, requiring that all the 
information encoded in the inputs be preserved in the outputs 
[16]. 

Classical reversible circuits are a special case of quantum circuits. 
Logic synthesis for them is a first step toward synthesis of 
quantum circuits. The synthesis of reversible circuits differs 
substantially from synthesis using traditional irreversible gates. A 
circuit is said to be reversible if there is a bijective mapping of the 
input assignments into the output assignments. So, it is assumed 
that the number of outputs in a reversible circuit (or gate) is the 
same as the number of inputs. In addition, the fan-outs are not 
allowed. Thus, logic design of reversible circuits is a new and 
challenging task. Synthesis techniques are not well developed for 
such circuits, even for small numbers of inputs and outputs. 

Although some general ideas and algorithms for reversible logic 
synthesis were proposed in [15, 14, 6, 12, 3, 16, 1], satisfactory 
solutions for arbitrary libraries of gates and cost functions have 
not yet been found. An incremental algorithm for implementing a 
reversible function was proposed in [7]. Since that time, several 
variants of this algorithm were developed [13, 9, 2, 8, 10, 11]. It is 
a two-stage algorithm. First, a circuit is constructed in a number 
of steps by inspecting the truth table of a reversible function. In 
[9, 2, 10, 11] the concept of a template, first introduced in [3], 
was substantially extended and used in the second stage of the 
algorithm to simplify the circuit found in the first stage. 

In this paper, a new incremental approach is presented, which 
uses shared binary decision diagrams for the representation of 
reversible functions (instead of truth tables) and for measuring 
their complexity. The proposed algorithm selects reversible gates, 
one at a time, based on the complexity of the reminder logic. 
Similarly to [1-2, 7-11, 16, 17], we assume that a reversible 
function to be implemented is realizable without temporary 
storage [16] and that the cost function is the gate count. 

The paper is organized as follows. Section 2 introduces the basic 
concepts of reversible logic. Section 3 analyses the previous 
work. Section 4 introduces a new algorithm. Section 5 presents 
experimental results. Section 6 summarizes the paper. This paper 
assumes that the reader is familiar with the basic concepts of 
Binary Decision Diagrams (BDDs), including Shared BDDs 
(SBDDs) with complemented edges [17]. 

2. PRELIMINARIES 
Definition 1 A completely specified n-input n-output Boolean 
function (referred to as n*n function) is called reversible if it 
maps each input assignment into a unique output assignment. 

Definition 2 An n-input n-output gate (or circuit) is reversible if it 
realizes an n*n reversible function. 
A variety of reversible gates have been proposed in the literature. 
In this paper, we consider only the most widely used gates. 

Definition 3 NOT, CNOT, Toffoli, SWAP and Fredkin gates (in 
short, N, C, T, S and F, respectively) are defined as follows: 
1*1 NOT: a’ = 1 ⊕ a; 
2*2 CNOT: a’ = a, b’ = a ⊕ b; 
3*3 Toffoli: a’ = a, b’ = b, c’ = c ⊕ ab; 
2*2 SWAP: a’ = b, b’ = a; 
3*3 Fredkin: a’ = a, if a = 0 then b’ = b, c’ = c if a = 1 then b’ = 
c, c’ = b, or equivalently: b’ = b ⊕ ab ⊕ ac, c’ = c ⊕ ab ⊕ ac. 

 
Figure 1: NOT, CNOT, Toffoli, SWAP and Fredkin gates. 
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The pictorial representations of the gates from Definition 3 are 
shown in Fig. 1a, 1b, 1c, 1d, and 1e. The set of the first three 
gates is called NCT library, the set of the first four gates is called 
NCTS library, and the set of all five gates is called NCTSF 
library. Note that each of the N, C, T, S, F gates is invertible (i.e. 
equal to its own inverse). Thus the equations for the functions 
describing dependence of inputs on outputs (inverse mapping) 
have the same form as the equations given in Definition 3 (after 
exchanging a, b, c with a’, b’, c’, respectively). For each non-
invertible gate it is possible to determine sets of equations 
defining both forward and inverse mappings induced by the gate. 

In [2, 7-11, 13] the following definition is used. 

Definition 4 The Hamming distance between two bit strings is the 
number of positions, in which they differ. Given a reversible 
function f, the complexity measure C(f) is equal to the sum of the 
individual Hamming distances between input assignments and 
output assignments for all rows of the truth table of f.  

After considering different variants of complexity measures based 
on decision diagrams, we have chosen the following one:  

Definition 5 The complexity measure D(f) of an n*n reversible 
function f is equal to D(f) = s(f) − n, where s(f) denotes the 
number of non-terminal nodes in the reduced ordered SBDD of f 
with complemented edges. Thus, D(identity function) = 0. 

Example 1 D(f) for functions represented by SBDDs shown in 
Figures 4a, 4b, 4c, 4d, 4e, 4f is equal to 5, 4, 3, 3, 2, 0, 
respectively (Figure 4f represents the identity function). 
SBDDs provide a compact representation of multiple-output 
functions after choosing an appropriate variable ordering [17]. 
However, in the context of reversible logic synthesis, 
minimization of SBDDs is not necessary, because we deal with 
functions of a relatively small number of variables and we are 
only interested in relative changes of the value D(f). Therefore, 
we are building SBDDs using the natural order of the inputs. 

3. PREVIOUS WORK 
Let us first outline the basic algorithm from [13], which we call 
the DMM algorithm. Its goal is to find a sequence of reversible 
gates, which transforms a reversible function to the identity 
function. The function representation is a standard truth table with 
input assignments arranged in the lexicographical order. At every 
step of the algorithm, some gates from NCT library are chosen 
and added to previously selected gates, starting from the end of 
the constructed circuit towards its beginning. The truth table is 
being inspected in the lexicographical order until the first output 
assignment is encountered, which is not equal to the input 
assignment located in the same row of the table. A subsequence of 
gates generated has to transform the table in such a way that the 
output assignment will be the same as the input assignment. 

The algorithm is developed so that once an output assignment of 
the truth table is transformed into the correct pattern, it remains 
unchanged regardless of the transforms of the table req 

uired for the later transformation of remaining rows with unequal 
input and output patterns. The algorithm always terminates 
successfully with a circuit implementing the given truth table. For 
NCTSF library, in which all gates are invertible, the reversible 
cascade can be built from either end. Thus, all synthesis 
algorithms can be applied from outputs to inputs, from inputs to 
outputs, or in both directions simultaneously (the last case is 
called bi-directional). 

There are some disadvantages of the DMM approach. It was not 
shown how to take into account different costs of gates. Also, 
only algorithms for NCTSF library have been developed. 
Simplification of the sub-optimal circuits based on recognizing 
templates may require a lot of iterations. It is because, after each 
usage of a template, new template matches may appear. It is also 
possible that during the simplification a local optimum may be 
reached, instead of a global one. 

In some cases, the circuits constructed by the DMM algorithm are 
far from optimal. It is because transformations corresponding to 
the sequence of gates in an optimal circuit do not yield a match of 
subsequent pairs of input and output assignments according to the 
lexicographical order. Also, the complexity measures C(f) for the 
functions obtained by the transformations corresponding to 
subsequent gates in an optimal circuit do not form a non-
increasing sequence. 

4. NEW ALGORITHM 
In Figure 2, the scheme of one basic step of our synthesis 
algorithm is shown. Let G1 is the first from the left side gate of 
the circuit. As shown in [4, 5], the transformed n*n reversible 
function fT can be represented as an SBDD (such representation of 
a function f is called a function-driven decision diagram defined 
by the output function of G1). We have chosen the representation 
fT in the form of a reduced ordered SBDD with complemented 
edges. The transformation shown in Figure 2 can be iterated. 

 
Figure 2: A general scheme of one step of our algorithm. 

The functions f1(1)(y1,... ,yn), ... , fn(1)(y1,... ,yn) are derived by 
substituting x1=g1(y1,... , yn), ... , xn=gn(y1,... , yn) in the functions: 

f1(x1, ... ,xn), ... , fn(x1, ... ,xn). 

Example 2 Let f be a 3*3 reversible function defined as follows: 
f1(0) = 1 ⊕ a ⊕ c ⊕ ab ⊕ ac 
f2(0) = 1 ⊕ a ⊕ b ⊕ c 
f3(0) = 1 ⊕ a ⊕ b ⊕ ab ⊕ bc 

We will show how to determine the reminder function fT with 
respect to the Fredkin gate with the control input being a. Thus, 
according to the remark following Definition 3, we have 
a = a’,              b = b’ ⊕ a’b’ ⊕ a’c’              c = c’ ⊕ a’b’ ⊕ a’c’. 
We substitute the above expressions for a, b, c into the 
expressions defining the function f (in our algorithm, these 
calculations are performed using decision diagrams): 
f1(1) = f(a, b, c) = 1 ⊕ a ⊕ c ⊕ ab ⊕ ac = 1 ⊕ a’ ⊕ c’ ⊕ a’b’ ⊕ 
a’c’  ⊕ a’(b’ ⊕ a’b’ ⊕ a’c’) ⊕ a’(c’ ⊕ a’b’ ⊕ a’c’) = 1 ⊕ a’ ⊕ c’ 
⊕ a’b’ ⊕ a’c’  ⊕ a’b’ ⊕ a’b’ ⊕ a’c’ ⊕ a’c’ ⊕ a’b’ ⊕ a’c = 1 ⊕ 
a’ ⊕ c’ 
f2(1) = 1 ⊕ a ⊕ b ⊕ c = 1 ⊕ a’ ⊕ b’ ⊕ a’b’ ⊕ a’c’ ⊕ c’ ⊕ a’b’ ⊕ 
a’c’ = 1 ⊕ a’ ⊕ b’ ⊕ c’ 
f3(1) = 1 ⊕ a ⊕ b ⊕ ab ⊕ bc = 1 ⊕ a’ ⊕ (b’ ⊕ a’b’ ⊕ a’c’) ⊕ a’(b’ 
⊕ a’b’ ⊕ a’c’) ⊕ (b’ ⊕ a’b’ ⊕ a’c’) (c’ ⊕ a’b’ ⊕ a’c’) = 1 ⊕ a’ 
⊕ b’ ⊕ a’b’ ⊕ a’c’ ⊕ a’b’ ⊕ a’b’ ⊕ a’c’ ⊕ b’c’ ⊕ a’b’ ⊕ a’b’c’ 
⊕ a’b’c’ ⊕ a’b’ ⊕ a’b’c’ ⊕ a’c’ ⊕ a’b’c’ ⊕ a’c’ = 1 ⊕ a’ ⊕ b’ ⊕ 
a’b’ ⊕ b’c’ 
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Figure 3: An optimal circuit for the function in Example 2. 

Now we will make transformations for the next gates shown in 
Figure 3 (in the order from left to right). For simplicity, the new 
variables after each transformation are denoted using the same 
characters as for the previous names of variables. Namely, instead 
of a’, b’, c’ we use a, b, c after each iteration. The transformed 
functions are as follows (the calculations are omitted): 
f1(2) = 1 ⊕ a f2(2) = 1 ⊕ a ⊕ b f3(2) = 1 ⊕ a ⊕ b ⊕ c ⊕ ab 
f1(3) = a  f2(3) = a ⊕ b f3(3) = a ⊕ c ⊕ ab 
f1(4) =  a  f2(4) =  b  f3(4) =  c ⊕ ab 
f1(5) =  a  f2(5) =  b  f3(5) =  c 
The SBDDs for these functions are presented in Figure 4. The 
sequence of D(f)’s is non-increasing: 5, 4, 3, 3, 2, 0. 

 

Figure 4: SBDDs for the functions calculated in Example 2. 

 
Figure 5: Possible structures of SBDDs for D(f) = 0, n = 3. 

In every step of our algorithm all gates are examined and for each 
of them SBDD fT is constructed. Next we select gates, for which 
the size of the transformed function is minimal. If there is more 
than one such gate, we proceed further with all of them. In our 
experiments, the algorithm always terminated with the circuit 
realizing the given function. Usually, more that one circuit was 
found. Thus, it is possible to select the circuits having the minimal 
cost for a given reversible function. 

 
Figure 6: Moving SWAP gates. 

The performance of the algorithm can be improved in two ways. 
Structures of SBDD with D(f) = 0 can be easily determined. In 
Figure 5, all such structures for n = 3 are shown (up to the 
positions of dots). For each of these structures determining the 
optimal subcircuit is straightforward. Depending on positions of 
dots, it will consist of up to n NOT gates, and up to n-1 SWAP 
gates. Thus, this part of the circuit can be constructed very fast 
once it is established that D(f) = 0. Also, note that the SWAP gate 
may be always exchanged with the next (or previous) gate in the 
order (see Figure 6) after an adequate transformation of the gate 
G1 into the gate G2 (consisting in permutations of inputs and 
outputs). Due to this property we can postpone considering 
SWAP gates until the end of the constructed circuit. In this way a 
speed-up of the algorithm can be obtained. These improvements 
are implemented in our algorithm. 

5. EXPERIMENTAL RESULTS 
To compare our results with those obtained using the DMM 
algorithm, our program synthesized all 40,320 reversible 3*3 
functions using two versions of the algorithm: 
(a) one-directional and bi-directional algorithms (columns 

“NewA” in Tables 1 and 2) 
(b) two results for one-directional algorithm (run from the inputs 

to the outputs, and vice versa) are obtained and the best of 
them is chosen (columns “NewB” in Tables 1 and 2). 

Tables 1 and 2 show how many 3*3 functions can be realized 
with the specified number of gates (column “Size”) for NCTS and 
NCTSF libraries, respectively. “WA” shows weighted average of 
the circuit size. We compared the results of our algorithm to the 
results of optimal synthesis [16] (columns “Optimal”) and the 
results of using the DMM algorithm. Column “DMM” in Table 1 
denotes the results obtained without using templates (Table 4, 
column “(b)” and (d) in [13]). Such results have not been reported 
for the NCTSF library (this is why the third column in Table 2 is 
empty). The results for the bidirectional DMM algorithm without 
application of templates are shown in the sixth column of Table 1. 
The column “DMM+” in Table 2 shows the results of application 
of a small set of templates [2], while the column “DMM*” 
denotes the results of using an extended set of templates [11]. It 
has to be noted that some of the results for the DMM algorithm 
have been obtained after output permutation while the optimal 
and our values were calculated without using output permutation. 

For NCTS library our algorithm “NewB” produces the circuits 
which are 106.8% of the optimal size on average. This is better 
than the results of the bi-directional DMM algorithm followed by 
exhaustive simplification procedures. For NCTSF library, our 
results are slightly worse than in “DMM*”. However, application 
of templates to them would probably yield better results. 
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We have not yet optimized our programs, so the runtimes are not 
given. It seems that for synthesizing large functions our approach 
has better potential than previously reported algorithms due to 
using decision diagrams as a basic representation of reversible 
functions, instead of truth tables or PPRM.  

Table 1: Number of 3*3 reversible functions using a specified 
number of gates for NCTS library 

Size 1-directional algorithms Bidirectional algorithms 

 
Optimal 

DMM NewA NewB DMM DMM+ NewA 
14 0 4   0 0 0 0 0 
13 0 72 0 0 0 0 0 
12 0 477 0 0 3 0 0 
11 0 1759 0 0 86 5 2 
10 0 4179 24 0 493 110 33 

9 0 6912 861 86 2312 792 794 
8 32 8389 6174 2740 6944 4726 5722 
7 6817 7766 12683 11774 11206 11199 12181 
6 17531 5615 11419 13683 10169 12076 11715 
5 11194 3183 6127 8068 5945 7518 6598 
4 3752 1391 2278 3038 2375 2981 2474 
3 844 453 619 781 650 767 661 
2 134 104 119 134 121 130 124 
1 15 15 15 15 15 15 15 
0 1 1 1 1 1 1 1 

WA 5.629 7.646 6.362 6.010 6.527 6.176 6.298 
% 100 135.8 113.0 106.8 116.0 109.7 111.9 

Table 2: Number of 3*3 reversible functions using a specified 
number of gates for NCTSF library 

Size 1-directional algorithms Bidirectional algorithms 

 
Optimal 

DMM NewA NewB DMM+ DMM* NewA 
10 0 ? 22 0 1 0 9 

9 0 ? 721 53 86 9 220 
8 0 ? 6968 2731 1877 512 2712 
7 496 ? 8579 7151 8419 5503 9607 
6 14134 ? 11300 13285 13606 13914 13602 
5 17695 ? 8292 11094 10595 13209 9248 
4 6474 ? 3360 4633 4437 5680 3750 
3 1318 ? 899 1170 1105 1290 984 
2 184 ? 160 184 175 184 169 
1 18 18 18 18 18 18 18 
0 1 1 1 1 1 1 1 

WA 5.134 ? 6.156 5.704 5.724 5.437 5.882 
% 100 ? 119.9 111.1 111.5 105.9 114.6 

6. CONCLUSIONS 
The approach presented here works with arbitrary libraries, while 
the DMM algorithm so far is developed only for NOT, CNOT, 
Toffoli, SWAP, and Fredkin gates or their generalizations. Our 
algorithm usually produces several circuits for a given function. 
Thus, for a library with gates of different cost, all generated 
circuits can be evaluated to select the circuit with the minimal 
cost. Such optimization is done on the global scale, in contrast to 
the local decisions of the algorithms presented in [1, 2, 7-13]. 

We are studying modifications of our complexity measure to 
incorporate more data for obtaining better efficiency of the 
algorithm. Ultimately, we aim to generalize the proposed 

approach to synthesis of multiple-valued reversible functions for 
arbitrary libraries of reversible MV gates. 
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