
A New Heuristic Algorithm for Reversible Logic Synthesis
Pawel Kerntopf

Institute of Computer Science, Department of Electronics and Information Technology
Warsaw University of Technology, Nowowiejska Str. 15/19, 00-665 Warsaw, Poland, phone: +48-22-6607915

P.Kerntopf@ii.pw.edu.pl

ABSTRACT
Reversible logic has applications in many fields, including
quantum computing. Synthesis techniques for reversible circuits
are not well developed, even for functions with a small number of
inputs and outputs. This paper proposes an approach to reversible
logic synthesis using a new complexity measure based on shared
binary decision diagrams with complemented edges (instead of
truth tables or PPRM forms, as in the previous algorithms). The
approach can be used with arbitrary libraries of reversible logic
gates and arbitrary cost functions. Experiments show promising
results in comparison with the known approaches.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – Automatic Synthesis

General Terms
Design, Theory.

Keywords
Reversible Logic Circuits, Synthesis.

1. INTRODUCTION
Recently, reversible computing has become a fast developing area
of research. It has attracted attention of researchers because of
new perspectives to build almost energy loss-less, ultra-small, and
ultra-fast quantum computers. Moreover, there are some tasks in
other areas, including cryptography, digital signal processing,
communication, and computer graphics, requiring that all the
information encoded in the inputs be preserved in the outputs
[16].

Classical reversible circuits are a special case of quantum circuits.
Logic synthesis for them is a first step toward synthesis of
quantum circuits. The synthesis of reversible circuits differs
substantially from synthesis using traditional irreversible gates. A
circuit is said to be reversible if there is a bijective mapping of the
input assignments into the output assignments. So, it is assumed
that the number of outputs in a reversible circuit (or gate) is the
same as the number of inputs. In addition, the fan-outs are not
allowed. Thus, logic design of reversible circuits is a new and
challenging task. Synthesis techniques are not well developed for
such circuits, even for small numbers of inputs and outputs.

Although some general ideas and algorithms for reversible logic
synthesis were proposed in [15, 14, 6, 12, 3, 16, 1], satisfactory
solutions for arbitrary libraries of gates and cost functions have
not yet been found. An incremental algorithm for implementing a
reversible function was proposed in [7]. Since that time, several
variants of this algorithm were developed [13, 9, 2, 8, 10, 11]. It is
a two-stage algorithm. First, a circuit is constructed in a number
of steps by inspecting the truth table of a reversible function. In
[9, 2, 10, 11] the concept of a template, first introduced in [3],
was substantially extended and used in the second stage of the
algorithm to simplify the circuit found in the first stage.

In this paper, a new incremental approach is presented, which
uses shared binary decision diagrams for the representation of
reversible functions (instead of truth tables) and for measuring
their complexity. The proposed algorithm selects reversible gates,
one at a time, based on the complexity of the reminder logic.
Similarly to [1-2, 7-11, 16, 17], we assume that a reversible
function to be implemented is realizable without temporary
storage [16] and that the cost function is the gate count.

The paper is organized as follows. Section 2 introduces the basic
concepts of reversible logic. Section 3 analyses the previous
work. Section 4 introduces a new algorithm. Section 5 presents
experimental results. Section 6 summarizes the paper. This paper
assumes that the reader is familiar with the basic concepts of
Binary Decision Diagrams (BDDs), including Shared BDDs
(SBDDs) with complemented edges [17].

2. PRELIMINARIES
Definition 1 A completely specified n-input n-output Boolean
function (referred to as n*n function) is called reversible if it
maps each input assignment into a unique output assignment.

Definition 2 An n-input n-output gate (or circuit) is reversible if it
realizes an n*n reversible function.
A variety of reversible gates have been proposed in the literature.
In this paper, we consider only the most widely used gates.

Definition 3 NOT, CNOT, Toffoli, SWAP and Fredkin gates (in
short, N, C, T, S and F, respectively) are defined as follows:
1*1 NOT: a’ = 1 ⊕ a;
2*2 CNOT: a’ = a, b’ = a ⊕ b;
3*3 Toffoli: a’ = a, b’ = b, c’ = c ⊕ ab;
2*2 SWAP: a’ = b, b’ = a;
3*3 Fredkin: a’ = a, if a = 0 then b’ = b, c’ = c if a = 1 then b’ =
c, c’ = b, or equivalently: b’ = b ⊕ ab ⊕ ac, c’ = c ⊕ ab ⊕ ac.

Figure 1: NOT, CNOT, Toffoli, SWAP and Fredkin gates.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2004, June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006…$5.00.

49.5

834

The pictorial representations of the gates from Definition 3 are
shown in Fig. 1a, 1b, 1c, 1d, and 1e. The set of the first three
gates is called NCT library, the set of the first four gates is called
NCTS library, and the set of all five gates is called NCTSF
library. Note that each of the N, C, T, S, F gates is invertible (i.e.
equal to its own inverse). Thus the equations for the functions
describing dependence of inputs on outputs (inverse mapping)
have the same form as the equations given in Definition 3 (after
exchanging a, b, c with a’, b’, c’, respectively). For each non-
invertible gate it is possible to determine sets of equations
defining both forward and inverse mappings induced by the gate.

In [2, 7-11, 13] the following definition is used.

Definition 4 The Hamming distance between two bit strings is the
number of positions, in which they differ. Given a reversible
function f, the complexity measure C(f) is equal to the sum of the
individual Hamming distances between input assignments and
output assignments for all rows of the truth table of f.

After considering different variants of complexity measures based
on decision diagrams, we have chosen the following one:

Definition 5 The complexity measure D(f) of an n*n reversible
function f is equal to D(f) = s(f) − n, where s(f) denotes the
number of non-terminal nodes in the reduced ordered SBDD of f
with complemented edges. Thus, D(identity function) = 0.

Example 1 D(f) for functions represented by SBDDs shown in
Figures 4a, 4b, 4c, 4d, 4e, 4f is equal to 5, 4, 3, 3, 2, 0,
respectively (Figure 4f represents the identity function).
SBDDs provide a compact representation of multiple-output
functions after choosing an appropriate variable ordering [17].
However, in the context of reversible logic synthesis,
minimization of SBDDs is not necessary, because we deal with
functions of a relatively small number of variables and we are
only interested in relative changes of the value D(f). Therefore,
we are building SBDDs using the natural order of the inputs.

3. PREVIOUS WORK
Let us first outline the basic algorithm from [13], which we call
the DMM algorithm. Its goal is to find a sequence of reversible
gates, which transforms a reversible function to the identity
function. The function representation is a standard truth table with
input assignments arranged in the lexicographical order. At every
step of the algorithm, some gates from NCT library are chosen
and added to previously selected gates, starting from the end of
the constructed circuit towards its beginning. The truth table is
being inspected in the lexicographical order until the first output
assignment is encountered, which is not equal to the input
assignment located in the same row of the table. A subsequence of
gates generated has to transform the table in such a way that the
output assignment will be the same as the input assignment.

The algorithm is developed so that once an output assignment of
the truth table is transformed into the correct pattern, it remains
unchanged regardless of the transforms of the table req

uired for the later transformation of remaining rows with unequal
input and output patterns. The algorithm always terminates
successfully with a circuit implementing the given truth table. For
NCTSF library, in which all gates are invertible, the reversible
cascade can be built from either end. Thus, all synthesis
algorithms can be applied from outputs to inputs, from inputs to
outputs, or in both directions simultaneously (the last case is
called bi-directional).

There are some disadvantages of the DMM approach. It was not
shown how to take into account different costs of gates. Also,
only algorithms for NCTSF library have been developed.
Simplification of the sub-optimal circuits based on recognizing
templates may require a lot of iterations. It is because, after each
usage of a template, new template matches may appear. It is also
possible that during the simplification a local optimum may be
reached, instead of a global one.

In some cases, the circuits constructed by the DMM algorithm are
far from optimal. It is because transformations corresponding to
the sequence of gates in an optimal circuit do not yield a match of
subsequent pairs of input and output assignments according to the
lexicographical order. Also, the complexity measures C(f) for the
functions obtained by the transformations corresponding to
subsequent gates in an optimal circuit do not form a non-
increasing sequence.

4. NEW ALGORITHM
In Figure 2, the scheme of one basic step of our synthesis
algorithm is shown. Let G1 is the first from the left side gate of
the circuit. As shown in [4, 5], the transformed n*n reversible
function fT can be represented as an SBDD (such representation of
a function f is called a function-driven decision diagram defined
by the output function of G1). We have chosen the representation
fT in the form of a reduced ordered SBDD with complemented
edges. The transformation shown in Figure 2 can be iterated.

Figure 2: A general scheme of one step of our algorithm.

The functions f1(1)(y1,... ,yn), ... , fn(1)(y1,... ,yn) are derived by
substituting x1=g1(y1,... , yn), ... , xn=gn(y1,... , yn) in the functions:

f1(x1, ... ,xn), ... , fn(x1, ... ,xn).

Example 2 Let f be a 3*3 reversible function defined as follows:
f1(0) = 1 ⊕ a ⊕ c ⊕ ab ⊕ ac
f2(0) = 1 ⊕ a ⊕ b ⊕ c
f3(0) = 1 ⊕ a ⊕ b ⊕ ab ⊕ bc

We will show how to determine the reminder function fT with
respect to the Fredkin gate with the control input being a. Thus,
according to the remark following Definition 3, we have
a = a’, b = b’ ⊕ a’b’ ⊕ a’c’ c = c’ ⊕ a’b’ ⊕ a’c’.
We substitute the above expressions for a, b, c into the
expressions defining the function f (in our algorithm, these
calculations are performed using decision diagrams):
f1(1) = f(a, b, c) = 1 ⊕ a ⊕ c ⊕ ab ⊕ ac = 1 ⊕ a’ ⊕ c’ ⊕ a’b’ ⊕
a’c’ ⊕ a’(b’ ⊕ a’b’ ⊕ a’c’) ⊕ a’(c’ ⊕ a’b’ ⊕ a’c’) = 1 ⊕ a’ ⊕ c’
⊕ a’b’ ⊕ a’c’ ⊕ a’b’ ⊕ a’b’ ⊕ a’c’ ⊕ a’c’ ⊕ a’b’ ⊕ a’c = 1 ⊕
a’ ⊕ c’
f2(1) = 1 ⊕ a ⊕ b ⊕ c = 1 ⊕ a’ ⊕ b’ ⊕ a’b’ ⊕ a’c’ ⊕ c’ ⊕ a’b’ ⊕
a’c’ = 1 ⊕ a’ ⊕ b’ ⊕ c’
f3(1) = 1 ⊕ a ⊕ b ⊕ ab ⊕ bc = 1 ⊕ a’ ⊕ (b’ ⊕ a’b’ ⊕ a’c’) ⊕ a’(b’
⊕ a’b’ ⊕ a’c’) ⊕ (b’ ⊕ a’b’ ⊕ a’c’) (c’ ⊕ a’b’ ⊕ a’c’) = 1 ⊕ a’
⊕ b’ ⊕ a’b’ ⊕ a’c’ ⊕ a’b’ ⊕ a’b’ ⊕ a’c’ ⊕ b’c’ ⊕ a’b’ ⊕ a’b’c’
⊕ a’b’c’ ⊕ a’b’ ⊕ a’b’c’ ⊕ a’c’ ⊕ a’b’c’ ⊕ a’c’ = 1 ⊕ a’ ⊕ b’ ⊕
a’b’ ⊕ b’c’

835

Figure 3: An optimal circuit for the function in Example 2.

Now we will make transformations for the next gates shown in
Figure 3 (in the order from left to right). For simplicity, the new
variables after each transformation are denoted using the same
characters as for the previous names of variables. Namely, instead
of a’, b’, c’ we use a, b, c after each iteration. The transformed
functions are as follows (the calculations are omitted):
f1(2) = 1 ⊕ a f2(2) = 1 ⊕ a ⊕ b f3(2) = 1 ⊕ a ⊕ b ⊕ c ⊕ ab
f1(3) = a f2(3) = a ⊕ b f3(3) = a ⊕ c ⊕ ab
f1(4) = a f2(4) = b f3(4) = c ⊕ ab
f1(5) = a f2(5) = b f3(5) = c
The SBDDs for these functions are presented in Figure 4. The
sequence of D(f)’s is non-increasing: 5, 4, 3, 3, 2, 0.

Figure 4: SBDDs for the functions calculated in Example 2.

Figure 5: Possible structures of SBDDs for D(f) = 0, n = 3.

In every step of our algorithm all gates are examined and for each
of them SBDD fT is constructed. Next we select gates, for which
the size of the transformed function is minimal. If there is more
than one such gate, we proceed further with all of them. In our
experiments, the algorithm always terminated with the circuit
realizing the given function. Usually, more that one circuit was
found. Thus, it is possible to select the circuits having the minimal
cost for a given reversible function.

Figure 6: Moving SWAP gates.

The performance of the algorithm can be improved in two ways.
Structures of SBDD with D(f) = 0 can be easily determined. In
Figure 5, all such structures for n = 3 are shown (up to the
positions of dots). For each of these structures determining the
optimal subcircuit is straightforward. Depending on positions of
dots, it will consist of up to n NOT gates, and up to n-1 SWAP
gates. Thus, this part of the circuit can be constructed very fast
once it is established that D(f) = 0. Also, note that the SWAP gate
may be always exchanged with the next (or previous) gate in the
order (see Figure 6) after an adequate transformation of the gate
G1 into the gate G2 (consisting in permutations of inputs and
outputs). Due to this property we can postpone considering
SWAP gates until the end of the constructed circuit. In this way a
speed-up of the algorithm can be obtained. These improvements
are implemented in our algorithm.

5. EXPERIMENTAL RESULTS
To compare our results with those obtained using the DMM
algorithm, our program synthesized all 40,320 reversible 3*3
functions using two versions of the algorithm:
(a) one-directional and bi-directional algorithms (columns

“NewA” in Tables 1 and 2)
(b) two results for one-directional algorithm (run from the inputs

to the outputs, and vice versa) are obtained and the best of
them is chosen (columns “NewB” in Tables 1 and 2).

Tables 1 and 2 show how many 3*3 functions can be realized
with the specified number of gates (column “Size”) for NCTS and
NCTSF libraries, respectively. “WA” shows weighted average of
the circuit size. We compared the results of our algorithm to the
results of optimal synthesis [16] (columns “Optimal”) and the
results of using the DMM algorithm. Column “DMM” in Table 1
denotes the results obtained without using templates (Table 4,
column “(b)” and (d) in [13]). Such results have not been reported
for the NCTSF library (this is why the third column in Table 2 is
empty). The results for the bidirectional DMM algorithm without
application of templates are shown in the sixth column of Table 1.
The column “DMM+” in Table 2 shows the results of application
of a small set of templates [2], while the column “DMM*”
denotes the results of using an extended set of templates [11]. It
has to be noted that some of the results for the DMM algorithm
have been obtained after output permutation while the optimal
and our values were calculated without using output permutation.

For NCTS library our algorithm “NewB” produces the circuits
which are 106.8% of the optimal size on average. This is better
than the results of the bi-directional DMM algorithm followed by
exhaustive simplification procedures. For NCTSF library, our
results are slightly worse than in “DMM*”. However, application
of templates to them would probably yield better results.

836

We have not yet optimized our programs, so the runtimes are not
given. It seems that for synthesizing large functions our approach
has better potential than previously reported algorithms due to
using decision diagrams as a basic representation of reversible
functions, instead of truth tables or PPRM.

Table 1: Number of 3*3 reversible functions using a specified
number of gates for NCTS library

Size 1-directional algorithms Bidirectional algorithms

Optimal

DMM NewA NewB DMM DMM+ NewA
14 0 4 0 0 0 0 0
13 0 72 0 0 0 0 0
12 0 477 0 0 3 0 0
11 0 1759 0 0 86 5 2
10 0 4179 24 0 493 110 33

9 0 6912 861 86 2312 792 794
8 32 8389 6174 2740 6944 4726 5722
7 6817 7766 12683 11774 11206 11199 12181
6 17531 5615 11419 13683 10169 12076 11715
5 11194 3183 6127 8068 5945 7518 6598
4 3752 1391 2278 3038 2375 2981 2474
3 844 453 619 781 650 767 661
2 134 104 119 134 121 130 124
1 15 15 15 15 15 15 15
0 1 1 1 1 1 1 1

WA 5.629 7.646 6.362 6.010 6.527 6.176 6.298
% 100 135.8 113.0 106.8 116.0 109.7 111.9

Table 2: Number of 3*3 reversible functions using a specified
number of gates for NCTSF library

Size 1-directional algorithms Bidirectional algorithms

Optimal

DMM NewA NewB DMM+ DMM* NewA
10 0 ? 22 0 1 0 9

9 0 ? 721 53 86 9 220
8 0 ? 6968 2731 1877 512 2712
7 496 ? 8579 7151 8419 5503 9607
6 14134 ? 11300 13285 13606 13914 13602
5 17695 ? 8292 11094 10595 13209 9248
4 6474 ? 3360 4633 4437 5680 3750
3 1318 ? 899 1170 1105 1290 984
2 184 ? 160 184 175 184 169
1 18 18 18 18 18 18 18
0 1 1 1 1 1 1 1

WA 5.134 ? 6.156 5.704 5.724 5.437 5.882
% 100 ? 119.9 111.1 111.5 105.9 114.6

6. CONCLUSIONS
The approach presented here works with arbitrary libraries, while
the DMM algorithm so far is developed only for NOT, CNOT,
Toffoli, SWAP, and Fredkin gates or their generalizations. Our
algorithm usually produces several circuits for a given function.
Thus, for a library with gates of different cost, all generated
circuits can be evaluated to select the circuit with the minimal
cost. Such optimization is done on the global scale, in contrast to
the local decisions of the algorithms presented in [1, 2, 7-13].

We are studying modifications of our complexity measure to
incorporate more data for obtaining better efficiency of the
algorithm. Ultimately, we aim to generalize the proposed

approach to synthesis of multiple-valued reversible functions for
arbitrary libraries of reversible MV gates.

7. REFERENCES
[1] Agrawal, A., Jha, N. K. Synthesis of reversible logic. In Proc.

Design and Test in Europe Conference, Paris, France, February
2004, 1384-1385.

[2] Dueck, G. W., Maslov, D., and Miller, D. M. Transformation-based
synthesis of networks of Toffoli/Fredkin gates. In IEEE Canadian
Conference on Electrical and Computer Engineering, Montreal,
Canada, May 2003.

[3] Iwama, K., Kambayashi, Y., and Yamashita, S. Transformation rules
for designing CNOT-based quantum circuits. In Proc. Design
Automation Conference, New Orleans, LA, June 2002, 419-425.

[4] Kerntopf, P. An approach to minimization of decision diagrams. In
Proc. EUROMICRO Symposium on Digital Systems Design,
Warsaw, Poland, Sept. 2001, 79-86.

[5] Kerntopf, P. Binary decision diagrams based on single and multiple
generalized Shannon expansions. In Proc. 6th International
Symposium on Representations and Methodology of Future
Computing Technology, Trier, Germany, March 2003, 183-190.

[6] Khlopotine, A., Perkowski, M., and Kerntopf, P. Reversible logic
synthesis by gate composition. In Notes of the 11th IEEE/ACM
International Workshop on Logic and Synthesis, New Orleans, LA,
June 2002, 261-266.

[7] Maslov, D., and Dueck, G. W. Garbage in reversible design of
multiple output functions. In Proc. 6th International Symposium on
Representations and Methodology of Future Computing Technology,
Trier, Germany, March 2003, 162-170.

[8] Maslov, D., and Dueck, G. W. Asymptotically optimal regular
synthesis of reversible logic networks. In Notes of the 12th
IEEE/ACM International Workshop on Logic and Synthesis, Laguna
Beach, CA, May 2003, 226-230.

[9] Maslov, D., and Dueck, G. W. Templates for Toffoli network
synthesis. In Notes of the 12th IEEE/ACM International Workshop on
Logic and Synthesis, Laguna Beach, CA, June 2003, 320-325.

[10] Maslov, D., Dueck, G. W., and Miller, D. M. Simplification of
Toffoli networks via templates. In. 16th Symposium on Integrated
Circuits and System Design, Sao Paulo, Brazil, Sept. 2003.

[11] Maslov, D., Dueck, G. W., and Miller, D. M. Fredkin/Toffoli
templates for reversible logic synthesis. Proc. International
Conference on Computer-Aided Design, San Jose, CA, Nov. 2003.

[12] Miller, D. M., and Dueck, G. W. Spectral techniques for reversible
logic synthesis. In Proc. 6th International Symposium on
Representations and Methodology of Future Computing Technology,
Trier, Germany, March 2003, 56-62.

[13] Miller, D. M., Maslov, D., and Dueck, G. W. A transformation based
algorithm for reversible logic synthesis. Proc. Design Automation
Conference, Anaheim, CA, June 2003, 318-323.

[14] Mishchenko, A., and Perkowski, M. Logic synthesis of reversible
wave cascades. In Notes of the 11th IEEE/ACM International
Workshop on Logic and Synthesis, New Orleans, LA, June 2002,
197-202.

[15] Perkowski, M., Jozwiak, L., Kerntopf, P., Mishchenko, A., Al-
Rabadi, A., Coppola, A., Buller, A., Xiaoyu Song, Khan, M. H. A.,
Yanushkevich, S. N., Shmerko, V. P., and Chrzanowska-Jeske, M. A
General Decomposition for Reversible Logic. Proc. 5th International
Workshop on Applications of Reed-Muller Expansion in Circuit
Design, Starkville, MS, Aug. 2001, 119-138.

[16] Shende, V. V., Prasad, A. K., Markov, I. L., and Hayes, J. P.
Reversible logic circuit synthesis. IEEE Trans. CAD, 22, 6 (June
2003), 710-722.

[17] Sasao, T., and Fujita, M. (eds.) Representations of Discrete
Functions, Kluwer Academic Publishers, 1996.

837

