
An Efficient Approach to SiP Design Integration

Meng-Syue Chan, Chun-Yao Wang and Yung-Chih Chen
Dept. of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

g9562640@oz.nthu.edu.tw, {wcyao, ycchen}@cs.nthu.edu.tw

Abstract
System-in-Package (SiP) design methodology integrates

multiple dies which come from different vendors into a
package. It is more advantageous than Printed Circuit Board
(PCB) and System-on-a-Chip (SoC) design methodologies
from the aspects of development cost, power consumption,
time-to-market, and miniaturization. Since these integrated
dies can be manufactured and tested separately, the best-
quality SiP design can be achieved by using these best-quality
dies. However, with considering cost constraint, the best-
quality dies are not always qualified due to high cost. Thus,
this paper proposes an algorithm to optimize the combination
of dies with different yields and test coverages in an SiP such
that a minimal cost is achieved subject to a quality constraint,
or a least defect level is reached under the cost constraint.
The proposed method significantly prunes the solution space,
and efficiently determines the combination of dies.

Keywords
System-in-Package (SiP), optimization

1. Introduction
With the advances of semiconductor technologies, the num-

ber of transistors in a chip increases exponentially. This
evolution leads a large system to be realized in a single chip,
which is named System-on-a-Chip (SoC). An SoC design
typically integrates various cores or intellectual properties
(IPs), which are developed in-house or purchased from IP
vendors, on a chip. Although the SoC design methodology
has a great integration of versatile cores, it suffers a lower
yield from the large die size and heterogeneous integration as
compared with Application Specific ICs (ASICs).

To balance the yield and miniaturization of system designs,
the System-in-Package (SiP) design methodology is proposed.
An SiP consists of several bare dies which are placed on a
common substrate horizontally or vertically within the same
package. Designers can integrate a variety of dies which are
manufactured and tested separately with the most advanced
process technologies and test methods, respectively. Thus, the
yield of an SiP design may be elevated without sacrificing
time-to-market and chip size. Furthermore, SiP also provides
a solution to protect the intellectual properties of the integrated
dies, since the manufactured dies, instead of design cores are
delivered to the system integrators.

In order to produce a high-quality and cost-effective SiP
design, designers must explore the relationship between cost
and quality among the individual die and the entire SiP
design [1][4][5]. SiP designs are similar to multichip module
(MCM) design from the aspect of integration of manufactured

This work was supported in part by the National Science Council of R.O.C.
under Grant NSC 97-2220-E-007-042 and NSC 97-2220-E-007-034.

and tested dies. But an SiP design is realized in a single
package rather than on a PCB. Previous works [1][4][5]
on MCM designs and ASIC design which are related to
this work are summarized here. In [1], Abadir explores the
tradeoff between various testing and rework strategies for
MCM designs. The work compared the cost and the defect
level (DL) of various testing strategies such as die-level
testing, full DFT, and partial DFT. The disadvantages and
advantages of each testing strategy are also discussed in that
paper. However, the paper does not discuss the algorithm of
obtaining a cost-effective and high quality MCM design. [4]
proposes a test cost prediction model that estimates chip test
cost and test quality. It focuses on predicting the cost and the
quality of the test method to produce a high quality ASIC in
a manufacturing environment. [5] proposes a system named
Profit Evaluation System (PES) to determine the yield and
the test plan when the specified quality level is given. Fabric
type and raw manufacturing data (e.g., wafer size, wafer cost,
defect density, and defect distribution) are given for the PES.
The outputs are the yield and the fault coverage that come out
a maximal profit. However, those models are not suitable for
SiP designs, since dies of an SiP design are provided by third
parties, and the raw manufacturing data are not available to
SiP integration.

Since an SiP design integrates many manufactured and
tested dies in one package, the qualities of these dies directly
affect the quality of the SiP design. If the best-quality dies are
used, the quality of the SiP design is also the best. However,
achieving high quality without considering cost is impractical.
In this work, we propose a novel and efficient algorithm to
determine the combination of dies in an SiP design such that
the objectives are achieved under the given constraints in the
proposed two quality-cost evaluation models. The objective
of the first model is the cost minimization, its corresponding
constraint is the DL. Thus, this model minimizes the cost
under the DL constraint. The second model is to minimize
the DL under the cost constraint.

The rest of this paper is organized as follows. Section II
introduces the background. Section III proposes our algorithm
and models for integrating an SiP design. The experimental
results are shown in Section IV. Section V concludes this
work.

2. Background
An SiP design may consist of several components, such as

digital block, analog block, substrate, memory block and some
passive components. The quality of the design is measured
by DL. DL is a measurement that indicates the percentage
of components passing test process but are still defective.
The lowest DL can be obtained by using the highest quality
component and using test methods with the highest fault

978-1-4244-2953-0/09/$25.00 ©2009 IEEE 241 10th Int'l Symposium on Quality Electronic Design

coverage. From another viewpoint of the quality requirement,
however, the quality would be acceptable if the DL is smaller
than the given DL constraint.

DL is used to evaluate the quality of a design and can
be formulated as Equation (1), where Y is the yield of the
component, FC is the fault coverage of the test method.

DL = 1− Y (1−FC) (1)

However, Equation (1) is used for single chip or single
core design. For multiple-component designs, Equation (1) is
modified as Equation (2) where m is the number of compo-
nents within a design. For example, assume there are three
components in an SiP design and their yields are 90%, 95%,
and 99%, respectively. The corresponding fault coverages are
80%, 85%, and 88%, respectively. Then, the DL of this design
is 29527 parts per million (ppm) as shown in Equation (3).

DL = 1−
mY

i=1

n
Y

(1−FCi)
i

o
(2)

DL = 1− �(0.91−0.8)× (0.951−0.85)× (0.991−0.88)
	

= 29527ppm (3)

3. The proposed approach
The quality of an SiP design is affected by the quality

of the integrated components and the fault coverage of the
test strategies. Integrating with higher quality dies makes the
quality of an SiP design better as well. Thus, Known Good
Die (KGD)[10] acquisition is a critical issue to SiP integra-
tion. However, with economic concerns, the development and
manufacturing cost must be considered in the SiP integration.
Thus, in this paper, we propose two quality-cost evaluation
models to optimize the SiP integration. In our models, the
best solution can be found under the cost constraint or the
quality constraint. The first model reduces the manufacturing
and development cost as much as possible, but keeps its
quality. Thus, this model is to minimize the cost under the DL
constraint. On the other hand, if the cost is a more important
factor, the second model, which minimizes the DL under the
cost constraint can be used. Here, we assume that components
with different yields but the same functionality, and test
methods with different fault coverages are both available to
integrating an SiP design.

3.1. Cost Minimization under the Defect Level Con-
straint

In this model, we want to minimize the cost under the DL
constraint. This evaluation model is summarized as follows.
Minimize:

TC =

mX
i=1

XiCi + P Xi ∈ {0, 1} (4)

Subject to:
P = Fine×DL (5)

(X1 + X2 + . . . + Xn1)(Xn1+1 + . . . + Xn1+n2)

. . . (Xn1+n2+...+nm−1+1 + . . . + Xn1+n2+...+nm) = 1

(6)

DL ≤ ConDL (7)

The total cost (TC) of an SiP design can be formulated
as Equation (4) where Ci is the cost of the component i or
the cost of the test method i, Xi is a binary number, and
P is the average penalty of delivering a defective product to
customers. P can be formulated as Equation (5) where Fine is
the payment to customers when delivering a defective product.
Equation (6) indicates that only one item, either a component
or a test method, can be chosen in one clause. Equation (7)
indicates that the actual DL must meet the DL constraint,
denoted as ConDL.

The optimal solution of this model can be found after
all combinations of components and test methods have been
exhaustively tried. However, the number of combinations is
enormous if the SiP design consists of many components,
and has many test choices. Hence, we have to filter out some
combinations to speed up the evaluation process. Note that
the most important thing is that the best combination must
exist in the pruned solution space.

First, we focus on pruning the combinations within the
same component group. For example, assume that an SiP
design consists of a component A, and other components.
The component A has five choices of different yields and
three test choices of different fault coverages. Thus, there
are 15 (3 × 5) combinations for the component A. One of
15 combinations will be a part of the final result. We then
generate these combinations, and calculate the cost (the sum
of component cost and test cost) and a parameter w for each
combination which is calculated as Equation (8). Since the
DL of a single component design can be expressed as (1−w),
a combination with a larger w can result in a lower DL.

w = Y (1−FC) (8)

Then these combinations are sorted by their cost in as-
cending order. Fig. 1(a) is a sample result of the sorting. An
element in Fig. 1(a) that has a higher cost but a lower w
as compared with its left neighbor will be pruned out. We
can see that the element-2 is the case that has a higher cost
but a lower w as compared with the element-1. By pruning
out the element-2 in Fig. 1(a), the elements with higher costs
also have higher w as shown in Fig. 1(b). This is the pruning
process within the same component group.

Next, another parameter Costinew as shown in Equation
(9) is calculated for each remaining element i within the
same component group. Costinew is used to evaluate the effect
of selecting the element i in the final SiP integration while
considering other components and the penalty issue. This
evaluation equation is derived from Equation (2) and Equation
(5), but it assumes that except the selected element i, the other
elements are defect-free (i.e. yield is 100%) and their costs
are zero. The cost evaluation of selecting the element i based
on this assumption can highlight the impact of element i on
the integration. Costinew consists of the cost of element i (ci)
and the penalty P where P is minimal since other elements
are assumed defect-free. In other words, Equation (9) shows
the cost of integration when defects only occur at the element

Fig. 1. (a) An element with a higher cost but a lower w (element-2) is in
the original data (b) The remaining elements after the pruning process.

i. Thus, Costinew is the minimal cost of selecting the element
i in the SiP integration.

Costi
new = P + ci

= Fine× (1− wi × 1× 1× . . .) + ci (9)

When all remaining elements get their Costinew, these
elements are sorted again by their Costinew in ascending
order. The element that has a higher Costinew but a lower w
will then be pruned out in this second pruning process. The
element i which has a higher Costinew but a lower w under
our assumption indicates that including element i in the SiP
integration will cause a higher cost. Thus, we can prune out
this element i.

DL ≤ ConDL

(1−
mY

i=1

wi) ≤ ConDL

log (1− ConDL) ≤ log (

mY
i=1

wi)

− log (1− ConDL) ≥ − [log(w1) + . . . + log(wm)]

S(− log (1− ConDL)) ≥ S {− [log (w1) + . . . + log (wm)]}
Conscaled ≥ (sw1 + sw2 + . . . + swm)

(10)

After these pruning processes, the elements with a higher
cost within the same component group (or a higher Costinew

in the whole SiP), but a lower w are eliminated. However, we
still need an efficient approach to select the proper elements
as the part of our answer from these remaining elements.
In this work, we transform our picking up problem into
the one that is similar to 0-1 knapsack problem. Thus, the

data of these remaining elements have to be transformed for
accommodating to the modified 0-1 knapsack problem.

Now, we introduce the process of data transformation where
the DL constraint of this model is focused on. Equation (10)
shows the transformation process. In the row 3, the inequality
is taken a logarithmic operation. Since log(1 − Con) and
log(wi) are negative numbers, we turn them to positive ones
by multiplying −1. Then, we multiply a positive constant
S to the inequality such that both sides of the inequality
are integers. This step is for our picking up process. These
transformed data are named scaled constraint (Conscaled) and
scaled weight (swi), respectively, as shown in the last row of
Equation (10) where Conscaled = −S×log(1− ConDL) and
swi = −S × log(wi). This data transformation process can
speed up our approach, since the multiplication operations in
the constraint equation are currently replaced by the addition
operations. Another step of the transformation process is to
make the Costinew of each element be a negative number by
multiplying −1, and it is named scaled cost (Costiscaled). This
step is also for the picking up process since it always picks
up an element with a larger value. Thus, a lower Costinew

will become a larger value after multiplying −1 and will be
selected.

TABLE I
THE DATA OF THE EXAMPLE.

Component Test Method
Type Cost Y ield Method Cost Fault Coverage

A-1 5 85% TA-1 10 90%
A-2 7 90% TA-2 15 95%
A-3 8 93% TB-1 10 93%
B-1 13 90% TB-2 20 95%
B-2 15 95% TB-3 50 99%

Fine: 10,000 DL Constraint: 9,000 ppm

After performing the data transformation, the next step is
the picking up process. Our picking up process is similar
to 0-1 knapsack problem, but has a different property. This
property is that we may have more than one choice for each
SiP component, but just exactly one element can be selected.
This property has been expressed in Equation (6) of this
model.

We use an example to demonstrate our approach. Assume
that there are three components to be integrated in one SiP
design. One is with the component A; two are with the
component B. Component A has three levels of quality with
respect to different cost and yields, A-1, A-2, and A-3.
Component B also has two levels of quality. Besides, several
test choices are provided with different fault coverages and
costs, respectively. Given that the DL constraint is 9,000 ppm,
and the Fine is $10,000. The detailed data are listed in Table
I.

Table II shows the data in the pruning process, and indicates
if an element can be pruned out or not. The first pruning
process prunes off the elements ComA4 and ComB3. Fig.
2 shows the curve of all elements of component B before
and after the first pruning. After the first pruning process,
we eliminate the element ComB3 of cost $33 since its cost is
higher than its left neighbor, but has a lower w as shown in Fig
2(a). These remaining elements then get their Costinew. Fig. 3
shows the curve of those remaining elements of component B

TABLE II
THE DATA IN THE PRUNING PROCESSES.

Element Cost w member 1st. pruning Costi
new 2nd. pruning − log(w) sw Costi

scaled
ComA1 15 0.98388 A-1,TA-1 No 176.21 Yes - - -
ComA2 17 0.98952 A-2,TA-1 No 121.81 Yes - - -
ComA3 18 0.99277 A-3,TA-1 No 90.31 Yes - - -
ComA4 20 0.99191 A-1,TA-2 Yes - - - - -
ComA5 22 0.99475 A-2,TA-2 No 102.93 Yes - - -
ComA6 23 0.99638 A-3,TA-2 No 75.54 No 0.0016 16 -75.54
ComB1 23 0.99265 B-1,TB-1 No 96.48 Yes - - -
ComB2 25 0.99642 B-2,TB-1 No 60.84 Yes - - -
ComB3 33 0.99475 B-1,TB-2 Yes - - - - -
ComB4 35 0.99744 B-2,TB-2 No 60.61 No 0.0011 11 -60.61
ComB5 63 0.99895 B-1,TB-3 No 73.53 Yes - - -
ComB6 65 0.99949 B-2,TB-3 No 70.13 No 0.0002 2 -70.13

DL constraint: 9,000 ppm S:10,000 Conscaled: 39

Fig. 2. The first pruning process of component B (a) Before the pruning
process, it contains a redundant element. (b) After the pruning process, the
remaining elements are the prospective candidates of the SiP design.

before and after the second pruning process. Those remaining
elements are sorted by their Costinew in ascending order. The
elements which have higher Costinew but lower w would be
pruned out again in the second pruning process. The detailed
data can be seen in Table II. In summary, there are three
components in the design of this example, and the size of the
original solution space are 216 (6×6×6). However, only 125
(5×5×5) elements need to be examined after the first pruning
process. Furthermore, the number of candidates of this design
under the constraint remains 4 (1 × 2 × 2) elements after
the second pruning process. This indicates that the pruning
processes are effective to speed up our algorithm.

After the pruning process, the picking up process proceeds.
Fig. 4 shows the picking up process of the example. The
process of filling out the table is row by row. In Fig. 4(a), the
entries of the row A are all zeros until the capacity is greater
than 15, since sw of ComA6 is 16. Thus, we select ComA6
as part of our solution, and the summation of Costinew of this
selection is −75.54. After finishing the picking up process for

Fig. 3. The second pruning process of component B (a) The elements left in
the first pruning process will be sorted by their Costinew . (b) The remaining
elements after the second pruning process.

the element A, we consider the row B1 as shown in Fig. 4(b).
When the capacity is 2, ComB6 can be selected at this entry,
since the sw of ComB6 is not greater than the capacity. While
the capacity is 11, ComB6 can be replaced with ComB4 at this
entry. This is because the Costscaled of ComB4 (−60.61) is
greater than that of ComB6. The Costscaled is then updated to
−145.67 and ComB6 replaces the ComB4 while the capacity
is 18. This is because the selection with ComB6 leaves the
space for accommodating to ComA6. But when the capacity is
27, the selection with ComB4 is better than that with ComB6.
The picking up process of B2 is shown in Fig. 4(c). The 4th
entry of the row B2 is −140.26, this selection indicates that
both B1 and B2 select the ComB6. Then the Costscaled is
−215.80 for the 20th entry of the row B2, since the selection
contains ComB6, ComB6, and ComA6. But the Costscaled is
updated to −206.28 when the capacity of the row B2 is 29.
Finally, the Costscaled of the last (39th) entry is −196.76,
due to the larger value of sw.

Fig. 4. The picking up process of the example in the first model (a) Pick up the element for component A (b) Pick up the element for component B1 (c)
Pick up the element for component B2 (d) Trace the table back to find the result of this example.

TC = ComA6 + ComB4 + ComB4 + P

= (8 + 15) + (15 + 20) + (15 + 20) + P

= 93 + 87.14

= 180.14

P = 10, 000× (1− wComA6 × wComB4 × wComB4)

= 10, 000× 0.008714

= 87.14 (11)

The final selection can be found by tracing back in Fig.
4(d). We select ComB4 while the capacity is 39 in the row
B2. Then, we select ComB4 while the capacity is 28 (39 −
swComB4 = 39− 11), and select ComA6 while the capacity
is 17 (28 − swComB4 = 28 − 11). Thus, the answer for this
example consists of ComA6, ComB4, and ComB4. In other
words, the solution is composed of A-3, TA-2, B-2, TB-2,
B-2, and TB-2. The summation of the sw of these selected
elements is 38 (16+11+11) and it is less than the Conscaled.
Therefore, this selection meets the constraint. Equation (11)
shows the minimum cost of this example with the quality
constraint. Our algorithm is summarized in Fig. 5.

Fig. 5. The flowchart of quality-cost evaluation model with the quality
constraint.

3.2. Defect Level Minimization under the Cost Con-
straint

Another model that minimizes the DL under the cost
constraint is proposed. The formulation is as follows.
Minimize:

DL = 1−
mY

i=1

��X
XiYi

�(1−PXiFCi)
�

(12)

Subject to:

P = Fine×DL (13)

(X1 + X2 + . . . + Xn1)(Xn1+1 + . . . + Xn1+n2)

. . . (Xn1+n2+...+nm−1+1 + . . . + Xn1+n2+...+nm) = 1

(14)

TC =
X

(XiCi) + P ≤ Concost (15)

First, we also generate all combinations for each component
group. Then, we eliminate some redundant elements by the
first pruning process. Those remaining elements would be
filtered out again by the second pruning process. After the
pruning processes, we would pick up the elements from those
remaining elements. The picking up process is similar to the
one in the previous model, but it has something different.
We will find the maximum product of w, since the higher w
can bring the lower DL. Moreover, the TC of these selected
elements must meet Equation (15). Thus, we need to calculate
the updated TC to determine whether the selection meets
the constraint at each entry. The optimal solution also can
be found at the last entry of the last row.

We use the same example to demonstrate this model. The
Concost is set to 200 in this example. Due to the same
pruning processes and data, the remaining elements are the
same as shown in Table II. The TC is the capacity of this
model, and we record the product of w. In Fig. 6(a), ComA6
is selected at the entry of capacity 60, and the TC of this
selection which is calculated by Equation (15) is 59.2. After
selecting the element A, we would consider the selection of
the element B1 in Fig. 6(b). When the capacity is 61 of the
row B1, the TC of the selection with ComB4 is 60.6. Then,
ComB6 is selected at the 71th entry of the row B1. However,
ComB6 is replaced with ComB4 at the 120th entry of the
row B1, since the selection with ComB4 leaves the space for
accommodating to ComA6. But when the capacity is 130, the
selection with ComB6 is better than that with ComB4. The
picking up process of B2 is shown in Fig. 6(c). We select
ComB4 at the 181th entry of the row B2, and the product of
w is 0.99129 until the 189th entry of the row B2. However,
we select ComB6 at the last (200th) entry of the row B2, due
to larger w.

When we trace the table back, we need to consider the
Pdiff which is the difference of the penalty when selecting the
element i or not as shown in Equation (16). The final selection
can be found by tracing back in Fig. 6(d). We select ComB6
when the capacity is 200 in the row B2. Then, we select
ComB6 when the capacity is 130 (200−CostcomB6−Pdiff =
200 − 65 − 5), and select ComA6 when the capacity is 60
(130−CostcomB6 −Pdiff = 130− 65− 5). Thus, the result
of this example consists of ComB4, ComB4, and ComA6.
The DL of this selection is 4640 ppm and the TC is 199.36
as shown in Equation (17).

Pdiff = Fine× {(1− wnew)− (1− wold)}
= Fine× (wold − wnew) (16)

TC = ComA6 + ComB6 + ComB6 + P

= (8 + 15) + (15 + 50) + (15 + 50) + P

= 153 + 46.36

= 199.36

P = 10, 000× (1− wComA6 × wComB6 × wComB6)

= 10, 000× 0.004636

= 46.36 (17)

4. Experimental Results
The experiment was implemented on an INTEL R©Xeon R©

3.0GHz GUN/Linux workstation with 32GBytes memory. The
experimental results are shown in Table III. In Table III, we
show the CPU time with respect to the problem size.

TABLE III
THE CPU TIME COMPARISON BETWEEN BASIC APPROACH AND OUR

APPROACH.

Time(Sec.)
Our Approach

|V ar.| Basic The First Model The Second Model
10 ∼ 0.00 ∼ 0.00 ∼ 0.00
20 ∼ 0.00 ∼ 0.00 ∼ 0.00
50 0.03 ∼ 0.00 ∼ 0.00
100 2767.52 ∼ 0.00 ∼ 0.00
300 - 0.02 0.02
500 - 0.03 0.03
700 - 0.05 0.04
800 - 2.87 0.06
900 - 3.26 0.08

1,000 - 366.78 0.08

In this experiment, we compare the CPU time of our
approach with the basic approach. The basic approach is an
exhaustive one that tries all combinations in the benchmark
and record the solution for comparison. Furthermore, the basic
approach simultaneously calculates the results for these two
models. Ten benchmarks ranged from 10 to 1,000 variables
are used in this experiment. In the benchmark with 100 vari-
ables, our approach is more efficient than the basic approach.
Furthermore, the basic approach cannot solve the case with
300 variables. For the 1,000 variables problem, however, our
approach still can solve it.

5. Conclusion
In this work, we have proposed two models with different

requirements for SiP integrators. The first model is the cost
minimization with the quality constraint, and the other one is
the quality enhancement with the cost constraint. In addition
to the models, the corresponding algorithms for solving the
problems are also proposed. The proposed algorithms are
more efficient than the basic approach according to the
experimental results. These models can be used to find the
optimal combination for an SiP design.

REFERENCES

[1] M. Abadir, “Economics Modeling of Multichip Modules Testing Strate-
gies,” IEEE Transactions on Components, Packaging, and Manufactur-
ing Technology, vol. 21, no. 4, pp. 360-370, Nov, 1998.

[2] D. Appello, P. Bernardi, M. Grosso, and M. S. Reorda, “System-in-
Package Testing: Problems and Solutions,” IEEE Design and Test of
Computers, vol. 23, no. 3, pp. 203-211, May/Jun, 2006.

Fig. 6. The picking up process of the example in the second model (a) Pick up the element for component A (b) Pick up the element for component B1
(c) Pick up the element for component B2 (d) Trace the table back to find the result of this example.

[3] F. Corsi, S. Martino, and T. W. Williams, “Defect Level As a Function
of Fault Coverage and Yield,” in Proc. European Test Conference,
pp. 507-508, 1993.

[4] V. K. Kim, T. Chen, and M. Tegethoff, “ASIC Manufacturing Test
Cost Prediction at Early Design Stage,” in Proc. International Test
Conference, pp. 356-361, 1997.

[5] S.-K. Lu, T.-Y. Lee, and C.-W. Wu, “A Profit Evaluation System
(PES) for Logic Cores at Early Design Stage,” in Proc. International
Conference on Electronics, Circuits and Systems, vol. 3, pp. 1491-1494,
2001.

[6] B. McCaffrey, “Exploring the Challenges in Creating a High-quality
Mainstream Design Solution for System-in-Package (SiP) Design,” in
Proc. International Symposium Quality of Electronic Design, pp. 556-
561, 2005.

[7] A. A. Setty, H. L. Martin, “BIST and Interconnect Testing with
Boundary Scan,” in Proc. Southeastcon, vol. 1, pp. 12-15, Apr, 1991.

[8] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “SIS: A System for sequential circuit synthesis, Technical
Report UCB/ERL M92/41, Electronics Research Lab, Univ. of Califor-
nia, Berkeley, CA 94720, 1992.

[9] K. L. Tai, ”System-In-Package (SiP): Challenges and Opportunities,” in
Proc. Asia and South Pacific Design Automation Conference, pp. 191-
196, 2000.

[10] E. J. Vardaman, “Is a Known Good Die Hard to Find?,” in Proc. IEEE
Multi-Chip Module Conference, pp. 8, 1996.

