
Node Addition and Removal in the Presence of Don’t Cares ∗

Yung-Chih Chen and Chun-Yao Wang
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

{ycchen, wcyao}@cs.nthu.edu.tw

ABSTRACT
This paper presents a logic restructuring technique named node
addition and removal (NAR). It works by adding a node into
a circuit to replace an existing node and then removing the
replaced node. Previous node-merging techniques focus on re-
placing one node with an existing node in a circuit, but fail
to replace a node that has no substitute node. To enhance
the node-merging techniques on logic restructuring and opti-
mization, we propose an NAR approach in this work. We first
present two sufficient conditions that state the requirements of
added nodes for safely replacing a target node. Then, an NAR
approach is proposed to fast detect the added nodes by per-
forming logic implications based on these conditions. We also
apply the NAR approach to circuit minimization together with
two techniques: redundancy removal and mandatory assign-
ment reuse. We conduct experiments on a set of IWLS 2005
benchmarks. The experimental results show that our approach
can enhance the state-of-the-art ATPG-based node-merging ap-
proach. Additionally, our approach has a competitive capability
of circuit minimization with 44 times speedup compared to a
SAT-based node-merging approach.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—Optimization

General Terms
Algorithms

Keywords
Logic implication, node merging, node addition and removal,
observability don’t care

1. INTRODUCTION
Recently, node-merging techniques have been proposed and

enhanced in [4] [5] [7] [12] [14]. They work by merging two nodes
– replacing one node with another node – in a logic circuit
with don’t cares. Two nodes can be correctly merged when
they are functionally equivalent or their functional differences
are never observed at any primary output (PO). Because the
replaced node can be removed and the replacement may result
in additional redundancies, the resultant circuit is minimized.

The effectiveness and efficiency of node-merging techniques
for circuit minimization have been shown in the previous works.
The SAT-based approaches [12] [14] have a great capability of
circuit minimization. As reported in [14] and [12], an average
of 15.6% nodes can be merged in a benchmark circuit and an
average of additional 4.9% circuit size reduction can be achieved
for a benchmark circuit after optimized by a synthesis engine [3]
[10], respectively. However, the efficiency is a major concern for

∗This work was supported in part by the National Science
Council of R.O.C. under Grants NSC 98-2220-E-007-015 and
NSC 98-2220-E-007-023.

these SAT-based approaches due to the expense of observability
don’t care computation and SAT solving calls. On the other
hand, the ATPG-based approach [5] is much faster, although its
capability is not as good as that of the SAT-based approaches
for circuit minimization. The experimental results in [5] show
that a large benchmark circuit having more than 70, 000 nodes
can be optimized in approximately one minute.

However, these previous works only focus on searching and
merging two nodes that originally exist in a circuit. Given
a target node in a circuit that possesses no substitute node,
the node-merging approaches fail to replace the target node.
In fact, we observe that a target node without any substitute
node could be replaced with a newly-added node. That is, we
could add a node into the circuit to replace the target node.
For the objective of circuit optimization, once more than one
node is removed due to the addition of a new node, the circuit
size is reduced as well. We name this technique Node Addition
and Removal (NAR).

NAR can be considered an improved verison of node-merging
technique, which also merges two nodes with don’t cares. The
difference between NAR and node merging is that NAR uses
an added node rather than an existing node to replace the tar-
get node. Because more nodes can be replaced by an added
node, NAR can enhance the results of node merging in logic
optimization.

In this work, we propose an efficient approach for NAR using
logic implications. The approach works based on two sufficient
conditions that state the requirements of added nodes for cor-
rectly replacing a target node. If a given target node possesses
no substitute node from the circuit, the approach further iden-
tifies an added node to replace it. We also apply the NAR ap-
proach to circuit size reduction. Two techniques, redundancy
removal and mandatory assignment reuse, are engaged to en-
hance the performance. Redundancy removal detects redun-
dant nodes without extra effort when the approach identifies
substitute nodes. Mandatory assignment reuse is a method for
reusing the logic implication results such that the number of
required logic implications can be saved.

We conduct experiments on a set of IWLS 2005 benchmarks
[15] and compare to the node-merging approaches in [5] and
[12]. For replaceable node identification, as compared to the
ATPG-based approach [5], an average of 28% more nodes can
be identified replaceable in a benchmark circuit by using NAR.
For circuit size reduction, the proposed approach has a better
capability with a ratio of 1.277 compared to the ATPG-based
approach [5], with an overall CPU time overhead of only 4
minutes. Additionally, our optimization capability is competi-
tive with that of the SAT-based approach [12], which is highly
time-consuming.

The rest of this paper is organized as follows: Section 2 uses
an example to demonstrate the NAR technique and formulates
the problem considered in this paper. Section 3 reviews the
related concepts in VLSI testing and the ATPG-based node-
merging approach [5]. Section 4 presents the proposed algo-
rithm for NAR. The application of NAR for circuit size reduc-
tion is introduced in Section 5. Finally, the experimental results
and conclusion are presented in Sections 6 and 7.

2. AN EXAMPLE OF NAR
We use an example in Fig. 1 to demonstrate the difference

between node merging and NAR. For ease of discussion, the
circuits considered in this paper are presented as And-Inverter

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC'10, June 13-18, 2010, Anaheim, California, USA
Copyright 2010 ACM 978-1-4503-0002-5 /10/06...$10.00

505

30.2

n1

n2b

n1

n4d

O1

n7

n3

n2

O2
O3

O4

O3

O4

O3c

n8
n8

d

c

b

n4

n3
n3

n4d

n2

a n1n5 n7

n6

n3

n4

n6

a

b

c

d

n7

O1

b
O2 O2

O3

O4

(a) (b)

n1 n7a

n6

c

(c)

a O1O1

O2

O4

(d)

Figure 1: An example for demonstrating node merging
and NAR.

Graphs (AIGs) [8], which are an efficient and scalable repre-
sentation for Boolean networks. Circuits with complex gates
can be handled by transforming them into AIGs first. In the
circuit of Fig. 1(a), a, b, c, and d are primary inputs (PIs). O1

∼ O4 are POs. n1 ∼ n8 are 2-input and gates. Their connec-
tivities are presented by directed edges. A dot marked on an
edge indicates that an inverter (inv) is in between two nodes.

First, let us review the node-merging technique. In Fig. 1(a),
n5 and n6 have different functionalities. However, their values
only differ when n2 = 1 and a = c. Because a = c further
implies n1 = 0, which is an input-controlling value of n7, the
value of n5 is prevented from being observed at O1. This situ-
ation makes the different values of n5 with respect to n6 never
observed. Thus, n5 can be replaced with n6 without altering
the overall functionality of the circuit. The resultant circuit is
shown in Fig. 1(b). Here, n5 is considered a target node and
n6 is a substitute node of n5.

Next, let us consider n6 in Fig. 1(b). Suppose n6 is a target
node to be replaced. Because n6 does not have any substitute
node, the node-merging technique fails to replace it. However,
we can add a new node into the circuit to replace it. When we
add n8 into the circuit as shown in Fig. 1(c), the functionality
of the circuit is unchanged, because n8 does not drive any node.
Additionally, n8 can correctly replace n6. The resultant circuit
is shown as Fig. 1(d), where n8 drives n7 and O2. This example
demonstrates that a node which has no substitute node still can
be replaced by a newly-added node and the resultant circuit
might be minimized. Thus, the NAR technique can replace a
node which cannot be replaced by the node-merging technique,
and can optimize a circuit as well.

The problem formulation of this work is as follows: Given a
target node nt in a circuit, find a node na which can correctly
replace nt after it is added into the circuit. Here, we name na

an added substitute node to distinguish from a substitute node
because na is absent in the original circuit.

3. PRELIMINARIES

3.1 Background
This subsection reviews some terminologies used in logic syn-

thesis and related concepts used in VLSI testing.
An input of a gate g has an input-controlling value of g if this

value determines the output value of g regardless of the other
inputs. The inverse of the input-controlling value is called the
input-noncontrolling value. For example, the input-controlling
value of an and gate is 0 and its input-noncontrolling value is
1. A gate g is in the transitive fanout cone (TFO) of a gate gs

if there exists a path from gs to g.

The dominators [6] of a gate g are a set of gates G such that
all paths from g to any PO have to pass through all gates in
G. Consider the dominators of a gate g: the side inputs of a
dominator are its inputs that are not in the TFO of g.

In VLSI testing, a stuck-at fault is a fault model used to
represent a manufacturing defect within a circuit. The effect of
the fault is as if the faulty wire or gate were stuck at either 1
(stuck-at 1) or 0 (stuck-at 0). A stuck-at fault test is a process
to find a test which can generate the different output values in
the fault-free and faulty circuits. Given a stuck-at fault f , if
there exists such a test, f is said to be testable; otherwise, f is
untestable. To make a stuck-at fault on a wire or gate testable,
a test needs to activate and propagate the fault effect to a PO.
In a combinational circuit, an untestable stuck-at fault on a
wire or gate indicates that the wire or gate is redundant and
can be replaced with a constant value 0 or 1.

The mandatory assignments (MAs) are the unique value as-
signments to nodes necessary for a test to exist. Consider a
stuck-at fault on a gate g; the assignments obtained by setting
g to the fault-activating value and by setting the side inputs of
dominators of g to the fault-propagating values are MAs. These
assignments can be further propagated forward or backward to
infer additional MAs by performing logic implications. Com-
puting all MAs of a stuck-at fault requires an exponential time
complexity. To compute more MAs with reasonable CPU time
overhead, a recursive learning technique [9] with the recursive
depth 1 can be used to perform logic implications more com-
pletely. If the MAs of a stuck-at fault on a gate are inconsistent,
the fault is untestable, and therefore, the gate is redundant [13].

3.2 ATPG-based node merging
The work in [5] proposed a node-merging algorithm by using

logic implications. It models a node replacement as a misplaced-
wire error [1]. When the error is undetectable, the replacement
is safe and correct. Based on the observation, the work pro-
poses a sufficient condition, as presented in Condition 1, that
renders a misplaced-wire error undetectable.

Condition 1 [5]: Let f denote an error of replacing nt with
ns. If ns = 1 and ns = 0 are MAs for the stuck-at 0 and stuck-
at 1 fault tests on nt, respectively, f is undetectable.

The condition works because when it is held, no input pattern
that can detect the error of replacing nt with ns exists. As a
result, nt can be correctly replaced with ns.

Based on Condition 1, the proposed algorithm in [5] requires
only two MA computations to identify the substitute nodes of
a target node nt: one is for computing the MAs of the stuck-at
0 fault on nt and the other one is for computing the MAs of
the stuck-at 1 fault on nt.

We use the above example in Fig. 1(a) to demonstrate the
algorithm. Suppose n5 is a target node. The MAs of the stuck-
at 0 fault on n5 are {n5 = 1, n1 = 1, n2 = 1, b = 1, d = 1,
a = 0, c = 1, n6 = 1, n3 = 1, n4 = 1, n7 = 1}. These values
can be computed by setting n5 = 1 to activate the fault effect,
setting n1 = 1 to propagate the fault effect, and by performing
logic implications to derive additional MAs. In addition, the
MAs of the stuck-at 1 fault on n5 are {n5 = 0, n1 = 1, a = 0,
c = 1, n2 = 0, n6 = 0, n7 = 0}. As a result, both n2

and n6 are the substitute nodes of n5 due to the satisfaction
of Condition 1. Note that although n7 also satisfies Condition
1, it is excluded from being a substitute node of n5. This is
because n7 is in the TFO of n5, and replacing n5 with n7 will
result in a cyclic combinational circuit.

3.3 Notation
For convenience and concision, we use the notations in Table

1 to represent certain objects throughout the paper.

4. NODE ADDITION AND REMOVAL
In this section, we first discuss the relationship between the

node-merging and the NAR techniques. Based on this relation-
ship, we derive two sufficient conditions for correctly replacing
one node with an added node. Finally, an NAR algorithm is
presented.

506

30.2

Table 1: Notations used.
Notation Description
nt a target node
ns a substitute node of nt

na an added substitute node of nt

nf1 one fanin node of na

nf2 the other fanin node of na different from nf1

T
the set of input patterns
that can detect the stuck-at 1 fault on nt

Tnf1=0
the set of input patterns in T
that generate nf1 = 0

Tnf1=1
the set of input patterns in T
that generate nf1 = 1

imp(A)
the set of value assignments logically implied
from a set of value assignments A

MAs(n = sav)
the set of MAs for the stuck-at v (v is a
logical value 0 or 1) fault test on a node n

4.1 Sufficient conditions for NAR
As mentioned in Section 2, the node-merging technique re-

places a target node with an existing node while the NAR tech-
nique uses an added one. These two techniques have one thing
in common – performing node replacement. Thus, when a node
is added into the circuit, we can exploit Condition 1 to check if
it is an added substitute node. For example, in Fig. 1(c), n6 is
a target node and n8 is a node added into the circuit. We find
that n8 = 1 and n8 = 0 are MAs for the stuck-at 0 and stuck-at
1 fault tests on n6, respectively. Thus, we can conclude that n8

is an added substitute node for n6.
Although we can use Condition 1 to check if an added node is

a substitute node, it is not efficient to add all possible nodes into
the circuit first and then identify which are substitute nodes for
the target node. Thus, we transform the problem of finding an
added substitute node into finding its two fanin nodes. It is
more appropriate to find two nodes that are originally in the
circuit.

Our objective now becomes finding two nodes such that the
added node driven by them will satisfy Condition 1. For con-
venience, let nt denote a target node and na denote an added
node driven by two nodes nf1 and nf2. For ease of discussion,
we first suppose that na is directly driven by nf1 and nf2 with-
out any inv in between them. That is, the functionality of na

is nf1∧nf2. Next, we present two sufficient conditions for such
na. Finally, we also extend the sufficient conditions for all eight
different types of added nodes. The first condition is presented
in Condition 2.

Condition 2: If both nf1 = 1 and nf2 = 1 are MAs for the
stuck-at 0 fault test on nt, na = 1 is an MA for the same test
as well.

Because na equals nf1 ∧ nf2, {nf1 = 1, nf2 = 1} implies
na = 1. Thus, if both nf1 = 1 and nf2 = 1 are MAs, na = 1
must be an MA as well by logic implication.

In fact, when Condition 2 is held, na satisfies one half of Con-
dition 1 that na = 1 is an MA for the stuck-at 0 fault test on nt.
If we can further show that na = 0 is an MA for the stuck-at 1
fault test on nt, we can conclude that na is an added substitute
node of nt. Thus, the next sufficient condition as presented in
Condition 3 is proposed to make na satisfy the other half of
Condition 1. Here, let imp(A) denote the set of value assign-
ments logically implied from a set of value assignments A, and
MAs(nt = sav) denote the set of MAs for the stuck-at v fault
test on nt, where v is a logical value 0 or 1.

Condition 3: If nf2 = 0 is a value assignment in imp((nf1 =
1)∪MAs(nt = sa1)), na = 0 is an MA for the stuck-at 1 fault
test on nt.

To determine whether na = 0 is an MA for the stuck-at 1
fault test on nt, we can check if all input patterns that can
detect the fault generate na = 0. If so, na = 0 is an MA.
Let T denote the set of input patterns that can detect the
stuck-at 1 fault on nt. According to the value of nf1, we can
classify T into two subsets: The first one, Tnf1=0, and the
second one, Tnf1=1, which consist of the patterns generating
nf1 = 0 and nf1 = 1, respectively. Because nf1 = 0 implies

na
nf2

nf1 nf1

Type 1 Type 2

1 2{ 0, 1} (0)f f tn n MAs n sa= = =

2 10 ((0) (1))f f tn imp n MAs n sa= = =

na
nf2

1 2{ 1, 1} (0)f f tn n MAs n sa= = =

2 10 ((1) (1))f f tn imp n MAs n sa= = =

2 11 ((1) (1)f f tn imp n MAs n sa= = =
Type 3 Type 4

1 2{ 1, 0} (0)f f tn n MAs n sa= = =
)

na
nf2

nf1 nf1

na
nf2

1 2{ 0, 0} (f f tn n MAs n sa= = = 0)

2 11 ((0) (1))f f tn imp n MAs n sa= = =

2 10 ((0) (0))f f tn imp n MAs n sa= = =

Type 5 Type 6

1 2{ 0, 1} (1)f f tn n MAs n sa= = =

na
nf2

nf1 nf1

na
nf2

1 2{ 1, 1} (1)f f tn n MAs n sa= = =

2 10 ((1) (0))f f tn imp n MAs n sa= = =

2 11 ((1) (0)f f tn imp n MAs n sa= = =
Type 7

1 2{ 1, 0} (1)f f tn n MAs n sa= = =
)

Type 8

na
nf2

nf1 nf1

na
nf2

1 2{ 0, 0} (f f tn n MAs n s= = = 1)a

2 11 ((0) (0))f f tn imp n MAs n sa= = =

Figure 2: Eight different types of added substitute
nodes and their corresponding sufficient conditions.

na = 0, all patterns in Tnf1=0 generate na = 0. As for Tnf1=1,
imp((nf1 = 1)∪MAs(nt = sa1)) is also the set of unique value
assignments that all patterns in Tnf1=1 generate. If nf2 = 0
is a value assignment in imp((nf1 = 1) ∪ MAs(nt = sa1)),
all patterns in Tnf1=1 must generate nf2 = 0, implying that
na = 0 as well. As a result, when Condition 3 is held, each
pattern in T generates na = 0. Hence, na = 0 is an MA for the
stuck-at 1 fault test on nt.

In summary, when Conditions 2 and 3 are held simultane-
ously, na = 1 and na = 0 are MAs for the stuck-at 0 and
stuck-at 1 fault tests on nt, respectively, and na is an added
substitute node of nt.

Note that none of nf1 and nf2 represents a particular fanin
node of na. When one fanin node of na is determined as nf1, the
other fanin node is nf2. Thus, although nf1 = 0 ∈ imp((nf2 =
1)∪MAs(nt = sa1)) is also a sufficient condition for na = 0 to
be an MA for the stuck-at 1 fault test on nt, we do not state it
in Condition 3. We can ignore it by always selecting the node
having a value 1 as nf1.

4.2 Types of added substitute nodes
In the last subsection, we suppose that an added node is di-

rectly driven by two nodes without any inv in between them,
and then derive Conditions 2 and 3. In fact, these conditions
can be modified by reversing the values of nf1, nf2, or the
stuck-at fault for different types of added substitute nodes. We
present eight types of added substitute nodes and their corre-
sponding sufficient conditions in Fig. 2.

For example, Type 1 is the original added node we consider
before. By reversing the value of nf1 in Conditions 2 and 3, we
have Type 2, na equals ¬nf1 ∧ nf2. Similarly, if we reverse the
value of nf2, we have Type 3, na equals nf1 ∧ ¬nf2. For Type
4, na equals ¬nf1 ∧¬nf2, we can reverse the values of nf1 and
nf2 simultaneously. For Types 5 ∼ 8, they are corresponding
to Types 1 ∼ 4, respectively. We can reverse the stuck-at fault
values in Types 1 ∼ 4 to obtain Types 5 ∼ 8.

507

30.2

Find Added Substitute Node(Node nt)
1. Compute MAs(nt = sa0).
2. Compute MAs(nt = sa1).
3. For each MA n = v in MAs(nt = sa0)

(a) Let n be nf1.
(b) Compute imp((nf1 = v) ∪ MAs(nt = sa1)).
(c) The nf2 set ←− Nodes that have different values in

MAs(nt = sa0) and imp((nf1 = v) ∪ MAs(nt = sa1)).

4. The na set of Types 1 ∼ 4 ←− Nodes driven by nf1 and nf2.
5. For each MA n = v in MAs(nt = sa1)

(a) Let n be nf1.
(b) Compute imp((nf1 = v) ∪ MAs(nt = sa0)).
(c) The nf2 set ←− Nodes that have different values in.

MAs(nt = sa1) and imp((nf1 = v) ∪ MAs(nt = sa0)).

6. The na set of Types 5 ∼ 8 ←− Nodes driven by nf1 and nf2.

Figure 3: The algorithm for finding added substitute
nodes.

In this work, the proposed algorithm will consider all these
possible added substitute nodes when performing NAR.

4.3 NAR algorithm
Given a target node nt, we can exploit Conditions 2 and 3

to find its added substitute nodes. Based on Condition 2, we
always select an MA in MAs(nt = sav) as a candidate nf1,
and then use the nf1 and Condition 3 to find nf2. The pro-
posed algorithm is shown in Fig. 3. In the first two steps,
the algorithm computes MAs(nt = sa0) and MAs(nt = sa1),
respectively. In step 3, the algorithm starts to find the added
substitute nodes of Types 1 ∼ 4. It iteratively selects an MA
n = v from MAs(nt = sa0) and sets nf1 to n. Then, it com-
putes imp((nf1 = v) ∪ MAs(nt = sa1)) by performing logic
implications of nf1 = v associated with MAs(nt = sa1). Fi-
nally, the nodes that have different values in MAs(nt = sa0)
and imp((nf1 = v) ∪ MAs(nt = sa1)) can be nf2. Thus, in
step 4, the nodes that driven by nf1 and nf2 are the added
substitute nodes of Types 1 ∼ 4. In steps 5 and 6, the algo-
rithm uses a similar method to find the added substitute nodes
of Types 5 ∼ 8.

Note that the algorithm in Fig. 3 is designed to find all
added substitute nodes. If the objective is to identify one added
substitute node or check if a target node is replaceable, we
can terminate the algorithm once it finds an nf1 and nf2 pair.
Additionally, we will ensure that an added substitute node is
not in the TFO of the target node and has at least one different
fanin node from that of the target node.

We use the example in Fig. 1 to demonstrate the algorithm.
Let us consider finding an added substitute node of n6 in the
circuit of Fig. 1(b). First, we compute the MAs for the stuck-
at 0 fault on n6. To activate the fault effect, n6 is set to 1.
We then perform logic implications to derive additional MAs.
They are n2 = 1, c = 1, b = 1, d = 1, n3 = 1, and n4 = 1.
Thus, MAs(nt = sa0) includes {n6 = 1, n2 = 1, c = 1, b = 1,
d = 1, n3 = 1, n4 = 1}. Second, we use the same method
to compute the MAs for the stuck-at 1 fault on n6. They are
{n6 = 0, n7 = 0}. Third, suppose we select n3 as nf1 and
compute imp((n3 = 1) ∪ MAs(n6 = sa1)). The implication
results have {n6 = 0, n7 = 0, n3 = 1, b = 1, c = 1, n2 = 0,
d = 0, n4 = 0}. Finally, n2, d, and n4 all can be nf2 due to
the satisfaction of Conditions 2 and 3. If we select n4 as nf2,
n8 driven by n3 and n4 is an added substitute node of n6 as
shown in Fig. 1(c).

5. CIRCUIT SIZE REDUCTION
In this section, we present an NAR-based algorithm for cir-

cuit size reduction. The node-merging technique [5] is also in-
cluded in the algorithm to quickly replace a node having a sub-
stitute node. In addition, two techniques, redundancy removal
and MA reuse, are engaged to enhance the performance of the
algorithm.

5.1 Node merging
Let us review the proposed NAR algorithm as shown in Fig.

3. The algorithm computes MAs(nt = sa0) and MAs(nt =
sa1) in the first two steps. As mentioned in Section 3.2, the

nd

n n

nd

(0) (0)dMAs n sa MAs n sa= = = 0)(1) (dMAs n sa MAs n sa= = =

(a) (b)
Figure 4: The rules for MA reuse.

ATPG-based node-merging approach [5] only requires MAs(nt =
sa0) and MAs(nt = sa1) to find substitute nodes. Thus, we
can combine the node-merging approach with the NAR algo-
rithm for circuit size reduction. Given a target node, after
computing MAs(nt = sa0) and MAs(nt = sa1), we use the
node-merging approach to find its substitute nodes for replace-
ment. If there is no substitute node, we continue to find its
added substitute nodes. This approach saves the effort of find-
ing an added substitute node when there is a substitute node.

5.2 Redundancy removal
As mentioned in Section 3.1, MAs are the unique value as-

signments to nodes necessary for a test to exist. Given a stuck-
at fault on a node, when the MAs are inconsistent, the fault
is untestable and the node is redundant. The NAR algorithm
computes MAs(nt = sa0) and MAs(nt = sa1), and hence can
simultaneously find untestable faults. Once we find the assign-
ments in MAs(nt = sa0) are inconsistent, we replace nt with
a constant value 0 and use 0 to drive all the wires originally
driven by nt. Similarly, if the assignments in MAs(nt = sa1)
are inconsistent, we replace nt with a constant value 1. Thus,
for circuit size reduction, we can identify these redundancies
and remove them without extra effort.

5.3 MA reuse
MA reuse is a method to reuse the computed MAs such that

the number of performed logic implications can be reduced and
the optimization process is accelerated. The idea comes from
the concept of fault collapsing [2] that two equivalent stuck-at
faults have the same test set. Based on this concept, when
two stuck-at faults are equivalent, their corresponding MAs are
identical as well. Thus, we can reuse the computed MAs when
optimizing a circuit. Here, we simply derive two rules for MA
reuse as shown in Fig. 4.

Suppose n drives only nd and MAs(nd = sa0) has been com-
puted. Let us consider computing the MAs for the stuck-at
fault tests on a node n with MA reuse. As shown in Fig. 4(a),
if there exists no inv between n and nd, we can directly set
MAs(n = sa0) to MAs(nd = sa0) rather than re-compute the
same MA set. Otherwise, if there exists an inv between n and
nd as shown in Fig. 4(b), we can directly set MAs(n = sa1) to
MAs(nd = sa0).

In summary, for each node nd, only MAs(nd = sa0) can be
reused. Additionally, it is reused when nd has a fanin node n
which drives only nd.

5.4 Overall algorithm
During the optimization process, each node in a circuit is

considered a target node, one at a time. We first find the target
node’s substitute nodes for replacement using the node-merging
technique [5]. However, if there is no substitute node, we then
consider performing NAR. In order to ensure that each node
replacement can reduce the circuit size, we only perform NAR
for the target nodes that have a fanin node driving only one
node. In this situation, when the target node is replaced, the
fanin node can be removed as well. Thus, adding one node
removes at least two nodes.

As for the optimization order, although the orders of select-
ing a target node, a substitute node, and an added substitute
node can significantly affect the optimization results, it is dif-
ficult to evaluate the most effective optimization order. Ad-
ditionally, this evaluation process might be time-consuming or
fruitless. Thus, in this work, we follow the optimization order of
selecting a target node and a substitute node used by the node-
merging algorithm in [5] for fair comparison. A target node is
selected from POs to PIs in the depth-first search (DFS) order

508

30.2

Circuit Size Reduction(Circuit C)
For each node nt in C in the DFS order from POs to PIs

1. Compute MAs(nt = sa0) with MA reuse.
(a) If the MAs in MAs(nt = sa0) are inconsistent, replace nt

with 0, and then continue.
(b) If nt has a fanin node which drives only nt, store

MAs(nt = sa0) for further reuse.

2. Compute MAs(nt = sa1) with MA reuse.
(a) If the MAs in MAs(nt = sa1) are inconsistent, replace nt

with 1, and then continue.
3. SubstituteNodes ←− nodes having the different values in

MAs(nt = sa0) and MAs(nt = sa1).
4. If SubstituteNodes �= {}, replace nt with a node that is in

SubstituteNodes and closest to PIs, and then continue.
5. If nt has no fanin node which drives only nt, continue.
6. For each MA n = v in MAs(nt = sa0) in a topological order

(a) Let n be nf1.
(b) Compute imp((nf1 = v) ∪ MAs(nt = sa1)).
(c) The nf2 set ←− Nodes that have different values in

MAs(nt = sa0) and imp((nf1 = v) ∪ MAs(nt = sa1)).
(d) If the set of nf2 �= {}, replace nt with a node driven by

nf1 and the nf2 that is closest to PIs, and then break.

7. If nt is replaced, continue.
8. For each MA n = v in MAs(nt = sa1) in a topological order

(a) Let n be nf1.
(b) Compute imp((nf1 = v) ∪ MAs(nt = sa0)).
(c) The nf2 set ←− Nodes that have different values in

MAs(nt = sa1) and imp((nf1 = v) ∪ MAs(nt = sa0)).
(d) If the set of nf2 �= {}, replace nt with a node driven by

nf1 and the nf2 that is closest to PIs, and then break.

Figure 5: The overall algorithm for circuit size reduc-
tion.

and is replaced with a substitute node that is closest to PIs.
Additionally, we replace a target node once we find an added
substitute node due to the inefficiency of finding all added sub-
stitute nodes. When we search an added substitute node, each
MA node is selected as nf1 in a topological order to identify
the nf2 that is closest to PIs.

Fig. 5 shows the overall algorithm for circuit size reduction.
Given a circuit C, the algorithm iteratively selects a target
node nt in the DFS order from POs to PIs and replaces it if
applicable. At each iteration, in step 1, the algorithm computes
MAs(nt = sa0). If the MAs are inconsistent, it replaces nt with
0 and continues to consider the next target node. Otherwise,
if nt has a fanin node that drives only nt, the algorithm stores
the computed MAs(nt = sa0) for further reuse. Next, in step
2, the algorithm computes MAs(nt = sa1). Similarly, if the
MAs in MAs(nt = sa1) are inconsistent, it replaces nt with 1
and continues to consider the next target node. Otherwise, the
algorithm starts to find substitute nodes.

In step 3, the nodes that have the different values in MAs(nt =
sa0) and MAs(nt = sa1) are the substitute nodes of nt. The
algorithm selects one substitute node which is closest to PIs
to replace nt and continues to consider the next target node.
However, if nt has no substitute node, the algorithm starts to
perform NAR when nt has one fanin node which drives only
nt. From steps 6 ∼ 8, the algorithm finds an added substitute
node to replace nt by using the method as presented in Fig. 3.

6. EXPERIMENTAL RESULTS
We implemented our algorithm in C language within an ABC

[3] environment. For comparison, we also reimplemented the
node-merging algorithm in [5]. The experiments were con-
ducted on a 3.0 GHz Linux platform (CentOS 4.6). The bench-
marks are from the IWLS 2005 suite [15]. Each benchmark is
initially transformed to an AIG format and we only consider its
combinational portion. Additionally, to balance quality and ef-
ficiency, the recursive learning technique [9] is applied with the
recursion depth 1 in the algorithms. The experimental setup
and parameters are the same with that in [5] for fair compari-
son.

The experimental results consist of two parts: The first one
shows the logic restructuring capability of our approach com-
bining the node-merging and the NAR techniques. The second
one shows the efficiency and effectiveness of our approach for
circuit size reduction.

Table 2: The experimental results of finding replace-
able nodes by using the node-merging approach [5] and
our approach.

benchmark N
[5] our approach impr.

Nrep % T (s) Nrep % T (s) %
C3540 1038 29 2.8 0.3 328 31.6 0.5 28.8
rot 1063 42 4.0 0.2 384 36.1 0.3 32.8
simple spi 1079 26 2.4 0.1 234 21.7 0.3 19.3
i2c 1306 80 6.1 0.2 528 40.4 0.4 34.3
pci spoci ctrl 1451 170 11.7 0.6 630 43.4 1.5 31.7
dalu 1740 217 12.5 1.0 885 50.9 3.1 38.4
C5315 1773 33 1.9 0.2 279 15.7 0.3 13.9
s9234 1958 175 8.9 0.4 827 42.2 0.7 33.3
C7552 2074 60 2.9 0.4 691 33.3 0.7 30.4
C6288 2337 2 0.1 0.5 932 39.9 1.4 39.8
i10 2673 626 23.4 1.4 1493 55.9 2.8 32.4
s13207 2719 159 5.9 0.6 891 32.8 1.7 26.9
systemcdes 3190 147 4.6 1.5 1355 42.5 2.6 37.9
i8 3310 1533 46.3 3.8 2522 76.2 7.2 29.9
spi 4053 65 1.6 3.4 950 23.4 6.6 21.8
des area 4857 80 1.7 5.6 891 18.3 13.3 16.7
alu4 5270 206 3.9 54.9 2852 54.1 83.6 50.2
s38417 9219 173 1.9 1.4 2319 25.2 2.4 23.3
tv80 9609 496 5.2 17.2 3415 35.5 41.6 30.4
b20 12219 849 7.0 17.3 4424 36.2 34.6 29.3
s38584 12400 549 4.4 17.0 4385 35.4 66.2 30.9
b21 12782 1094 8.6 19.3 5249 41.1 39.5 32.5
systemcaes 13054 202 1.6 17.7 2888 22.1 36.8 20.6
ac97 ctrl 14496 98 0.7 3.2 1428 9.9 7.5 9.2
mem ctrl 15641 1537 9.8 98.8 3443 22.0 178.0 12.2
usb funct 15894 370 2.3 6.3 3430 21.6 16.7 19.3
b22 18488 1047 5.7 25.0 6497 35.1 53.8 29.5
aes core 21513 452 2.1 15.2 8076 37.5 39.9 35.4
pci bridge32 24369 309 1.3 21.7 3700 15.2 47.2 13.9
wb conmax 48429 5608 11.6 28.2 13492 27.9 116.0 16.3
b17 52920 1565 3.0 174.5 17473 33.0 533.8 30.1
des perf 79288 2505 3.2 51.4 34376 43.6 82.7 40.2
average 6.5 34.4 27.9
total 589.3 1423.7
ratio 1 5.26

6.1 Replaceable node identification
In the experiments, we compare our approach with the node-

merging approach [5]. Each node in a benchmark is considered a
target node one at a time. We separately use the node-merging
approach and our approach to check how many nodes in a
benchmark are replaceable. A node is considered replaceable
if it has a substitute node or an added substitute node. Given
a target node, our approach first finds its substitute nodes. If
our approach fails to do so, it further finds the added substitute
nodes.

Table 2 summarizes the experimental results. Column 1 lists
the benchmarks. Column 2 lists the number of nodes in each
benchmark represented by AIG N . Columns 3 to 5 list the
results of the node-merging approach. They contain the number
of replaceable nodes Nrep, the percentage of Nrep with respect
to N , and the CPU time T , respectively. Columns 6 to 8 list
the corresponding results of our approach. The improvements
of our approach on the number of replaceable nodes are listed
in the last column.

For example, the benchmark C3540 has 1038 nodes. The
node-merging approach found substitute nodes for 29 out of
1038 nodes, or 2.8%, with a CPU time of 0.3 seconds. Our
approach found that 328 nodes, or 31.6%, have substitute nodes
or added substitute nodes with a CPU time of 0.5 seconds.
Thus, our approach can find 28.8% more replaceable nodes.

According to Table 2, the node-merging approach can find
substitute nodes for an average of 6.5% of nodes in a bench-
mark. The overall CPU time for all benchmarks is 589.3 sec-
onds. As for our approach, it can find substitute nodes or
added substitute nodes for an average of 34.4% of nodes in a
benchmark. The overall CPU time is 1423.7 seconds.

As compared with the node-merging approach, our approach
can find more replaceable nodes with a reasonable CPU time
overhead. The average number of replaceable nodes is 27.9%
more with a ratio 5.26, and the CPU time overhead is only 834.4
seconds for all benchmarks. Because our approach identifies
much more replaceable nodes, it has a better logic restructuring
capability than that of the node-merging approach.

509

30.2

Table 3: The experimental results of circuit size reduc-
tion by using the approaches in [12] and [5], and our
approach.

benchmark N
[12] [5] our approach

% T (s) Nr % T (s) Nr % T (s)
pci spoci ctrl 878 9.2 6 782 10.9 0.2 757 13.8 0.4
i2c 941 3.2 3 923 1.9 0.1 894 5.0 0.2
dalu 1057 12.0 10 985 6.8 0.3 979 7.4 0.5
C5315 1310 0.7 2 1304 0.5 0.1 1297 1.0 0.1
s9234 1353 1.2 8 1331 1.6 0.2 1323 2.2 0.2
C7552 1410 3.4 8 1371 2.8 0.3 1356 3.8 0.3
i10 1852 1.3 12 1755 5.2 0.6 1742 5.9 1.0
s13207 2108 1.8 17 2063 2.1 0.5 2043 3.1 0.8
alu4 2471 22.9 64 1941 21.5 5.3 1878 24.0 9.9
systemcdes 2641 4.7 9 2600 1.6 0.9 2580 2.3 1.2
spi 3429 1.3 84 3411 0.5 2.7 3383 1.3 5.6
tv80 7233 7.1 1445 6960 3.8 10.6 6813 5.8 20.3
s38417 8185 1.0 275 8136 0.6 1.2 8105 1.0 1.5
mem ctrl 8815 18.0 738 7257 17.7 6.8 7287 17.3 13.8
s38584 9990 0.8 223 9846 1.4 11.4 9836 1.5 15.1
ac97 ctrl 10395 2.0 188 10379 0.2 2.0 10364 0.3 3.1
systemcaes 10585 3.8 360 10521 0.6 13.1 10386 1.9 30.7
usb funct 13320 1.4 681 13026 2.2 5.9 12868 3.4 11.4
pci bridge32 17814 0.1 1134 17729 0.5 12.0 17599 1.2 19.7
aes core 20509 8.6 1620 20371 0.7 13.2 20195 1.5 22.7
b17 34523 1.6 5000 33979 1.5 72.4 33204 3.8 205.5
wb conmax 41070 6.2 5000 39266 4.4 31.9 38880 5.3 48.4
des perf 71327 3.7 5000 70081 1.8 62.6 69421 2.7 84.7
average 5.0 3.9 5.0
total 21887 254.3 497.1
ratio 1.27 44.03 1 0.51 1.27 1

6.2 Circuit size reduction
In the experiments, we compare our approach with the ATPG-

based node-merging approach [5] as well as the SAT-based
node-merging approach [12] for circuit size reduction. To have
a fair comparison with the SAT-based node-merging approach,
which focuses on post-synthesis optimizations, we initially op-
timize each benchmark by using the resyn2 script in the ABC
package as performed by [12], which performs local circuit rewrit-
ing optimization [10]. Note that although we have the same
initialization, the initial number of nodes in each benchmark
is still a little different from that reported in [12]. The reason
might be that the structures of the original benchmarks are not
completely identical.

After the initialization, we separately optimize each bench-
mark by using our approach as shown in Fig. 5 and the ATPG-
based node-merging approach. Finally, we also apply an equiv-
alence checking tool, cec [11], in the ABC package to verify the
correctness of the optimization.

Table 3 summarizes the experimental results. Columns 1 and
2 list the benchmarks and the number of nodes in each bench-
mark represented by AIG, respectively. Columns 3 to 4 list the
results of the SAT-based node-merging approach reported in
[12], the percentage of circuit size reduction in terms of node
count and the CPU time, respectively. The maximal CPU time
in Column 4 is 5000 seconds, which is the CPU time limit set
by the work. Columns 5 to 7 list the results of the ATPG-based
node-merging approach. They contain the number of nodes in
each resultant benchmark Nr, the percentage of circuit size re-
duction, and the CPU time, respectively. Columns 8 to 10 list
the corresponding results of our approach.

The experimental results in Table 3 show that our approach is
44.03 times faster than the SAT-based node-merging approach
and has a competitive capability of circuit size reduction. Ad-
ditionally, our capability is better than that of the ATPG-based
node-merging approach with a ratio of 1.27. The overall CPU
time overhead is only 242.8 seconds.

Moreover, because our approach is highly efficient, we can
combine it with the resyn2 script to achieve more circuit size
reduction. We optimized the benchmarks listed in Table 3 by
repeatedly using our approach followed by the resyn2 script 3
times – (ours+resyn2)x3. The average circuit size reduction is
8.6% and the CPU time is 1453.1 seconds. On the other hand, if
we optimize these benchmarks by repeatedly using the resyn2
script 6 times – resyn2x6, the average circuit size reduction
is only 4.3% with a CPU time of 157.1 seconds. In addition,
the average circuit size reduction is 5.9% and the CPU time
is 2691.2 seconds by repeatedly using our approach 6 times –

Table 4: The comparison of experimental results
among (ours+resyn2)x3, resyn2x6, and oursx6.

(ours+resyn2)x3 resyn2x6 oursx6
% T (s) % T (s) % T (s)

average 8.6 4.3 5.9
total 1453.1 157.1 2691.2

oursx6. The experimental results are summarized in Table 4.
According to the experimental results, we can conclude that the
efficiency and the logic restructuring capability of our approach
can make the integration of our approach and other optimiza-
tion techniques such as resyn2 possible.

7. CONCLUSION
In this paper, we propose an ATPG-based NAR approach

that can efficiently find an added node to replace a node in
a circuit. The NAR approach can replace a target node that
a node-merging approach cannot handle, thus enhancing the
capability of circuit restructuring. The proposed approach is
based on two sufficient conditions that state the requirements of
added nodes for correctly replacing a target node. It can quickly
identify added substitute nodes by using logic implications.

Moreover, we also propose an efficient algorithm for circuit
size reduction based on the NAR approach. The techniques of
redundancy removal and MA reuse are engaged to make the
algorithm more efficient and effective.

The experimental results show that the proposed algorithm
enhances an ATPG-based node-merging approach. Addition-
ally, it has a competitive capability of circuit size reduction
and expends much less CPU time compared to a SAT-based
node-merging approach. The experimental results also show
that the proposed algorithm can be integrated with an opti-
mization technique to obtain a better circuit size reduction.
All these results show the efficiency and effectiveness of the
proposed approach.

8. REFERENCES
[1] M. S. Abadir, J. Ferguson, and T. E. Kirkland, “Logic Design

Verification via Test Generation,” IEEE Trans. Computer-Aided
Design, vol. 7, pp. 138-148, Jan. 1988.

[2] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital
Systems Testing and Design for Testability, IEEE Press, 1990.

[3] Berkeley Logic Synthesis and Verification Group, “ABC: A System
for Sequential Synthesis and Verification,”
http://www.eecs.berkeley.edu/∼alanmi/abc/.

[4] M. Case, V. Kravets, A. Mishchenko, and R. Brayton, “Merging
Nodes Under Sequential Observability,” in Proc. Design
Automation Conf., 2008, pp. 540-545.

[5] Y. C. Chen and C. Y. Wang, “Fast Detection of Node Mergers
Using Logic Implications,” in Proc. Int. Conf. on
Computer-Aided Design, 2009, pp. 785-788.

[6] T. Kirkland and M. R. Mercer, “A Topological Search Algorithm
for ATPG,” in Proc. Design Automation Conf., 1987, pp. 502-508.

[7] A. Kuehlmann, “Dynamic Transition Relation Simplification for
Bounded Propery Checking,” in Proc. Int. Conf. on
Computer-Aided Design, 2004, pp. 50-57.

[8] A. Kuehlmann, V. Paruthi, F Krohm, and M. K. Ganai, “Robust
Boolean Reasoning for Equivalence Checking and Functional
Property Verification,” in IEEE Trans. Computer-Aided Design,
vol. 21, pp. 1377-1394, Dec. 2002.

[9] W. Kunz and D. K. Pradhan, “Recursive Learning: An New
Implication Technique for Efficient Solutions to CAD Problems -
Test, Verification, and Optimization,” in IEEE
Trans. Computer-Aided Design, vol. 13, pp. 1143-1158, Sep. 1994.

[10] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-Aware AIG
Rewriting: A Fresh Look at Combinational Logic Synthesis,” in
Proc. Design Automation Conf., 2006, pp. 532-536.

[11] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een,
“Improvements to Combinational Equivalence Checking, ” in
Proc. Int. Conf. on Computer-Aided Design, 2006, pp. 836-843.

[12] S. Plaza, K. H. Chang, I. Markov, and V. Bertacco, “Node Mergers
in the Presence of Don’t Cares,” in Proc. Asia South Pacific
Design Automation Conf., 2007, pp. 414-419.

[13] M. H. Schulz amd E. Auth, “Advanced Automatic Test Pattern
Generation and Redundancy Identification Techniques,” in
Proc. Int. Fault-Tolerant Computing Symp., 1988, pp. 30-35.

[14] Q. Zhu, N. Kitchen, A. Kuehlmann, and
A. Sangiovanni-Vincentelli, “SAT Sweeping with Local
Observability Don’t Cares,” in Proc. Design Automation Conf.,
2006, pp. 229-234.

[15] http://iwls.org/iwls2005/benchmarks.html.

510

30.2

