
In&Out: Restructuring for Threshold Logic Network
Optimization

Chia-Chun Lin, Chiao-Wei Huang, Chun-Yao Wang, Yung-Chih Chen§
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.

§Department of Computer Science and Engineering, Yuan Ze University, Chungli, Taiwan, R.O.C.
d105062801@cs.nthu.edu.tw, laoday025@gmail.com, wcyao@cs.nthu.edu.tw, ycchen.cse@saturn.yzu.edu.tw

Abstract
Threshold logic attracts a lot of attention recently due

to nanotechnology advances on its physical implementation.
Hence, many previous works have focused on the synthesis of
threshold logic networks from the Boolean functions. In this
paper, we propose a tool, In&Out, which optimizes a threshold
logic network from the physical implementation perspective.
In&Out consists of two techniques: Add-in and Remove-out.
The Add-in is to transform a threshold logic network into
an implementation friendly network while the Remove-out is
to remove redundant gates from the network. We conducted
the experiments on a set of IWLS 2005 benchmarks. The
experimental results show that the proposed tool can reduce
the implementation cost of threshold networks up to 10% for
the benchmarks.
Keywords
Threshold logic, optimization

1. Introduction
The research on threshold logic can be cast back to the

1960s. In 1961, an effective approach to enumerating the
threshold functions was proposed [31]. In 1962, an approx-
imation method was proposed to determine the input weights
and the threshold value of a threshold logic gate [32]. Later,
linear programming and tabulation methods were proposed
to determine whether a function can be represented in one
threshold logic gate or not [33]. Furthermore, for combina-
tional and sequential threshold logic circuits, many different
hardware implementations have been proposed in the early
days [18] [19]. However, due to the lack of effective hardware
realization, the research of design automation methods for
threshold logic was limited as compared with that of Boolean
logic. Recently, CMOS implementations of threshold logic
gates have been developed and motivate the re-investigation of
threshold logic. On the other hand, threshold logic gates are
the basic nodes of artificial neural network [2], which is the
underlying platform of machine learning [20]. Furthermore,
with the advances of nanotechnologies, many nanoscale de-
vices had been developed, such as resonant tunneling diode
[1] [26], single-electron transistor [6] [7] [9] [12] [22] [28],
and quantum cellular automata [27] [30], which also provide
promising and efficient implementations of threshold logic
gates. It had been shown that threshold logic circuits are more
area-efficient than the traditional Boolean CMOS design style
on arithmetic units, like adders and counters [5] [10] [34].

With the advances of implementing threshold logic devices,
the design automation research on threshold logic has a
rapid development. The multi-level synthesis methodologies of
threshold logic network have been proposed [8] [14] [15] [16]
[25] [34]. A static timing analysis for threshold logic circuits
has been proposed [29]. The verification and equivalence
checking on threshold logic networks have also been proposed

This work is supported in part by the Ministry of Science and Technology
of Taiwan under Grant MOST 103-2221-E-007-125-MY3, MOST 105-2221-
E-155-068, and NSC 102-2221-E-007-140-MY3.

[17] [35]. Moreover, the testing issue for the threshold logic
networks has been addressed [13].

A Linear Threshold Gate (LTG) is a logic gate with n
binary inputs, x1, x2, . . . , xn, and one binary output f . The
representation of an LTG is shown in Fig. 1. The elements
of an LTG are weights, w1, w2, . . . , wn, which are associated
with its inputs x1, x2, . . . , xn, and a threshold value T . These
weights can be positive or negative integers. The output f of
an LTG is defined as EQ(1).

f(x1, x2, . . . , xn) =

1 if

n∑
i=1

xiwi ≥ T

0 if
n∑

i=1

xiwi < T

(1)

The output f is 1 if the summation of each product xi×wi
is greater than or equal to the threshold value T . Otherwise, the
output f is 0. A threshold function is a Boolean function that
can be realized by a single LTG. Compactness is one of the
advantages of threshold logic. It means that we can represent
a Boolean function by using a fewer threshold logic gates. For
instance, f = x1 + (x2(x3 + x4 + x5x6)) in Fig. 2(a) can be
represented by a single LTG as shown in Fig. 2(b).

In the implementation of threshold logic circuits, there are
many factors that need to be considered, e.g., the number of
input variables of an LTG, the maximum number of fanout
of an LTG, and the ratio between the maximum weight and
the minimum weight of an LTG. Some factors are even the
restrictions for efficient hardware implementations of threshold
logic circuits [11]. Furthermore, the general objectives of
synthesizing a threshold logic network are the minimization of
summation of weights and threshold value, the minimization
of gate count, and the minimization of level. The first two
objectives are related to the area of circuits while the last one
is related to the delay of the circuits. However, these objectives
usually are the tradeoffs in the design consideration [4].

In the multi-level synthesis and optimization approaches
for threshold logic networks, the authors usually need cost
functions for guiding the optimization process and evaluating
the quality of the resultant threshold logic networks. Unfortu-
nately, some previous works [8] [25] only used the gate count
of a circuit as the cost function while others only used the
summation of weights and threshold values in the whole circuit
as the cost function [23]. In fact, considering only one of them
as the cost function is improper, this is because the resultant
threshold logic networks will be extremely biased. That is,
when using the gate count as the cost function, the network

Fig. 1. An LTG model.

978-1-5090-5404-6/17/$31.00 ©2017 IEEE 413 18th Int'l Symposium on Quality Electronic Design

Fig. 2. The Boolean function f = x1+(x2(x3+x4+x5x6)) representing in
(a) Boolean logic and its corresponding threshold logic. (b) A single threshold
logic gate.

with a fewer number of LTG is obtained, even the LTGs might
have more input variables, and extremely large weights and
threshold values. This situation will increase the difficulty or
even violate the restrictions in the physical implementation of
an LTG [3]. On the other hand, when using the summation
of weights and threshold values as the cost function, the
threshold logic network might be connected with more simpler
functions, like AND or OR gates. This situation will increase
the gate count and delay such that the compactness advantage
of threshold logic is diminished.

Thus, to balance the objectives, in this paper, we adopt a
hybrid cost function that integrates the both objectives together
– considering the gate count, weights, and threshold values
simultaneously in the proposed tool. For the objective of level
of threshold logic circuits, it will be implicitly considered in
this cost function. This is because using this cost function, the
level of the threshold logic circuits will be moderate.

The proposed In&Out consists of Add-in and Remove-
out techniques. The Add-in is to transform a threshold logic
network into an implementation friendly network. This is
because the final implementation will be linked to this netlist,
no further technology mapping process is necessary. In the
Add-in technique, we propose two theorems to efficiently
determine if the structure transformation, i.e., adding an LTG,
reduces the cost. In the Remove-out technique, we model the
redundant gate removal as a SAT problem and use SAT-solvers
to determine the redundancy in the network. Experimental
results on a set of IWLS 2005 benchmarks show that the
proposed tool can reduce the cost up to 10%.

The main contributions of this work are two-fold:
1. This is the first work that simultaneously considers the gate
counts, the weights, and the threshold values of threshold logic
network as the cost function during the synthesis. With this, the
resultant threshold logic network is implementation friendly
and practically cost-efficient.
2. We propose a synthesis tool, In&Out, that generates an
implementation friendly threshold network.

2. Preliminaries
In this section, we review the characteristics of threshold logic,
and introduce some background which will be used in our
approach.

2.1. LTG Basics Each LTG can be represented as a weight-
threshold vector 〈w1, w2, . . . , wn;T 〉. For example, we can use
〈7, 5, 2, 2, 1, 1; 7〉 to represent the LTG in Fig. 2(b). Addition-
ally, the functionality of a threshold logic gate can be analyzed
due to its output evaluation mechanism - the relationship
between the summation of input-weights and the threshold
value. According to this relationship, we can derive don’t care
bit in a positive-weight threshold logic gate. For example with
Fig. 2, the input pattern 100000 produces the output of 1.
Hence, we can derive that the patterns “1−−−−−” also have
the output of 1, where “−” denotes don’t care.

Fig. 3. An LTG and its CEVs.

Fig. 4. (a) AND gate LTG. (b) Hyperplane and half-space of an AND gate.

2.2. Positive-negative weight transformation
According to the definition of an LTG, we know that the
weights can be positive or negative numbers. However, the
negative weights increase the difficulty for analyzing the
threshold logic network. Therefore, we transform the negative
weights and threshold values in the LTGs by applying the
positive-negative weight transformation method [24].
This transformation method is as follows [24]. First, the
negative weight is negated to the positive one and the inverter
is passed to its corresponding input. Then, the threshold value
of the LTG is modified by adding the absolute value of the
negative weight. This transformation is repeated until all the
weights become positive.
Since the transformation method is reversible, we will revert
the transformation after synthesis for cost calculation and
comparison.

2.3. Critical-effect vectors
An LTG has a critical-effect if and only if there exists an input
assignment such that the output changes from 1 to 0 when any
one of its inputs in this assignment changes from 1 to 0 [23].
The input vector that satisfies the mentioned property is called
the Critical-Effect Vector (CEV) of the LTG. For instance in
Fig. 3, an LTG 〈1, 2, 3; 3〉 has two CEVs, (a, b, c) = (0, 0, 1)
and (1, 1, 0). That is, if we change one input from 1 to 0 in
the CEV, the output will also change from 1 to 0. CEVs can
be derived by the algorithm proposed in [23].

2.4. Hyperplane and half-space
Hyperplane and half-space play an important role in the field
of geometry and algebra. In this subsection, we focus on the
relationship among the hyperplane, half-space and threshold
logic gate.
The function of an LTG can be presented as a hyperplane
in an n-dimensional space, i.e., H :

∑n
i=1 xiwi = T . The

half-space described by
∑n

i=1 xiwi ≥ T and
∑n

i=1 xiwi < T
are represented as the positive half-space H+ and the negative
half-space H−, respectively. When any point located in H+ is
applied to the threshold logic gate, the output is 1. Otherwise,
the output is 0.
For example, the threshold logic gate 〈1, 1; 2〉 as shown in
Fig. 4(a) produces the output of 1 if and only if x × 1 +
y × 1 ≥ 2. The function of this threshold logic gate can be
illustrated in a two-dimensional plane as shown in Fig. 4(b). In
Fig. 4(b), when any point that is on or above the hyperplane
L : x + y = 2 is applied to the threshold logic gate, the
output f is 1. Therefore, we can represent the relationship
among the hyperplane, half-space and threshold logic gate on
an Euclidean space.

TABLE I. THE COST WITH DIFFERENT PARAMETER α.

α
cost

Fig. 2(a) Fig. 2(b)

0 4 1
0.1 5.1 3.4
0.5 9.5 13

0.9 13.9 22.6

1.0 15 25

3. Add-in Technique
Before getting into the proposed synthesis method, we first
introduce the proposed hybrid cost function as EQ(2)

cost = α ·
∑
i

(
∑
j

wij + Ti) + (1− α) · |gate| (2)

where α is balance parameter about the summation of weights
and threshold value, and the gate count, wij is the weight of
input xj in the gate i, Ti is the threshold value of gate i,
and |gate| is the gate count in the whole threshold network.
EQ(2) is written as the linear function with respect to α
parameter, and α is determined by designers based on the
physical implementation of the used LTG device. However,
this equation can be even expressed as quadratic with respect
to α for a more sophisticated modeling. Nevertheless, in this
work, for the demonstrative purpose of using this hybrid cost
function, we adopt EQ(2) and set α as 0.5 to represent the
equal importance of these two objectives.

Table I summarizes the cost values of threshold networks
in Fig. 2 with different α settings in EQ(2). From Table I, we
can realize that α = 0 or α = 1 is extremely biased and should
be avoided.

Next, we introduce the proposed Add-in technique, which
aims to obtain a transformed network with a lower cost. The
Add-in technique first identifies an LTG, which is the gate to
be transformed. We divide the transformation scenarios into
two cases based on the characteristic of an LTG:

Case 1: For an LTG having a weight that is greater than
or equal to the threshold value: In this scenario, the LTG
produces the output of 1 without considering the values of
other inputs if the input of this weight is 1. In other words,
this input determines the output of 1 independently. With this
property, we can split this input from the LTG. Thus, we
connect this input and the remaining threshold gate with an
OR gate (Add-in) at its transitive fanout cone. If such inputs
are not unique in an LTG, we transform them simultaneously as
Fig. 5 shows. Note that the overall functionality of the circuit
after the transformation is not changed [21]. Here, we propose
Theorem 1 with respect to this case as shown in Fig. 5 to
determine the condition that the cost will be reduced after the
transformation.
Theorem 1. Given an n-input (x1 ∼ xn) LTG with
k symmetric inputs x1 ∼ xk, k ≥ 1, f =
〈w1, w2, . . . , wk, wk+1, . . . , wn;T 〉, w1 = w2 = . . . = wk =
T , the balance parameter α in the cost function of EQ(2),
the cost is reduced after the transformation if and only if
α(kT − k − 1) > 1.

Proof: (⇒) Given an n-input LTG, f =
〈w1, w2, . . . , wk, wk+1, . . . , wn;T 〉, as shown in Fig.
5(a). The resultant network is as shown in Fig. 5(b)
after the transformation. We would like to prove that the
cost of circuit in Fig. 5(b) is less than that in Fig. 5(a).
According to the cost function, we have an inequality

Fig. 5. The transformation of Case 1: (a) An original LTG. (b) The
transformed LTGs.

Fig. 6. The transformation of Case 2: (a) An original LTG. (b) The
transformed LTGs.

α · (w1 +w2 + . . .+wk +wk+1 + . . .+wn +T)+(1−α) ·1 >
α · (wk+1 + . . . + wn + T + k + 1 + 1) + (1 − α) · 2. Since
w1 = w2 = . . . = wk = T , α · (T × k + wk+1 + . . . + wn +
T)+(1−α) ·1 > α ·(wk+1+ . . .+wn+T+k+2)+(1−α) ·2.
As a result, this inequality, αkT + (1 − α) > αk + 2, or
α(kT − k − 1) > 1 holds.
(⇐) We can prove this condition by reversing the proof in
(⇒). �

Before we introduce Case 2, we define two terms first.
Definition 1: An LTG is useless if and only if every input
pattern produces the output of 0.
Definition 2: The input in an LTG is a critical input if and
only if this LTG becomes useless after removing it.
Case 2: For an LTG having a critical input: For a critical
input in an LTG, we can split it from the LTG and connect
the remaining threshold gate with an AND gate (Add-in) at
its transitive fanout cone as shown in Fig. 6. To preserve the
overall functionality in the transformed network, we have to
reduce the threshold value of this LTG by the weight of this
critical input after the transformation [21]. Here, we propose
Theorem 2 with respect to this case to determine the condition
that the cost will be reduced after the transformation.
Theorem 2. Given an n-input (x1 ∼ xn) LTG with the critical
input x1: f = 〈w1, w2, . . . , wn;T 〉, the balance parameter
α in the cost function of EQ(2), the cost is reduced in the
transformed threshold logic network if and only if α(2w1 −
3) > 1.

Proof: (⇒) Given an n-input LTG, f = 〈w1, w2, . . . , wn;T 〉
as shown in Fig. 6(a), the resultant network is as shown in
Fig. 6(b) after the transformation. We would like to prove that
the cost of network in Fig. 6(b) is less than that in Fig. 6(a).
Therefore, we have an inequality α · (w1 + w2 + w3 + . . . +
wn +T)+(1−α) ·1 > α ·(w2 +w3 + . . .+wn +T −w1 +1+
1+2)+(1−α) ·2. As a result, this inequality, 2αw1−3α > 1
or α(2w1 − 3) > 1 holds.
(⇐) We can prove this condition by reversing the proof in
(⇒). �

4. Remove-Out Technique
In this section, we introduce the proposed Remove-out

technique, which can remove redundant gates in a threshold
network.

4.1. An example
As mentioned above, the function of an LTG can be

represented as a hyperplane and half-space. Therefore, we
can use a hyperplane and half-space to express an LTG. For

Fig. 7. (a) The threshold logic network. (b) The relationship of hyperplanes
and half-spaces.

example in Fig. 4, we can derive the inequality x + y ≥ 2
from the LTG 〈1, 1; 2〉 based on the definition of an LTG. The
equation x+y = 2 is the hyperplane and the positive half-space
represents the on-set space as shown in Fig. 4(b). Since we can
obtain the relationship of hyperplanes and half-spaces of LTGs
on the Euclidean space, we can determine if redundant gates
exist or not. For example, a threshold logic network is shown
in Fig. 7(a) where the weights can be positive or negative. The
hyperplanes and positive half-spaces of A, B, and C are shown
in Fig. 7(b). Since the functionality of gate D is AB+C, we
can obtain the resultant on-set space at f as shown in gray in
Fig. 7(b) by intersection and union operations. However, we
observe that this space can be generated by B+C only. Thus,
the gate A is redundant and can be removed.
4.2. Function derivation from the CEVs

Given an LTG, how to derive its function is important in
the Remove-out technique. Here, we propose a theorem that
helps derive the function of an LTG from its CEVs.
Theorem 3. Given an n-input (x1 ∼ xn) LTG G with a set
of its CEVs. The function of G can be derived by ORing the
Pi of each CEV Vi, where Pi is the product of input variables
that are assigned 1 in the CEV Vi.

Proof: Given an n-input (x1 ∼ xn) LTG G, and assume that
it has m CEVs, V1, . . . , Vi, . . . , Vm. From the definition of a
CEV, the output of Vi is 1. Since all the inputs changing from
0 to 1 in a Vi will cause the output unchanged, i.e., output is
still 1, these inputs are don’t care bits of Vi. Thus, the function
of Vi is Pi where Pi is the product of inputs that are assigned
1. Furthermore, the function of an LTG G can be determined
by its CEVs. Thus, the function of G =

∑m
i=1 Pi. �

For example in Fig. 3, the inputs of the LTG are a, b, c.
The CEVs of f is {V1 = 001, V2 = 110}. Hence, the function
of f is derived as

∑2
i=1 Pi = P1 + P2 = c+ ab.

4.3. SAT-based identification of redundant gates
In the example of Fig. 7, we identify the redundancy

of gate A from the geometry perspective. However, for the
gate with more inputs, e.g., 6, its hyperplane is within a 6-
dimensional space. For this case, it is hard to have a geometric
understanding about the redundancy. Thus, alternatively, we
model this redundancy identification as a SAT problem and
use SAT-solvers to determine if a gate is redundant. Here,
to tradeoff the effectiveness and the efficiency of redundancy
identification, we only identify the redundancies within a two-
level sub-circuit. Fig. 7(a) is an example of two-level sub-
circuit. In Fig. 7(a), the rear gate D is called the functional
gate and its fanin gates A, B, and C are called the candidate
gates.

Next, we explain the SAT modeling of this Remove-out
technique. Since the function in the functional gate is in
Sum-Of-Product (SOP) form by Theorem 3, we would like
to examine if there exists any candidate gate contained by

Fig. 8. The relationship between on-sets. (a) A is completely contained by
B. (b) B is completely contained by A.

Fig. 9. An example of AND-phase.

other candidate gates through AND, OR operations. Thus, the
modeling contains two phases: AND-phase and OR-phase. The
AND-phase is to examine the relationship between internal
variables, while the OR-phase is to examine the relationship
between product terms.

1) AND-phase: In this phase, we focus on the relationship
between internal variables in a product term. For two internal
variables in a product term, if the on-set space of a variable
(gate) A is completely contained by that of another variable
(gate) B, as shown in Fig. 8(a), the variable (gate) B is
redundant. Thus, we can model this situation as EQ(3)1

A · B̄ = 1 (3)

such that when the SAT-solver returns UNSAT for EQ(3), B
is redundant. To simultaneously consider that either variable
A or B in a product term is redundant, we update the model
as shown in EQ(4).

A · B̄ ⊕ Ā ·B = 1 (4)

If EQ(4) is SAT, that means {A · B̄ = 1, Ā · B = 0} or
{A ·B̄ = 0, Ā ·B = 1}. By considering Ā ·B = 0 or A ·B̄ = 0
we known that either A or B is redundant. However, EQ(4)
is modeled as SAT for identifying the redundancy, which is
improper for SAT-solving process. Thus, we add a complement
on it as shown in EQ(5),

A · B̄ ⊕ Ā ·B = 1 (5)

such that when EQ(5) is UNSAT, either A or B is redundant.
After this, we then further check the equations like EQ(3) to
determine which variable is redundant.

For example, as shown in Fig. 9, gates A and B are the
candidate gates and gate C is the functional gate. The function
of gate A, gate B, and gate C are A = ik + j, B = j + k +
l and C = AB, respectively. Thus, we check the equation
(ik + j) · (j + k + l)⊕ (ik + j) · (j + k + l) = 1 according
to EQ(5). The result is UNSAT, which indicates either A or
B is redundant. Then we further check the function (ik+ j) ·
(j + k + l) = 1, and find that it is UNSAT. As a result, the
candidate gate B is redundant.

Similarly, for the product term with more than two vari-
ables, e.g., A, B, and C, EQ(5) can be extended as EQ(6). We
apply the similar procedure to determine the redundancy.

A · B̄ ⊕ Ā ·B ·A · C̄ ⊕ Ā · C ·B · C̄ ⊕ B̄ · C = 1 (6)
1If the relationship of A and B is like Fig. 8(b), the modeling is expressed

as Ā ·B = 1.

Fig. 10. Update the weights and threshold values in the AND-phase. (a) The
original gate. (b) The updated gate.

Fig. 11. Update the weights and threshold values in the OR-phase. (a) The
original gate. (b) The updated gate.

2) OR-phase: In the OR-phase, we focus on the relation-
ship between product terms in a functional gate. For example,
in Fig. 7(a), we examine the relationship between two product
terms AB and C. Since this is an OR operation between
two product terms, the product term with a smaller on-set
space is redundant when there exists another product term that
completely contains it.

We also use the modeling in EQ(3) to find the redundant
product term where A and B represent product terms instead of
variables. Note that in the OR-phase, when EQ(3) is UNSAT,
it means that the product term A rather than B is redundant.

4.4. Weights and threshold values update
After removing out the redundant gates, we have to update

the weights and threshold value of the functional gate accord-
ingly. The functionality of the functional gate after the update
is still the same.

3) AND-phase: For the redundant inputs, its weights are
changed to 0. Then, the threshold value is reduced by the
weights of redundant inputs. For example, as shown in Fig.
10(a), assume that b is identified as redundant in the AND-
phase. Thus, we set 0 to its weight and update the threshold
value by reducing the weight of input b, as shown in Fig.
10(b)2.

4) OR-phase: For the redundant product term in the OR-
phase, we change its weights to 0 and make the threshold
value intact. For example, as shown in Fig. 11(a), assume that
c is identified as redundant in the OR-phase. The weight of
this redundant product term is changed to 0, as shown in Fig.
11(b)2.

5. Overall algorithm
Fig. 12 shows the overall algorithm of our approach.

The input is a threshold logic network and the output is
an optimized threshold logic network. The positive-negative
weight transformation is the preprocessing stage. The next
stage is to apply the Add-in technique such that the network is
restructured for reducing the cost while preserving the overall
functionality. Next, we conduct the Remove-out technique for
removing the redundant gates. At the end of our algorithm, we
perform the positive-negative weight transformation again to
eliminate the inverter gates.

6. Experimental results
We implemented the proposed tool in C++ language. The

experiments were conducted on a 3.0 GHz Linux platform

2For the inputs with the weights of 0, we can also directly remove them
from the functional gate.

Fig. 12. The overall flow of our tool.

with Intel Xeon E5530. The benchmarks were selected from
IWLS 2005 [36] and MCNC. These benchmarks were initially
synthesized as threshold logic network, using the number of
primary input as the fanin number constraint.

In the experiments, we demonstrate the capability of the
proposed tool in the optimization of threshold network in terms
of the cost reduction. Table II summarizes the experimental
results. Column 1 lists the benchmarks. Columns 2 and 3
show the number of LTGs and the summation of weights
and threshold values of the original benchmarks, respectively.
Column 4 lists the original cost where the balance parameter
α is set as 0.5 for the ease of demonstration. Columns 5 and 6
are the number of instances in Case 1 and Case 2, respectively.
Columns 7 and 8 list the number of redundant gates which have
a single fanout in the AND-phase and OR-phase, respectively.
Columns 9 to 11 show the corresponding results after applying
our tool. Column 12 shows the ratio of cost reduction. Finally,
the CPU time measured in second is listed in the last column.

According to Table II, the ratio of cost reduction after the
optimization can be up to 10%. However, some benchmark like
C1355 is only a little. Therefore, the amount of cost reduction
strongly depends on the initial circuit structure. This is also the
limitation of this optimization approach. In fact, obtaining a
global optimal result for a benchmark is intractable. Note that
here we do not compare this work with the previous works.
This is because we cannot obtain the optimized networks
from the previous works. Also, the cost functions they used
are different from ours such that the comparison might be
unjustified. Furthermore, if we set α = 0 in EQ(2) to compare
the gate count or set α = 1 to compare the summation of

TABLE II. THE EXPERIMENTAL RESULTS OF OUR TOOL.
Ours

Initial Add-in Remove-out Optimized
Benchmark |LTG| Sum Cost |Case 1| |Case 2| AND-phase OR-phase |LTG| Sum Cost Impr.(%) T(s)

C1908 287 1316 801.5 1 8 0 24 271 1202 736.5 8.11 7.46
usb phy 288 1362 825 4 13 2 3 305 1310 807.5 5.45 14.82

t481 320 1613 966.5 18 12 0 4 334 1481 907.5 6.1 4.84
C1355 340 1662 1001 2 0 0 0 344 1650 992 0.9 12.22

rot 354 1606 980 3 13 1 9 340 1462 901 8.06 6.94
alu4 372 1768 1070 4 7 0 4 377 1703 1040 2.8 11.65
x3 390 1749 1069.5 0 6 2 3 378 1692 1035 3.23 4.02
i2c 503 2928 1715.5 23 25 0 1 547 2553 1550 9.65 5.09
frg2 509 3021 1765 64 69 0 16 606 2618 1612 8.67 4.64

pci spoci ctrl 566 2718 1642 21 25 2 6 573 2526 1549.5 5.63 5.55
simple spi 570 2385 1477.5 7 17 0 2 581 2291 1436 2.81 6.01

pair 712 3330 2021 9 25 4 9 699 3137 1918 5.1 29.69
dalu 782 3135 1958.5 6 3 3 4 754 3022 1888 3.73 1619.14

C5315 1076 3925 2500.5 0 1 0 8 1049 3860 2454.5 1.84 16.12
s9234 1080 5791 3435.5 17 60 5 20 1142 5044 3093 9.78 1187.58
C7552 1520 5362 3441 1 1 1 14 1483 5241 3362 2.31 1918.29
C6288 1818 7619 4718.5 12 11 0 0 1829 7361 4495 4.74 46.14
s13207 1935 7689 4812 17 51 2 26 1837 6743 4290 10.85 368.95

systemcdes 2070 9096 5583 7 46 13 11 2016 8595 5305.5 4.97 46.01

weights and threshold values against the previous works, that
does not make any sense due to improper and biased cost
function.

7. Conclusion
In this paper, we propose a tool, In&Out for threshold logic

network optimization. The cost function of the optimization is
also generalized by considering the factors from the physical
implementation perspective. The Add-in technique reduces the
cost by decreasing the weights and threshold value while the
Remove-out technique removes the redundant gates in the
threshold logic network. The experimental results demonstrate
the improvements after the optimization.

REFERENCES

[1] M. J. Avedillo et al., “Multi-Threshold Threshold Logic Circuit Design
using Resonant Tunnelling Devices,” Electron. Lett., 2003, pp. 1502-
1504, vol. 39.

[2] I.A. Basheer et al., “Artificial neural networks: fundamentals, com-
puting, design, and application,” Journal of Microbiological Methods,
2000, pp. 3-31.

[3] V. Beiu et al., “VLSI Implementations of Threshold Logic-A Com-
prehensive Survey,” IEEE Transactions on Neural Networks, 2003,
pp. 1217-1243, vol. 14.

[4] V. Beiu, “On Existential and Constructive Neural Complexity Results,”
Neural Networks and Computational Intelligence, 2003, pp. 63-72.

[5] P. Celinski et al., “State-of-the-Art in CMOS Threshold-Logic VLSI
Gate Implementation,” VLSI Circuits and Systems Conference, 2003,
pp. 53-64.

[6] Y.-C. Chen et al., “Automated Mapping for Reconfigurable Single-
Electron Transistor arrays,” Proc. DAC, 2011, pp. 878-883.

[7] Y.-C. Chen et al., “A Synthesis Algorithm for Reconfigurable Single-
Electron Transistor Arrays,” ACM Journal on Emerging Technologies
in Computing System, 2013, p. Article 5, vol. 9.

[8] Y.-C. Chen et al., “Fast Synthesis of Threshold Logic Networks with
Optimization,” Proc. ASP-DAC, 2016, pp. 486-491.

[9] C.-E. Chiang et al., “On Reconfigurable Single-Electron Transistor
Arrays Synthesis using Reordering Techniques,” Proc. DATE, 2013,
pp. 1807-1812.

[10] F. Deliang et al., “Design and Synthesis of Ultralow Energy Spin-
Memristor Threshold Logic,” IEEE Trans. Nanotechnology, 2014,
13(3):574-83.

[11] S. Draghici et al., “A VLSI-optimal constructive algorithm for classi-
fication problems,” International Journal of Smart Engineering System
Design, 1997, pp. 145-151.

[12] S. Eachempati et al., “Reconfigurable Bdd-based Quantum Circuits,”
Proc. Int. Symp. on Nanoscale Architectures, 2008, pp. 61-67.

[13] P. Gupta et al., “Automatic Test Generation for Combinational Thresh-
old Logic Networks,” IEEE Trans. CAD, 2008, pp. 1035-1045, vol. 16.

[14] T. Gowda et al., “Identification of Threshold Functions and Synthesis
of Threshold Networks,” IEEE Trans. CAD, 2011, pp. 665-677, vol. 30.

[15] T. Gowda et al., “A Non-ILP Based Threshold Logic Synthesis Method-
ology,” Proc. International Workshop on Logic and Synthesis, 2007,
pp. 222-229.

[16] T. Gowda et al., “Decomposition Based Approach for Synthesis of
Multi-Level Threshold Logic Circuits,” Proc. Asia and South Pacific
Design Automation Conf., 2008, pp. 125-130.

[17] T. Gowda et al., “Combinational Equivalence Checking for Threshold
Logic Circuits,” Proc. Great Lake Symp. VLSI, 2007, pp. 102-107.

[18] D. Hampel et al., “Threshold logic,” IEEE Spectrum, 1971, pp. 32-39,
vol. 8.

[19] S. L. Hurst, “Sequential Circuits using Threshold Logic Gates,” Int.
Journal of Electronics, 1970, pp. 495-499, vol. 29.

[20] Y. Jin et al., “Pareto-Based Multiobjective Machine Learning: An
Overview and Case Studies,” IEEE Trans. on Systems, 2008, pp. 397-
415.

[21] P.-Y. Kuo et al., “On Rewiring and Simplification for Canonicity in
Threshold Logic Circuits,” Proc. ICCAD, 2011, pp. 396-403.

[22] C. Lageweg et al., “A Linear Threshold Gate Implementation in
Single Electron Technology,” Proc. Comput. Soc. Workshop VLSI, 2001,
pp. 93-98.

[23] C.-C. Lin et al., “Rewiring for Threshold Logic Circuit Minimization,”
Proc. DATE, 2014, pp. 1-6.

[24] S. Muroga, “Threshold Logic and its Applications,” 1971, New York,
NY: John Wiley.

[25] A. Neutzling et al., “Threshold Logic Synthesis Based on Cut Pruning,”
Proc. ICCAD, 2015, pp. 494-499.

[26] C. Pacha et al., “Resonant Tunneling Device Logic Circuit,” 1999,
DortmundGerhard-Mercator University of Duisburg, Germany, Tech.
Rep.

[27] M. Perkowski et al., “Logic Synthesis for Regular Fabric Realized in
Quantum dot Cellular Automata,” Journal of Multiple-Valued Logic and
Soft Comput., 2004, pp. 768-773.

[28] V. Saripalli et al., “Energy-delay Performance of Nanoscale Transistors
Exhibiting Single Electron Behavior and Associated Logic Circuits,”
Journal of Low Power Electronics, 2010, pp. 415-428,vol. 6.

[29] C.-K. Tsai et al., “Sensitization Criterion for Threshold Logic Circuits
and its Application,” Proc. ICCAD, 2013, pp. 226-233.

[30] P. Venkataramani et al., “Sequential Circuit Design in Quantumdot
Cellular Automata,” Proc. Nanotechnology Conf., 2008, pp. 534-537.

[31] R. O. Winder, “Single Stage Threshold Logic,” Switching Circuit Theory
and Logical Design, 1961, pp. 321-332.

[32] R. O. Winder, “Threshold Logic,” 1962, Ph.D. dissertation, Princeton
University, Princeton, NJ.

[33] R. O. Winder, “Enumeration of Seven-Argument Threshold Functions,”
IEEE Trans. on Electronic Computers, 1965, pp. 315-325.

[34] R. Zhang et al., “Threshold Network Synthesis and Optimization and its
Application to Nanotechnologies,” IEEE Trans. Comput-Aided Design
Integr. Circuits Syst., 2005, 24(1):107-18.

[35] Y. Zheng et al., “SAT-based Equivalence Checking of Threshold Logic
Designs for Nanotechnologies,” Proc. Great Lake Symp. VLSI, 2008,
pp. 225-230.

[36] http://iwls.org/iwls2005/benchmarks.html

