
Reachability Analysis of Sequential Circuits
Jung-Tai Tsai Chun-Yao Wang Kuang-Jung Chang

Department of Computer Science
National Tsing Hua University, HsinChu, Taiwan

lttsai24@gmail.com, wcyao@cs.nthu.edu.tw, jalem1984@gmail.com

ABSTRACT

Reachability analysis is a fundamental technique in the synthesis,
verification of VLSI circuits. This paper presents a novel semi-formal
approach which combines the advantages of simulation and formal
methods to traverse the state space of the FSMs. We conduct the
experiments on a set of ISCAS’89 benchmarks. Compared with
a previous work which relies on biased random technique, our
approach reaches more states with less CPU time.

I. INTRODUCTION

Design verification has become the bottleneck of modern VLSI
designs. By industry statistics, 70% of the design efforts are consumed
in verification. Without complete verification, erroneous designs may
eventually cause enormous economical loss. The infamous Pentium
floating-point division bug is such an example. The mainstream of
most verification techniques is still simulation-based. This is because
the simulation-based verification is easy to apply and can efficiently
detect easy-to-detect bugs. However, this common strategy usually
cannot effectively target on corner-case bugs. Also, under the tremen-
dous time-to-market pressure, it cannot guarantee bug-free designs.

On the other hand, formal verification uses logic and mathematic
methods to prove the correctness of a design. Over the last decade, a
wide spectrum of formal verification methods has been proposed. In
general, most of them can be broadly classified into two categories:
property checking and equivalence checking. Since sequential circuits
are typically modeled as finite state machines (FSMs), the first step
to perform property checking or equivalence checking on sequential
circuits is to compute the reachable states of FSMs. FSM traversal is
the process that visits these reachable states of FSMs. To accomplish
the FSM traversal, we can use the state transition graph (STG) to
explicitly enumerate the states of machines. We can also perform
implicit state enumeration without constructing STG to achieve it.
Rechability analysis is the task which relies on FSM traversal to
explore the state space of FSMs.

Symbolic FSM traversal is a typical approach in FSM traversal
[8], [12]. In this symbolic approach, Binary Decision Diagram (BDD)
[8], [12] is used to represent sets of states and machine’s transition
relations. The process of next-state or image computation relies
on constructing the BDD of transition relations and operating the
existential quantification to quantify out the redundant BDD variables.
Additionally, performing computation of reachable states is through
iterative symbolic image computation, and the state space is implicitly
traversed. When the sets of the reachable states in two consecutive
iterations are identical, it reaches the fixed point, which indicates all
reachable states have been visited.

In this paper, we propose a semi-formal approach to traverse the
state space of FSMs. It combines the advantages of simulation and
formal methods. In each iteration, we first randomize a large amount
of patterns for parallel simulation. This step efficiently traverses the
subset of state space. Then, we use logic implication and circuit
structure analysis techniques to determine the reachability of the
undecided states in the remainder of the state space. Note that here
we also use BDD representation, but just for recording the sets of
reached states. The algorithm continues until no newly reached state.
The experimental results compared with a simulation-based previous
work, which relies on biased random technique [9], show that our
approach efficiently reaches more states.

The remainder of this paper is organized as follows. Section II
discusses the background of our approach. Section III introduces the

proposed approach for reachability analysis. Section IV shows the
experimental results. Section V concludes this paper.

II. BACKGROUND

This section first reviews the BDD representation of circuit states.
Next, we briefly describe the fundamental element called search fron-
tier in our algorithm. Random pattern generator (RPG) architecture is
also introduced. Finally, we discuss the measurement of controllability
of a gate, which will be a guidance in the backward logic implication.
Here, we assume each circuit is decomposed into AND, OR, NOT
gates, and flip-flops.

A. State Set Representation

1) Representation of Circuit States: Unlike the BDD-based sym-
bolic approach introduced in Section I, we only exploit BDD to record
the sets of circuit states. S is generally the set of all flip-flop nodes
in the synchronous sequential circuits. There are m flip-flops in the
circuit and the state variables in S = {s1, s2, . . . , sm}. Given a set
of logic value assignments to the corresponding state variables, we
can derive a boolean formula which is true for this set of logic value
assignments.

Example 2.1: Given S = {s1, s2, s3}, and let s1 = 0, s2 = 1,
s3 = 0, we can derive the boolean formula ¬s1 ∧ s2 ∧ ¬s3 for this
state, and then we can use BDD to represent this formula.

2) Global BDD and Local BDD: We use the Global BDD and
Local BDD to record the sets of states. The Global BDD can be
regarded as a global variable global bdd(t) to record all the reachable
states from the timeframe 0 to t. The Local BDD is a local variable
local bdd(t), which is used to represent the reached states at the
exact timeframe t.

Reachability()
{

t = 0;
global bdd(t) = S0; // initial state
repeat

t = t + 1;
global bdd(t) = global bdd(t-1) ∪ new states(local bdd(t-1));

until global bdd(t) = global bdd(t-1);
}

Fig. 1. The pseudo code of combining Global BDD and Local BDD.

Fig. 1 shows the pseudo code of operations that combines the
Global BDD and the Local BDD. The function new states() extracts
the disjoint cubes from the Local BDD. It also verifies if the cubes
of local bdd(t) are the subsets of global bdd(t). If not, that means
new states are reached, then we add these cubes into global bdd(t)
using the union operation. The iterative process terminates when
the Global BDDs in the two successive iterations are identical, i.e.,
global bdd(t) = global bdd(t− 1).

B. Search Frontier

In Section II.A, we perceive that the cube which is not the subset
of the BDD may be useful to visit new states. Such a cube is called a
search frontier. A given initial state S0 is also a search frontier. In the
beginning, the Global BDD is empty, so state S0 is not the subset of
Global BDD. Hence, S0 is the only search frontier to visit new states
at the timeframe 0. That is, the reachable states at the timeframe
0, which are represented as local bdd(0), are visited only via S0.

978-1-4244-5271-2/10/$26.00 ©2010 IEEE 181

Authorized licensed use limited to: National Tsing Hua University. Downloaded on July 08,2010 at 03:24:02 UTC from IEEE Xplore. Restrictions apply.

In general, after extracting some cubes from local bdd(t − 1), and
verifying them not a subset of global bdd(t−1), we can determine the
search frontiers at this timeframe. We denote the ith search frontier at
timeframe t as s-frontier(i, t), and the Local BDD at the timeframe
t, local bdd(t) can be computed as

local bdd(t) =
n⋃

i=1

reach(s-frontier(i, t)) (1)

where n is the number of the search frontiers. The function reach()
computes the reachable states via the s-frontier(i, t), and the union
of these reachable states can be considered as the next state set in the
timeframe t.

C. Random Pattern Generator (RPG)

The RPG architecture is shown in Fig. 2. It comprises two com-
ponents, one is random pattern generator (RPG) itself and the other
is the circuit under test (CUT) SF . SF actually is the combinational
part of a sequential circuit and we set fixed logic value ‘0’ or ‘1’ to
the pseudo-primary inputs (PPIs) based on a search frontier from the
previous timeframe. Assume SF is an N -input M -output network.
Then

N = I +R −Rf (2)

where I is the number of primary inputs (PIs), R is the number of
PPIs, and Rf is the number of PPIs associated with logic values. M
refers to the number of PPOs in the circuit. When N is determined, the
RPG produces N outputs and assigns them to the inputs of SF . The
parameter r in the RPG indicates that the RPG can simultaneously
generate 2r parallel patterns with the support of GMP library [13].
In addition, if a PPI has set a fixed logic value, it will be extended to
2r bits in length. These parallel patterns are used for simulation for
reaching new states. This process can be seen in detail in Section III.

Fig. 2. The architecture of RPG.

D. Controllability

Controllability of a node in a circuit is a measurement to show
the difficulty to set a value to this node from the PIs. As mentioned
in Section II.C, following the parallel pattern simulation, each node
n of network is associated with a 2r-bit set, n-Bitset. |n-Bitset|
represents the number of 1’s in this n-Bitset. We denote the 1’s
controllability and 0’s controllability of the node n as C1(n) and
C0(n), respectively. Based on this simulation, C1(n) and C0(n) can
be approximated as Equation (3) and Equation (4)

C1(n) ≈
|n-Bitset|

2r
(3)

C0(n) ≈ 1−C1(n) (4)

We use this measurement to guide the decision in the process of
logic implication in our approach. It will be discussed in detail in
Section III.

III. OUR APPROACH

In this section, we integrate some preliminaries mentioned in
Section II to complete our approach. Our algorithm comprises two
main components. The Parallel Random Pattern Simulation serves as
the first stage to efficiently traverse the partial state space via a specific
search frontier. Then, we perform Backward Justification to determine
the reachability of those undecided states in the remaining state space

via the same search frontier. The details of these two stages will be
described in the following subsections.

A. Parallel Random Pattern Simulation

As mentioned in Section II.C, for a search frontier, the RPG
produces N outputs and assigns them to the N -input SF . After
parallel pattern simulation, each node n is associated with a 2r bit
set, n-Bitset. We denote the ith bit of n-Bitset as n-Bitset(i), and
the bit index always starts with 1 and it counts from the right-most bit
to the left-most bit. The corresponding logic value in the n-Bitset(i)
is obtained by simulating the ith random pattern.

Fig. 3. An example to illustrate parallel random patterns simulation.

Example 3.1: Fig. 3(a) shows an ISCAS’89 circuit s27, nodes 1 ∼ 4
in the circuit are PIs, nodes 5 ∼ 7 are PPIs, nodes 8 ∼ 10 are
PPOs, and node 16 is a PO. Given the initial state S0 = {0, 0, 0},
consider (0, 0, 0) as the only search frontier s-frontier(1, 0) to visit
new states at the timeframe 0. Thus, (0, 0, 0) are assigned to the PPI
nodes 5, 6, and 7, respectively. Assume the parameter r of RPG is
set to 3, and based on Equation (2) we can get N = 4 (I = 4, R =
3, Rf = 3). Then 23-bit vectors are generated and assigned to the
SF with 4 inputs. The logic values of nodes 5 ∼ 7 are also extended
to 23 bits. Finally, we simultaneously simulate them.

We create boolean variable s1 ∼ s3 for each flip-flop in Fig.
3(a), and in what follows, we use nodes s1 ∼ s3 to substitute
nodes 8 ∼ 10 for simplicity. After parallel pattern simulation, we
can get s1-Bitset = (01001101), s2-Bitset = (10000010), and s3-
Bitset = (00110100). In Fig. 3(b), the ith output vector evaluated by
simulating ith random pattern with the initial state (0, 0, 0) is denoted
as vertical(i), and

vertical(i) = (s1-Bitset(i), s2-Bitset(i), . . . , sm-Bitset(i)) (5)

By random simulation, we can efficiently get different vertical(i)
and regard them as reachable states.

Example 3.2: Fig. 3(b) shows that vertical(2) = (s1-Bitset(2),
s2-Bitset(2), s3-Bitset(2)) = (0, 1, 0), and there are four different
vertical(i), (1, 0, 0), (0, 1, 0), (1, 0, 1), and (0, 0, 1), which are
regarded as four different reached states. Fig. 4(a) represents these
states using BDD.

Fig. 4. BDD representation of reached states and undecided states.

182

Authorized licensed use limited to: National Tsing Hua University. Downloaded on July 08,2010 at 03:24:02 UTC from IEEE Xplore. Restrictions apply.

B. Backward Justification

Following Section III. A, partial reachable states have been visited
via the S0, s-frontier(1, 0). Then we determine the reachability of
other undecided states via the same search frontier. Fig. 4(b) shows
the remaining state space of Fig. 4(a). We use depth-first-search (DFS)
manner to traverse this BDD, and extract the cubes in it. Note that
each cube is disjointly extracted. We denote the cube which represents
the undecided states as a u-cube and denote the ith cube as u-cube(i).

In the process of backward justification, the measurement of con-
trollability serves as a guidance to determine the justification ordering
in PPOs and of backtrace paths. The controllability of all nodes can be
simultaneously computed based on parallel random pattern simulation
in the first stage. According to the approximate equations (3) and (4),
we can easily compute C1(n) and C0(n) of node n, e.g., C1(15) =
3

8
, C0(15) = 5

8
are computed from Fig. 3(a).

There are three components of the backward justification as follows:
1) Forward implication : For an arbitrary search frontier s-
frontier(i, t), we have corresponding logic values at PPIs. We
directly propagate these values to other nodes as possible as we can.
Therefore, some nodes also have the fixed logic values, and these
values logically set restrictions when we perform the backtracing.
2) Justification ordering : After forward implication, we set the
logic values of PPOs based on an undecided cube, u-cube(i), which
is the ith cube extracted from the remainder of state space. Then
we perform backtracing. But before that, we have to determine the
ordering of justification among all PPOs. Different orderings may
result in different effects on efficiency. Fig. 5 illustrates the effect
of this ordering issue. The justification ordering of Fig. 5(a) is
(s1 → s2 → s3), and a conflict occurs after backtracing from the last
PPO, s3. A conflict represents the corresponding undecided states are
not reachable. But if we apply another ordering (s1 → s3 → s2) in
Fig. 5(b), this conflict occurs earlier. An earlier occurred conflict can
improve the efficiency of backward justification. Thus, we propose
a heuristic that uses the controllability of PPO as a guidance to
determine the justification ordering. As we know, controllability is
the probability of a signal value at a node being set to 0 or 1. If a
node with lower probability (controllability) of being its set value,
we consider that this node with its set value are difficultly justified
at PIs, and a conflict may easily occur in the backtracing. Thus, our
heuristic relies on this concept.

Fig. 5. Justification ordering.

3) Controllability as a guidance of backtrace : We also heuristicly use
controllability as a guidance in the selection of backtrace paths. There
are two selection criteria. For the gate that requires all inputs having
its specific values, we attack the hardest one among all inputs. For
example, Fig. 6(a) shows node 14 in Fig. 3(a). Assume node 14 = 0 is
in the backtrace path, it requires both node 12 = 1 and node 13 = 1.
Based on the controllability of node 12 and 13, C1(12) = 3

8
<

C1(13) = 4

8
, we choose the harder one (lower controllability), i.e.,

(14 → 12), for backtracing. For the gate that only requires certain
input having its specific value, we select the easiest one among all
inputs. For example, Fig. 6(b) shows node 10 in Fig. 3(a). Assume
node 10 = 0 is in the backtrace path, it requires either node 3 = 1
or node 15 = 1. Thus, based on the controllability of node 3 and
15, C1(15) = 3

8
> C1(3) = 2

8
, we choose the easiest one (higher

controllability), i.e., (10→ 15), for backtracing.
To reduce the complexity of the backward justification, we just

apply some simple but effective strategies as mentioned into this
process. Thus, we may not completely reach all reachable states at a
timeframe. Nevertheless, our approach never reaches any unreachable
states.

Fig. 6. Guidance of Backtrace.

Fig. 7. Reachable state set at the timeframe 0.

In summary, we use parallel random pattern simulation as the first
stage to efficiently traverse four states, (1, 0, 0), (0, 1, 0), (1, 0, 1)
and (0, 0, 1) via the initial state S0 = {0, 0, 0}. Then perform
Backward Justification to reach additional state (0, 0, 0) from the
remaining state space. According to Equation (1), we can compute
local bdd(0) = reach(s-frontier(1, 0)) as shown in Fig. 7, which
represents the reachable state set at the timeframe 0. In the timeframe
1, we also extract s-frontier(1, 1) = (0, 0, X), s-frontier(2, 1)
= (0, 1, 0), and s-frontier(3, 1) = (1, 0, X) from local bdd(0) as
shown in Fig. 7 (from left to right), and then use each search frontier
as the state value to explore the reachable state space. The iterative
process eventually terminates when Global BDDs in the two succes-
sive iterations are identical, i.e., global bdd(t) = global bdd(t− 1).

IV. EXPERIMENTAL RESULTS

We conduct the experiments on a set of ISCAS’89 benchmarks
within SIS [11] environment. Each benchmark is decomposed into
AND, OR, NOT gates, and flip-flops for simplicity. We then take
a previous work [9] which relies on a biased random technique for
comparison.

The basic idea of this previous work is to iteratively derive a set
of input probabilities used for random simulation to explore the next
state space based on a current state. The objective is to derive the input
probabilities such that each controllable state variable has probability
of 0.5, i.e., the same probability of being 1 or 0. It expects that this
probability assignment can maximize the next state exploration.

Both [9] and our approach are implemented on a 1280 MHz Sun
Blade 2500 workstation with 4 GBytes memory. We set r = 10 in
our parallel random pattern simulation. Table I shows the compar-
ison about the CPU time and reached states between [9] and our
approaches.

In Table I, the first three columns show the name of each circuit,
the number of inputs, and the number of flip-flops, respectively. We
repeat our algorithm 10 times and take an average of these 10 trials.
Columns six and seven show the average number of reachable states,
and the average required CPU time in our approach. Then, we spend
the same amount of CPU time in our approach to run the algorithm
in [9], and record the number of reached states as shown in column
four. Column five shows the run time of [9] when it reaches the same
number of states as ours. Column eight shows the ratio of reached
states between ours and [9] in the same amount of CPU time. The
last column shows the ratio of the CPU time between [9] and ours
for reaching the same amount of states.

Take s344 as an example, after running 299.29 seconds on average,
our approach terminates and reaches 2208.6 states while [9] only
reaches 1524 states. Thus, the state ratio is 1.45. Also, [9] spends
6907.34 seconds to reach 2208.6 states while our approach only
needs 299.29 seconds. Thus, we achieve 23.08 speedup over [9].
The experimental results show that on average we visit 19% more
reachable states than [9], and achieve 7.04 speedup.

183

Authorized licensed use limited to: National Tsing Hua University. Downloaded on July 08,2010 at 03:24:02 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE COMPARISON OF THE CPU TIME AND THE REACHED STATES BETWEEN [9] AND

OUR COMPLETE APPROACH.

Circuits |PI| |FF|
[9] [9] Ours State ratio Time ratio

State Time (sec.) State Time (sec.) Ours / [9] [9] / Ours
s344 9 15 1524 6907.34 2208.6 299.29 1.45 23.08
s349 9 15 1526 7099.39 2207.2 300.99 1.45 23.59
s382 3 21 8725 2511.86 8865.0 1475.05 1.02 1.70
s400 3 21 8797 2594.82 8865.0 1472.05 1.01 1.76
s444 3 21 8765 2484.94 8865.0 1066.61 1.01 2.33
s526 3 21 8763 3027.60 8868.0 1047.40 1.01 2.89
s641 35 19 1025 1384.46 1533.2 299.49 1.50 4.62
s713 35 19 1109 1476.13 1535.1 309.40 1.38 4.77

s1196 14 18 2597 5082.47 2614.0 1755.36 1.01 2.90
s1238 14 18 2591 5075.53 2613.2 1868.69 1.01 2.72
Average ratio 1.19 7.04

In Table II, we remove the backward justification process from
our original approach, and repeat this trial 10 times and take an
average of these 10 trials. Then, we compare it with our original
complete approach. Columns four and five show the number of
reachable states, and the required CPU time in our approach without
backward justification. The data with backward justification are shown
in columns six and seven. These data are the same with that in Table I.
Column eight shows the ratio of reachable states between w/ and w/o
backward justification in our approach. The last column shows the
ratio of the CPU time between w/o and w/ backward justification in
our approach. Next, we analyze the results of these circuits. For s344
and s349, we can find that the number of reached states decreases
and the required CPU time increases when the backward justification
process is removed. That means the process of backward justification
may reach some reachable states which are hard to be reached by
random simulation.

TABLE II
THE COMPARISON BETWEEN WITHOUT AND WITH BACKWARD JUSTIFICATION IN THE

ALGORITHM.

Circuits |PI| |FF|
w/o w/ State ratio Time ratio

State Time (sec.) State Time (sec.) w/ / w/o w/o / w/
s344 9 15 2130.6 338.45 2208.6 299.29 1.04 1.13
s349 9 15 2123.1 332.87 2207.2 300.99 1.04 1.11
s382 3 21 8865.0 1468.78 8865.0 1475.05 1.00 1.00
s400 3 21 8864.4 1468.39 8865.0 1472.05 1.00 1.00
s444 3 21 8865.0 1065.54 8865.0 1066.61 1.00 1.00
s526 3 21 8868.0 1037.26 8868.0 1047.40 1.00 0.99
s641 35 19 1534.6 257.00 1533.2 299.49 1.00 0.86
s713 35 19 1536.4 257.74 1535.1 309.40 1.00 0.83

s1196 14 18 2613.3 510.91 2614.0 1755.36 1.00 0.29
s1238 14 18 2613.1 509.40 2613.2 1868.69 1.00 0.27
Average ratio 1.01 0.85

TABLE III
THE COMPARISON BETWEEN WITHOUT AND WITH BACKWARD JUSTIFICATION FOR

S344.

Timeframe t
w/o w/

Time (sec.) State Time (sec.) State
0 0.41 437 0.45 513
1 53.23 943 1.23 995
2 79.30 1303 23.82 1378
3 138.47 1563 80.57 1751
4 215.93 1991 155.81 2114
5 304.26 2118 253.84 2253
6 343.27 2118 297.61 2253

In a more detailed analysis to s344, we also show the increase of
state number in each timeframe for these two approaches in Table III.
The first column is the timeframe index. s344 reaches its fixed point
at the timeframe 6. Column two shows the CPU time at the end of
each timeframe, and column three shows the total number of reached
states. Columns four and five are similar to columns two and three,
respectively, but just for the complete approach. For example, for our
approach w/o backward justification, we can totally reach 437 states
at the end of timeframe 0 with 0.41 seconds CPU time. But for the
with backward justification version, the number of reached states is
513 in 0.45 seconds. These results mean via s-frontier(1, 0), the

approach w/ backward justification reaches 76 more states than that
of w/o, and the backward justification is useful to maximize the next
state exploration.

But for the other circuits in Table II, we find that each circuit
of them has a similar image in the corresponding timeframe by
using both approaches. That means the backward justification does
not reach additional states in these circuits. This is because for the
circuits with certain functionality, e.g., counter, the reachable states
at each timeframe are easy to reach by random simulation. Although
the backward justification in our complete approach does not always
contribute new reached states, and may required more CPU time, we
still think this process is important and is included in our algorithm.
This is because the results of random simulation are unpredictable.
We add the backward justification process to constantly compensate
the results of the random simulation. In addition, reaching more states
is more important to verification. Thus, although spending more CPU
time, the backward justification process still deserves to be maintained
in our approach.

V. CONCLUSIONS

Reachability analysis is desired for VLSI circuit synthesis and
verification. This paper presents a novel semi-formal approach which
combines the advantages of simulation and formal methods to traverse
the state space of the FSMs. A large amount of parallel random pattern
simulation can efficiently traverse partial state space, and formal
methods serves as the important role to compensate the insufficiency
of the first stage. The experimental results show that on average our
complete algorithm obtains 19% more reachable states than previous
work [9] and achieves 7.04 speedup.

REFERENCES

[1] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill,
“Symbolic model checking for sequential circuit verification,” IEEE
Trans. Computer-Aided Design, vol. 13, no. 4, pp. 401-424, Apr. 1994.

[2] J. R. Burch, E. M. Clarke, and D. E. Long, “Representing circuits more
efficiently in symbolic model checking,” in Proc. 28th Design Automation
Conf., pp. 403-407, 1991.

[3] J. R. Burch, E. M. Clarke, and D. E. Long, “Symbolic model checking
with partitioned transition relations,” in Proc. Int. Conf. Very Large Scale
Integration, pp. 49-58, 1991.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill, “Sequential
circuit verification using symbolic model checking,” in Proc. 27th Design
Automation Conf., pp. 46-51, 1990.

[5] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
“Symbolic model checking: 10

20 states and beyond,” in Proc. Fifth
Ann. IEEE Symp. Logic in Computer Sci., pp. 428-439, 1990.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
“Symbolic model checking: 1020 states and beyond,” Infor. Computation,
vol. 98, no. 2, pp. 142-170, June 1992.

[7] O. Coudert, C. Berthet, and J. C. Madre, “Verification of synchronous
sequential machines based on symbolic execution,” in Int. Workshop on
Automatic Verification Methods for Finite State Systems, pp. 365-373,
June 1989.

[8] O. Coudert and J. C. Madre, “A unified framework for the formal
verification of sequential circuits,” in Proc. Int. Conf. Computer-Aided
Design, pp. 126-129, Nov. 1990.

[9] Y.-M. Kuo, C.-H. Lin, C.-Y. Wang, S.-C. Chang, and P.-H. Ho, “Intel-
ligent random vector generator based on probability analysis of circuit
structure,” in Proc. of Int. Symp. Quality Electronic Design, pp. 344-349,
2007.

[10] D. Stoffel, M. Wedler, P. Warkentin, and W. Kunz, “Structural FSM
Traversal,” IEEE Trans. Computer-Aided Design, vol. 23, no. 5, pp. 598-
619, May 2004.

[11] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai,
A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “SIS: A system for sequential circuit synthesis,” Technical
Report UCB/ERL M92/41, Electronics Research Lab, Univ. of California,
Berkeley, CA 94720, May 1992.

[12] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Implicit state enumeration of finite state machines using
BDD’s,” in Proc. Int. Conf. Computer-Aided Design, pp. 130-133,
Nov. 1990.

[13] http://www.swox.com/gmp

184

Authorized licensed use limited to: National Tsing Hua University. Downloaded on July 08,2010 at 03:24:02 UTC from IEEE Xplore. Restrictions apply.

