
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 10, OCTOBER 2013 1473

Verification of Reconfigurable Binary Decision
Diagram-Based Single-Electron Transistor Arrays

Yung-Chih Chen, Chun-Yao Wang, Member, IEEE, and Ching-Yi Huang

Abstract—Recently, single-electron transistors (SETs) have
been attracting substantial attention and are considered can-
didate devices for future integrated circuits due to their ul-
tralow power consumption. To realize SETs, a binary decision
diagram-based SET array is proposed as a suitable candidate
for implementing Boolean circuits. Then, some works started
developing computer-aided design techniques for this new ar-
chitecture. However, most of them focused on the development
of mapping techniques. How to verify the mapping results is
still an open problem. Thus, in this paper, we address this
problem and develop a satisfiability (SAT)-based verification
method. We propose a transformation approach to model the
functionality of a mapped SET array as a conjunctive normal
form formula. Then, the problem that whether the SET array is
functionally equivalent to its specification circuit can be solved
with a SAT solver. The experimental results show that the
proposed method can successfully verify correct and incorrect
SET array implementations with reasonable verification time.

Index Terms—Boolean satisfiability problem, functional equiv-
alence checking, reconfigurable binary decision diagram-based
single-electron transistor arrays.

I. Introduction

S INGLE-ELECTRON transistors (SETs) [8], which work
with only a few electrons during their switching oper-

ations, have been attracting great attention from researchers
in the field of semiconductor nanotechnology due to their
ultralow power consumption. Numerous SET demonstrations
at the room temperature have also proved that SETs are one of
the most possible candidates that could replace conventional
complementary metal-oxide-semiconductor (CMOS) devices
for future low-power and high-density integrated circuits [10],
[14], [15], [18], [20], [21], [23].

Recently, some studies on the design of architectures using
SETs were proposed. Because SETs have poor driving capa-
bility and poor threshold control due to one or few electron
involvement in the switching process, they are not suitable for
the conventional CMOS-based logic implementation. To solve
this problem, a novel binary decision diagram (BDD)-based

Manuscript received September 27, 2012; revised February 6, 2013; ac-
cepted May 20, 2013. Date of current version September 16, 2013. This paper
was recommended by Associate Editor Y. Chen.

Yung-Chih Chen is with the Department of Computer Science and
Engineering, Yuan Ze University, Taoyuan 32003, Taiwan (e-mail:
ycchen.cse@saturn.yzu.edu.tw).

Chun-Yao Wang and Ching-Yi Huang are with the Department of Computer
Science, National Tsing Hua University, Hsinchu 30013, Taiwan (e-mail:
wcyao@cs.nthu.edu.tw; s9862516@m98.nthu.edu.tw).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2013.2267453

Fig. 1. (a) BDD-based logic architecture using SETs. (b) Node device.
(c) Behavior of a node device.

[2] logic architecture was proposed as a suitable candidate for
implementing Boolean circuits using SETs [1]. A Boolean cir-
cuit can be implemented by mapping its BDD onto the BDD-
based logic architecture, which is represented as a hexagonal
nanowire network controlled by Schottky wrap gates [9], [11].

In a hexagonal nanowire network, a node device, which
corresponds to a BDD node, has two edges as shown in
Fig. 1(a) and (b). It receives the current from the preceding
device through either the left or right edges controlled by the
variable, and sends the current to the following devices. For
example, in Fig. 1(c), when the control variable, xi, equals 0
(or 1), the node device receives the current through the left
(or right) edge. To realize a node device, each edge (left or
right) is implemented with a wrap-gate SET device, and a
variable is applied to control the conductivity. Additionally,
there is a current source, which corresponds to the 1 terminal
of a BDD, at the bottom, and there is a current detector at the
root. When the input control variables establish a conducting
path from the current source to the root so that the current
is detected, the output value of the implemented Boolean
circuit is 1; otherwise, it is 0. For example, Fig. 2(a) shows
an implementation of a1 ⊕ b1 ⊕ (a0b0).

However, the realization of the previous BDD-based logic
architecture, as shown in Fig. 2(a), is fixed and not amend-
able to functional reconfiguration due to the physical etching
process involved in its realization. Furthermore, if any of the
nanowire segments or the wrap gates is defective, the whole
circuit becomes nonfunctional. This is a significant limitation
considering that nanowires and few-electron nanodevices tra-
ditionally suffered from the variability and reliability issues.

Thus, to increase the flexibility and reliability of the BDD-
based logic architecture, a programmable version of SET

0278-0070 c© 2013 IEEE

1474 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 10, OCTOBER 2013

Fig. 2. (a) Example of BDD-based logic architecture using SETs. Missing
edges of hexagons are physically etched. (b) Example of reconfigurable BDD-
based SET array.

device with wrap-gate-tunable tunnel barriers was proposed
[7]. This device can operate in three distinct operation modes:
1) active, 2) open, and 3) short based on the wrap-gate bias
voltages, and thus, enables the BDD-based logic architecture
to be functionally reconfigurable. For example, Fig. 2(b) shows
a reconfigurable BDD-based SET array that also implements
a1⊕b1⊕(a0b0). In [17], the simulation to study the electrostatic
properties of the programmable SET device was presented
and the results showed that it can provide an order of magni-
tude lower energy-delay than the CMOS device. Furthermore,
recent experimental work [12], [13] has presented a wrap-
gate SET, and the measured characteristics showed that it is
capable of operating in three distinct operation modes. This
experimental device can be considered a practical realization
of the programmable SET device [7].

In addition to the advances of SET array realization, a
computer-aided design (CAD) technique that maps a Boolean
circuit onto an SET array was proposed [4] and improved [5],
[6]. The technique increases the efficiency of the SET array
mapping, which was done with manual efforts [7]. However,
no matter what mapping methods (manual or automatic) are
used, how to verify the mapping results is still an open problem
and an automatic verification method is desirable for the SET
arrays to be promising. Thus, in this paper, we address the
problem and develop a SAT-based verification method.

Given a mapped SET array A and its specification circuit C,
to check their equivalence, we propose a method to transform
A into a CNF formula. Then, we transform the verification
problem into a Boolean SAT problem, and use a SAT solver,
MiniSat [24], to determine the equivalence of C and A.
However, since a complete CNF formula for a larger SET array
could have a great number of variables, making the formula
hard to solve, we further introduce a simpler transformation
method. The simpler transformation method generates a
smaller CNF formula but could increase the number of SAT
solving calls required for achieving the verification. Thus,
we further exploit the learned counterexamples to speedup
the verification process by reducing the number of SAT
solving calls.

In the experiments, to show the effectiveness and the
efficiency of the proposed method on verifying correct and

Fig. 3. (a) Reconfigurable BDD-based SET array. (b) Example of a ⊕ b.

Fig. 4. Example of BDD-based SET array.

incorrect SET array implementations, we used the automatic
mapping method [4] to generate correct implementations for
a set of MCNC benchmarks [22]. Additionally, we injected
errors into the implementations to create incorrect implementa-
tions. The experimental results show that the proposed method
can successfully and efficiently verify both the correct and the
incorrect implementations.

To the best of our knowledge, this is the first work that
addresses the verification problem of the reconfigurable BDD-
based SET arrays. Due to the unique structure of the SET
arrays, SET array verification is more difficult than the con-
ventional combinational verification. The existing verification
techniques [16] cannot be directly applied to solve the ver-
ification problem. Thus, the main contribution of this paper
is making the problem solvable by an existing technique. In
addition to the previous synthesis method [4], the proposed
verification method is also an important CAD technique for
the emerging SET arrays.

The rest of this paper is organized as follows. Section II
briefly introduces the reconfigurable BDD-based SET arrays
[7], and gives some notations and background. Section III
formulates the problem considered in this paper. Section IV
presents the proposed verification method with a complete
CNF formula. Section V presents the proposed verification
method with a simpler CNF formula. Finally, the experimental
results and conclusion are presented in Sections VI and VII.

II. Background

A. Reconfigurable BDD-Based SET Array

A reconfigurable BDD-based SET array [7] can be repre-
sented as an hexagonal architecture as shown in Fig. 3(a).
In the architecture, there is a current detector at the top that
measures the current coming from the bottom (current source).
All the vertical edges are conducting nanowires. Each sloping

CHEN et al.: VERIFICATION OF RECONFIGURABLE BINARY DECISION DIAGRAM-BASED SINGLE-ELECTRON TRANSISTOR ARRAYS 1475

edge corresponds to a programmable SET device and can
be configured as active high, active low, short, or open. An
active high edge indicates that the corresponding SET device
operates in the active mode and is controlled by a variable x.
When x = 1 (or x = 0), the active high edge is conducting (or
nonconducting). Conversely, an active low edge is an electrical
opposite of an active high edge. The corresponding SET device
also operates in the active mode, but is controlled by the
complement of x, i.e., x’. A short (or open) edge is electrical
short (or open), where the corresponding SET device operates
in the short (open) mode. Furthermore, all the active edges
(high or low) at the same row are controlled by a same control
variable.

A combinational Boolean circuit can be implemented by
using an SET array. In the SET array, each control variable
corresponds to a primary input (PI) of the Boolean circuit. All
the control variables control the conductivities of the active
edges, determining whether there exists a conducting path so
that the current can pass through, and then be detected by
the current detector. For example, Fig. 3(b) shows an SET
array implementing a ⊕ b. When a �= b, the current can be
detected by passing through either the left path or the right
path. However, if a = b, there is no conducting path and the
current cannot be detected.

Moreover, Fig. 4 shows another example that implements a
Boolean function with the product terms: {(0100), (00 − −),
(11 − −), (1000), (101−)} (− denotes don’t care). When the
input pattern is (101−), the current can be detected by passing
through the highlighted path. According to this example, we
can easily observe that an SET array is actually not a BDD,
although it is named a BDD-based architecture. For example,
a BDD node must have two different edges: one is positive
and the other one is negative. However, it is not necessarily
true for a node in an SET array. Additionally, an SET array is
a planar architecture, which has no crossing edge, but a BDD
could have crossing edges. Two adjacent nodes at the same
row in an SET array must connect to a same node at the next
row, but it is not necessarily true for a BDD.

In this paper, we assume that an SET array has only one
root. That is, the specification circuit of the SET array has
only one primary output (PO). This assumption is reasonable,
because the automatic synthesis method [4] only considers
single-output circuits and an n-output circuit is divided into
n single-output sub-circuits. Additionally, the proposed verifi-
cation method can easily be extended to verify an SET array
that has multiple roots by considering the roots one by one.

B. Notations

For ease of discussion, we use an abstract graph to rep-
resent a reconfigurable BDD-based SET array. Because all
the vertical edges in an SET array as shown in Fig. 3(a)
are electrical short and nonconfigurable, we only preserve the
configurable edges, i.e., the sloping edges, to form a diamond-
shaped network as shown in Fig. 5(a). In this diamond-shaped
network, the top of a diamond is denoted as a node n. Each
node n has a unique location (x, y) with respect to the root
node, which represents the current detector and is located at
(0, 0). The value of y increases from top to bottom. The value

Fig. 5. Abstract diamond-shaped network.

of x increases and decreases from center to right and left,
respectively. For convenience, let nx y denote the node located
at (x, y). Furthermore, each node n has a pair of left and right
edges. Fig. 5(b) shows the abstract network of the example in
Fig. 3(b).

C. Boolean Satisfiability Problem and Tseitin Transformation

In Boolean logic, a formula is said to be in CNF if it is a
conjunction of one or more clauses. Each clause is a disjunc-
tion of one or more literals, and each literal is a variable or a
negated variable. Boolean satisfiability problem is a problem
of finding an assignment under which a given CNF formula
evaluates to true (i.e., the formula is satisfiable) or proves that
there is no such assignment (i.e., the formula is unsatisfiable).
Due to the recent advances in SAT solving techniques [24],
[25], the Boolean satisfiability problem could be practically
tractable, even though it is theoretically intractable.

The Tseitin transformation [19] is a method to transform
a Boolean logic function into a CNF formula that represents
the logical relationships among the variables in the Boolean
logic function. For example, an AND gate with one output
variable o and two input variables a and b can be transformed
into the following form: (¬a ∨ ¬b ∨ o) ∧ (a ∨ ¬o) ∧ (b ∨ ¬o).
For making the formula evaluate to true, the assignments of
a, b, and o must satisfy the logical behavior of the AND gate.
Similarly, an XOR gate with one output variable o and two
input variables a and b can be represented as (¬a∨¬b∨¬o)∧
(¬a ∨ b ∨ o) ∧ (a ∨ ¬b ∨ o) ∧ (a ∨ b ∨ ¬o).

In this paper, the proposed method for transforming a
mapped SET array into a CNF formula works like the Tseitin
transformation. With this method, we can transform the veri-
fication problem into a Boolean SAT problem.

III. Problem Formulation

The problem formulation of this paper is as follows.
Given a mapped SET array and its specification circuit, ver-

ify their functional equivalence. For example, the SET array in
Fig. 3(b) can be considered a mapping for a⊕b. Our objective
is to verify whether the functionality of the SET array is
exactly identical to a ⊕ b.

To verify the equivalence, a straightforward method is
functional simulation. Given an input pattern, the conductivity
of each edge is first determined based on the input values.

1476 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 10, OCTOBER 2013

Fig. 6. Example of SET array simulation. (a) Correct implementation.
(b) Incorrect implementation.

Then, we can start from the root node to search if there is a
conducting path from the root node to the bottom. If so, the
output value is one; otherwise, it is 0. For example, Fig. 6(a)
and (b) (taken from [4]), respectively, show a correct mapping
and an incorrect mapping for a Boolean circuit having the
product terms: {(111−0), (01−−0), (01111)}. Let us consider
Fig. 6(a) first. Suppose the input pattern is 11111, which is
not a minterm. The conducting edges with respect to 11111
are highlighted in bold format. Starting from the root node,
we can observe that these conducting edges cannot establish
a conducting path reaching the bottom, and thus the output
value is 0. However, in Fig. 6(b), for the same input pattern,
we can find a conducting path, n0 0 → n−1 1 → n0 2 →
n−1 3 → n0 4 → n1 3 → n2 2 → n3 3 → n2 4 → n1 5,
from the root node to the bottom. Thus, the current can reach
the current detector by passing through the highlighted path
and the mapping in Fig. 6(b) is incorrect. With this simulation
method, the verification problem can be solved by simulating
all the input patterns and checking their output responses one
by one. However, one concern about this method is that it
could be inefficient for verifying large circuits, since a large
number of input patterns need to be simulated.

Formal verification is an alternative and could be a better
solution. With the advances of SAT solving techniques [24],
[25], efficient SAT-based combinational equivalence checking
is becoming increasingly popular in combinational verifica-
tion. Two circuits under verification are first combined to
form a miter [3]. Then, the miter with the output value
1 is transformed into a CNF formula by using the Tseitin
transformation. Finally, a SAT solver is used to solve the CNF
formula for checking the equivalence of the two circuits. Here,
they are nonequivalent if and only if the formula is satisfiable.
Inspired by this verification method, if we can transform an
SET array into a CNF formula, the verification problem can be
easily solved. Thus, we propose a new transformation method
for the SET arrays. Due to the unique structure of the SET
arrays, the proposed transformation method is much more
complicated than the Tseitin transformation.

IV. SET Array Verification

In this section, we first present the method for transforming
a mapped SET array into a CNF formula. The complete
formula consists of four types of subformulas. We will sequen-
tially introduce them and use some examples to demonstrate
their necessity. Then, we present the overall verification flow.

Fig. 7. Type 1 CNF formulas for two adjacent nodes based on four different
types of edges. (a) Active high. (b) Active low. (c) Short. (d) Open.

A. Complete CNF Formula

Given a mapped SET array, a complete CNF formula must
satisfy the condition that the formula is satisfiable if and only
if the input and output values in the reported solution meet
the functionality of the SET array. Thus, with a complete
CNF formula, we can solve the SET array verification problem
with only one SAT solving call. The proposed four types of
subformulas as follows are derived based on this condition.

1) Type 1 CNF Formula: A mapped SET array is com-
posed of a set of configured edges that determine its function-
ality. To represent the functionality of the SET array, we can
first consider the logical relationship of each pair of adjacent
nodes based on the configured edge in between them.

First, let us consider an active high edge as shown in
Fig. 7(a). Suppose the active high edge is in between two
nodes nt and nd , and is controlled by a variable x. Accord-
ing to the behavior of an active high edge mentioned in
Section II-A, if x = 1, the edge is conducting, and therefore nt

and nd must have a same logical value. Conversely, if nt and nd

have different logical values, the edge must be nonconducting
and x = 0.1 However, please note that when the edge is
nonconducting, i.e., x = 0, nt and nd do not necessarily have
different logical values. Similarly, if nt and nd have a same
logical value, the edge is not necessarily conducting. For ease
of discussion, let nt = nd denote nt and nd have a same logical
value and nt �= nd denote they have different logical values.
The logical relationship of x, nt , and nd can be represented
with the formula: (¬x ∨ nt ∨ ¬nd) ∧ (¬x ∨ ¬nt ∨ nd). For
making the formula evaluate to true, if x = 1, nt and nd must
have a same logical value. That is, x = 1 implies nt = nd .
Conversely, nt �= nd implies x = 0.

Next, let us consider an active low edge as shown in
Fig. 7(b). Since an active low edge is an electrical opposite of
an active high edge, the logical relationship of x, nt , and nd can
be represented with the formula: (x∨nt ∨¬nd)∧(x∨¬nt ∨nd).
For making the formula evaluate to true, if x = 0, nt and nd

must have a same logical value. Thus, x = 0 implies nt = nd ,
and nt �= nd implies x = 1. Similarly, please note that x = 1
does not imply nt �= nd .

1(if P , then Q)≡(if not Q, then not P).

CHEN et al.: VERIFICATION OF RECONFIGURABLE BINARY DECISION DIAGRAM-BASED SINGLE-ELECTRON TRANSISTOR ARRAYS 1477

Fig. 8. CNF formulas for four different types of edges. (a) Active high.
(b) Active low. (c) Short. (d) Open.

For a short edge as shown in Fig. 7(c), since it is perma-
nently conducting, nt and nd always have a same logical value,
i.e., nt = nd . Thus, their logical relationship can be represented
with the formula: (nt ∨¬nd)∧ (¬nt ∨nd). As for an open edge
as shown in Fig. 7(d), since nt and nd have no direct logical
relationship based on the open edge, there is no CNF formula
for them.

Finally, for a mapped SET array, its Type 1 CNF formula is
the conjunction of the CNF formulas of all the pairs of adjacent
nodes in it. Furthermore, since the bottom of an SET array is
the current source, the values of the nodes at the bottom are
permanently one. The following formula is the Type 1 CNF
formula for the SET array in Fig. 5(b), which implements
a ⊕ b:

(¬a ∨ n0 0 ∨ ¬n−1 1) ∧ (¬a ∨ ¬n0 0 ∨ n−1 1) ∧
(a ∨ n0 0 ∨ ¬n1 1) ∧ (a ∨ ¬n0 0 ∨ n1 1) ∧

(b ∨ n−1 1 ∨ ¬n0 2) ∧ (b ∨ ¬n−1 1 ∨ n0 2) ∧
(¬b ∨ n1 1 ∨ ¬n0 2) ∧ (¬b ∨ ¬n1 1 ∨ n0 2) ∧

(n0 2).

(1)

Here, as mentioned in Section II-B, nx y denotes the node
located at (x, y). Because n0 2 is the current source, we add the
clause (n0 2) to force n0 2 = 1 when the formula is satisfied.

According to the example of (1), we can easily observe that
Type 1 CNF formula is not a complete CNF formula, because
the formula is satisfiable under a = 1, b = 1, and n0 0 = 1.
a = 1 and b = 1 actually generate 0 for a ⊕ b. One reason for
this is that Type 1 CNF formula does not consider the current
flow in an SET array. Thus, the situation that n0 0 is one but
the current actually does not reach n0 0 occurs.

2) Type 2 CNF Formula: Type 2 CNF formula is derived
by considering the current flow on each edge. For each edge e,
because when e is conducting, the current flow, if any, can pass
through e from either down to up or up to down, we use two
variables eu and ed to represent the two different directions.
Here, eu = 1 means that the current, if any, can pass through
e from down to up. Conversely, eu = 0 means that the current
cannot pass through e from down to up. Furthermore, ed = 1
means that the current, if any, can pass through e from up to
down. Thus, when e is conducting, one, and only one, of eu and
ed must be one. Conversely, when e is nonconducting, both eu

and ed must be 0. Thus, for an active high edge controlled by a

Fig. 9. (a) Node n and its four adjacent nodes, nul, nur , nll, and nlr .
(b) Boolean function of n.

variable x, the CNF formula for it is (¬x∨eu∨ed)∧(¬x∨¬eu∨
¬ed)∧ (x∨¬eu)∧ (x∨¬ed). For an active low edge, the CNF
formula is (x∨eu∨ed)∧(x∨¬eu∨¬ed)∧(¬x∨¬eu)∧(¬x∨¬ed).
If e is a short edge, which is permanently conducting, the CNF
formula is (eu ∨ed)∧(¬eu ∨¬ed). Furthermore, if e is an open
edge, which is permanently nonconducting, the CNF formula
is (¬eu) ∧ (¬ed). The CNF formulas for these four different
types of edges are summarized in Fig. 8.

Thus, the Type 2 CNF formula is the conjunction of the
CNF formulas of all the edges. For example, Fig. 5(b) has
four edges (two active high edges and two active low edges),
and therefore, the Type 2 CNF formula for this SET array is
as follows:

(¬a ∨ e(n0 0 l)u ∨ e(n0 0 l)d) ∧ (¬a ∨ ¬e(n0 0 l)u ∨ ¬e(n0 0 l)d) ∧
(a ∨ ¬e(n0 0 l)u) ∧ (a ∨ ¬e(n0 0 l)d)

(a ∨ e(n0 0 r)u ∨ e(n0 0 r)d) ∧ (a ∨ ¬e(n0 0 r)u ∨ ¬e(n0 0 r)d) ∧
(¬a ∨ ¬e(n0 0 r)u) ∧ (¬a ∨ ¬e(n0 0 r)d)

(b ∨ e(n−1 1 r)u ∨ e(n−1 1 r)d) ∧ (b ∨ ¬e(n−1 1 r)u ∨ ¬e(n−1 1 r)d) ∧
(¬b ∨ ¬e(n−1 1 r)u) ∧ (¬b ∨ ¬e(n−1 1 r)d)

(¬b ∨ e(n1 1 l)u ∨ e(n1 1 l)d) ∧ (¬b ∨ ¬e(n1 1 l)u ∨ ¬e(n1 1 l)d) ∧
(b ∨ ¬e(n1 1 l)u) ∧ (b ∨ ¬e(n1 1 l)d).

(2)

Here, e(nx y l) and e(nx y r) denote the left and the right edges
of the node nx y, respectively.

3) Type 3 CNF Formula: Next, we consider the condition
for a node n to be one, i.e., n receives the current. Without
loss of generality, we assume that n has four adjacent nodes:
the upper-left node nul, the upper-right node nur, the lower-
left node nll, and the lower-right node nlr as shown in
Fig. 9(a). The variables representing the current flow on the
corresponding edges are shown as well. For n to be one, the
current must pass through at least one out of nul, nur, nll,
and nlr, and then reaches n. For example, if the current passes
through nul and nul’s right edge e(nul r), i.e., nul = e(nul r)d = 1,
then n is one. Similarly, if nur = e(nur l)d = 1, nll = e(n l)u = 1,
or nlr = e(n r)u = 1, n is one as well. However, if the current
cannot reach n, n is 0.

Thus, we can use a Boolean function to represent the
functionality of n based on its adjacent nodes: n = nule(nul r)d +
nure(nur l)d + nlle(n l)u + nlre(n r)u as shown in Fig. 9(b). Then,
the CNF formula of n can be obtained by using the Tseitin
transformation to transform the Boolean function into a CNF
formula. Finally, the Type 3 CNF formula is the conjunction of
the CNF formulas of all the nodes. Here, we use Tseitin(ni) to

1478 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 10, OCTOBER 2013

Fig. 10. Cyclic conducting path problem. (a) Example of cyclic conducting
path. (b) Two paths I0 and I1. (c) Boolean functions of I0 and I1.

denote the CNF formula of a node ni and use
∧

ni∈A Tseitin(ni)
to denote the Type 3 CNF formula.

Before introducing Type 4 formula, let us consider the
example in Fig. 5(b) again. If we use the CNF formulas of the
Types 1–3 to represent the SET array, the formula is Formula
(1) ∧ Formula (2) ∧ ∧

ni∈A Tseitin(ni), and the formula can
correctly represent the SET array. For example, when a �= b,
the formula is satisfiable only under n0 0 = 1, which can be
easily verified based on (1). Furthermore, when a = 1 and
b = 1, the formula is satisfiable only under n0 0 = 0. This is
because n−1 1 = 1 and e(n0 0 l)u = 1 are necessary for n0 0

to be one, when a = 1 and b = 1. However, since e(n−1 1 r)

is nonconducting, n−1 1 is 0, and thus n0 0 is 0. Similarly,
when a = 0 and b = 0, the formula is satisfiable only under
n0 0 = 0.

Although the formula is complete for the SET array in
Fig. 5(b), there are some other cases that the formula cannot
work for. Let us consider the SET array in Fig. 10(a). When
the input pattern is (a = 1, b = 0, c = 1, d = 1), the output
value is 0. However, if we use the CNF formulas of the Types
1−3 to represent the SET array, the formula is satisfiable under
n0 0 = 1, when a = 1, b = 0, c = 1, and d = 1. This is because
the four conducting edges highlighted in bold format, e(n0 0 r),
e(n0 0 l), e(n−1 1 r), and e(n1 1 l), form a cyclic conducting path.
Here, n−1 1 = 1 and e(n0 0 l)u = 1 result in n0 0 = 1. n0 0 = 1
and e(n0 0 r)d = 1 result in n1 1 = 1. n1 1 = 1 and e(n1 1 l)d = 1
result in n0 2 = 1. n0 2 = 1 and e(n−1 1 r)u = 1 result in
n−1 1 = 1. There is no conflict among the sufficient conditions
for n0 0, n−1 1, n0 2, and n1 1 to be one. Thus, they can be
one without receiving the current.

To solve this cyclic conducting path problem, we need to
consider whether there really exists a conducting path from the
bottom to the root. If so, n0 0 is one; otherwise, n0 0 is 0. That
is, we need a CNF formula that considers all the possible paths
from the bottom to the root. Type 4 CNF formula is derived
based on this requirement.

4) Type 4 CNF Formula: For ease of discussion,
we first use the example in Fig. 10(a) to demonstrate
Type 4 CNF formula. In this SET array, there are totally
two possible paths from the bottom to the root. Let I0

and I1 denote these two paths as shown in Fig. 10(b).
When I0 is one and I1 is one, I0 and I1 are conducting,
respectively. Thus, the functionality of I0 can be represented
as I0 = e(n−1 3 r)un−1 3e(n0 2 l)un0 2e(n−1 1 r)un−1 1e(n0 0 l)u

as shown in Fig. 10(c). Additionally, the func-
tionality of I1 can be represented as I1 =
e(n−1 3 r)un−1 3e(n0 2 l)un0 2e(n1 1 l)un1 1e(n0 0 r)u.

Fig. 11. Example of finding all possible paths between root and bottom.
(a) Mapped SET array. (b) Undirected graph with respect to array in (a).

Furthermore, when n0 0 is one, at least one of I0 and
I1 must be one. Thus, the Type 4 CNF formula for the SET
array is (¬n0 0 ∨ I0 ∨ I1) ∧ Tseitin(I0) ∧ Tseitin(I1). Here,
Tseitin(Ii) denotes the CNF formula of Ii obtained by using
the Tseitin transformation.

To compute the Type 4 CNF formula for an SET array, we
need to identify all the possible paths from the bottom to the
root in the array. A computation method is as follows. First,
an SET array is seen as an undirected graph. Because an open
edge is permanently nonconducting, the edges with respect to
the open edges can be removed. Then, we can find all the
possible paths from the root to one of the nodes at the bottom
by using the depth-first search (DFS) starting from the root.
For example, the SET array in Fig. 11(a) can be modeled as
an undirected graph as shown in Fig. 11(b). Here, the open
edges are removed. Starting from n0 0, we use the DFS to
find all the possible paths that can reach either n0 4 or n2 4.
In this example, there are totally four possible paths.

Finally, the complete CNF formula for a mapped SET array
is the conjunction of the CNF formulas of the Types 1−4.
For example, the complete CNF formula for the SET array in
Fig. 5(b) is Formula (1) ∧ Formula (2) ∧ ∧

ni∈A Tseitin(ni) ∧
(¬n0 0 ∨ I0 ∨ I1) ∧ Tseitin(I0) ∧ Tseitin(I1). Here, I0 and I1

denote the two conducting paths (left and right) in the SET
array.

Let us consider the correctness of the complete CNF for-
mula. For an input pattern that results in a conducting path
from n0 0 to the bottom, n0 0 = 1 is necessary for making
the formula evaluate to true due to the Type 1 CNF formula.
Furthermore, for an input pattern that does not result in any
conducting path from n0 0 to the bottom, i.e., all the possible
paths are nonconducting, n0 0 = 0 is necessary for making
the formula evaluate to true due to the Type 4 CNF formula.
Thus, the functionality of a mapped SET array can be correctly
represented by the complete CNF formula.

Because the conventional combinational circuits are acyclic,
the Tseitin transformation can work without considering the
cyclic path problem. However, the cyclic conducting path
problem could happen in an SET array. Thus, the proposed
transformation method is more complicated than the Tseitin
transformation. It also implies that the verification of an SET
array is more difficult than that of a conventional combina-
tional circuit.

B. Overall Verification Flow

With the proposed transformation method, we can solve
the SET array verification problem with the verification flow

CHEN et al.: VERIFICATION OF RECONFIGURABLE BINARY DECISION DIAGRAM-BASED SINGLE-ELECTRON TRANSISTOR ARRAYS 1479

Fig. 12. Verification flow.

as shown in Fig. 12. Given a mapped SET array and its
specification circuit, we first construct a miter by connecting
their POs with an additional XOR gate o. Next, we transform
the miter into a CNF formula with the proposed transformation
method and the Tseitin transformation. Then, we use a SAT
solver to check whether the formula is satisfiable or not under
the constraint that o equals one. Finally, if the formula is sat-
isfiable, the SET array implementation is incorrect; otherwise,
it is correct.

Although the above method can solve the verification prob-
lem, it could be practically inefficient for large SET arrays.
This is because constructing a complete CNF formula involves
identifying all the possible paths from the root to the bottom,
which is a computation-intensive process. Additionally, mod-
eling all these possible paths could create a very large CNF
formula. Thus, we further propose a simpler formula to replace
the Type 4 CNF formula for reducing the computational
complexity. This simpler formula results in a smaller formula
but increases the number of SAT solving calls required for
completing the verification process. To reduce the number of
SAT solving calls, we further propose a method to make the
best use of the counterexamples.

V. Enhanced Verification Flow

In this section, we first present the simpler CNF formula.
Then, we introduce how to use the counterexamples to reduce
the number of SAT solving calls. Finally, we present the
verification flow based on the simpler CNF formula.

A. Simpler CNF Formula

Unlike the Type 4 CNF formula, a simpler formula models
the partial paths between two rows rather than the full paths
from the root to the bottom. For example, suppose the two
rows in Fig. 13(a) are two adjacent rows in an SET array.
Here, there are four edges between these two rows, and thus,
there are totally four paths that the current from the lower
row can pass through to reach the upper row as shown in Fig.
13(b). Because the current from the bottom must pass each
row in an SET array for reaching the root, at least one of the
four partial paths must be conducting for n0 0 to be one. Let

Fig. 13. Example of all partial paths between two adjacent rows. (a) Four
partial paths between rows. (b) Details of partial paths.

I0, I1, I2, and I3 denote these four partial paths, respectively.
The functionalities of I0, I1, I2, and I3 can be represented as
I0 = n2e(n0 l)un0, I1 = n3e(n0 r)un0, I2 = n3e(n1 l)un1, and I3

= n4e(n1 r)un1. Since at least one of I0 = 1, I1 = 1, I2 = 1,
and I3 = 1 is necessary for n0 0 to be one, the CNF formula
for these two adjacent rows is (¬n0 0 ∨ I0 ∨ I1 ∨ I2 ∨ I3) ∧
Tseitin(I0) ∧ Tseitin(I1) ∧ Tseitin(I2) ∧ Tseitin(I3).

For a mapped SET array, the CNF formula is the con-
junction of the CNF formulas for each two adjacent rows
in the array. This CNF formula can be used to replace the
Type 4 CNF formula to form a simpler CNF formula in
the proposed verification flow. However, because not all the
possible paths from the bottom to the root are modeled in
the simpler formula, there may exist some invalid solutions
that satisfy the simpler formula. That is, there may exist an
input pattern that actually generates 0 for the SET array but
satisfies the simpler formula under n0 0 = 1. Thus, in the
new verification flow, when the CNF formula for the miter is
satisfied, we need to check whether the reported solution is
valid or not. Please note that for an input pattern that results
in a conducting path from n0 0 to the bottom, n0 0 = 1 is still
necessary for making the simpler formula evaluate to true due
to the Type 1 CNF formula. That is, there is no input pattern
that actually generates one for the SET array but satisfies the
simpler formula under n0 0 = 0.

The new verification flow is shown in Fig. 14. Compared to
the original flow in Fig. 12, the main difference is that when
the formula is satisfied, we check whether the reported solution
s is valid or not. If s is valid, the SET array implementation is
incorrect. Conversely, If s is invalid, i.e., s is a counterexample,
we add the corresponding clause into the formula to prevent
the SAT solver from finding s again, and then repeat the SAT
solving process.

Although the size of the formula decreases in the new
verification flow, the flow possibly spends much time on
iteratively finding invalid solutions, which affects its efficiency.
To reduce the number of invalid solutions, we can increase
the row count k of the adjacent rows under consideration and
model all the partial paths between the lowest and the highest
rows in the k adjacent rows; that is, to make the CNF formula
more elaborate. Similarly, at least one conducting path from
the lowest row to the highest row in the k adjacent rows is
necessary for n0 0 to be 1.

Fig. 15(a) shows an example of considering three adja-
cent rows. Suppose these three rows have three, two, and
three nodes, respectively. There are totally eight partial paths
between the lowest and the highest rows. Furthermore, for

1480 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 10, OCTOBER 2013

Fig. 14. Verification flow with a simpler CNF formula.

the example of considering four adjacent rows in Fig. 15(b),
there are totally 16 paths from the lowest row to the highest
row. These paths can be identified by computing all the paths
between each pair of nodes: one is at the highest row and the
other one is at the lowest row. Here, because a conducting
edge is bidirectional, before the current reaches the highest
row, it can pass through the edges in the middle row from up
to down. Thus, both the two directions for the edges in the
middle row need to be considered. However, for the edges in
the highest and the lowest rows, modeling two directions for
them is not necessary. This is because in our modeling, exactly
one node in the highest and the lowest rows of the considered
k adjacent rows can be reached by the current flow.

In general, increasing the row count k could reduce the
number of counterexamples but increases the size of the CNF
formula due to more partial paths. Thus, there is a tradeoff
between the number of counterexamples and the size of the
CNF formula. When k equals the height of the SET array, the
resultant CNF formula is identical to the Type 4 CNF formula
if we model all the paths from the bottom to the root.

In addition to increasing k, another method is to use the
learned counterexample to prune the other counterexamples
from the solution space. This method to be presented in the
next subsection could reduce the number of SAT solving calls
without largely increasing the size of the CNF formula.

B. Counterexample Addition

Suppose an SET array has l control variables, x0 ∼ xl−1, and
(x0 = v0, x1 = v1, ..., xl−1 = vl−1), where v0 ∼ vl−1 are either
0 or one, is a counterexample reported by the SAT solver. To
prevent the SAT solver from finding the same solution again,
we generally add the clause (s0 ∨ s1 ∨ ... sl−1) into the CNF
formula. Here, si is ¬xi if vi = 1; otherwise, si is xi.

For example, let us consider the SET array in Fig. 11(a).
The input pattern (a = 1, b = 0, c = 1, d = 1) can make
a simpler CNF formula with k = 2 evaluate to true under
n0 0 = 1, but it actually does not result in a conducting path
from the bottom to the root. Suppose we have identified that
it is an invalid solution, we add the clause (¬a∨b∨¬c∨¬d)
into the CNF formula to force the SAT solver to find the

Fig. 15. Examples of all partial paths between lowest and highest rows in
(a) three adjacent rows and (b) four adjacent rows.

other solutions. To determine whether the input pattern (a =
1, b = 0, c = 1, d = 1) is invalid or not, we can check if
(a) ∧ (¬b) ∧ (c) ∧ (d) ∧ (¬n0 0) ∧ fT1 is satisfiable. If so, it is
an invalid solution. Here, fT1 denotes the Type 1 CNF formula
of the SET array.

With this method, only the identified counterexample can
be pruned at each iteration. To make the better use of the
counterexample, we can add the clauses by considering the
conductivity of each edge, so that more than one solution could
be pruned at each iteration.

Let us consider the example in Fig. 11(a) again. We know
that the input pattern (a = 1, b = 0, c = 1, d = 1) is
an invalid solution. For this input pattern, e(n−1 3 r), e(n2 0 r),
and all the open edges are nonconducting in the SET array.
Because (a = 1, b = 0, c = 1, d = 1) is invalid, all the
input patterns that simultaneously cause e(n−1 3 r) and e(n2 0 r)

to be nonconducting cannot result in a conducting path either.
Thus, these input patterns must be invalid as well if they make
the simpler CNF formula evaluate to true under n0 0 = 1. In
other words, a valid input pattern that results in a conducting
path must cause at least one of e(n−1 3 r) and e(n2 0 r) to be
conducting. Thus, we can create a clause to force the SAT
solver to find a solution that satisfies the requirement.

To determine whether an edge e is nonconducting under an
invalid input pattern, we can check if both eu and ed are 0
in the reported solution. If so, e is nonconducting; otherwise
e is conducting. Additionally, to make an edge e conducting,
an input pattern must result in either eu = 1 or ed = 1. Thus,
suppose an invalid pattern results in l nonconducting edges,
e(0) ∼ e(l−1), except the open edges, we add the clause (e(0)u

∨ e(0)d ∨ ... e(l−1)u ∨ e(l−1)d ∨ ¬n0 0) into the CNF formula
to force the SAT solver to find an input pattern that can make
at least one out of the l nonconducting edges conducting for
n0 0 to be one.

In the example in Fig. 11(a), after identifying that the input
pattern (a = 1, b = 0, c = 1, d = 1) is invalid, we add (e(n2 0 r)u

∨ e(n2 0 r)d ∨ e(n−1 3 r)u ∨ e(n−1 3 r)d ∨ ¬n0 0) rather than
(¬a ∨ b ∨ ¬c ∨ ¬d) into the CNF formula. Then, in addition
to the input pattern itself, the solutions with (a = 1, b = 0,
c = 0, d = 1), (a = 1, b = 1, c = 0, d = 1), and (a = 1, b = 1,
c = 1, d = 1) can be pruned as well. This is because they
make e(n−1 3 r) and e(n2 0 r) nonconducting simultaneously.

VI. Experimental Results

We implemented the proposed verification method in C
language. The experiments were conducted on a 3.0 GHz

CHEN et al.: VERIFICATION OF RECONFIGURABLE BINARY DECISION DIAGRAM-BASED SINGLE-ELECTRON TRANSISTOR ARRAYS 1481

TABLE I

CPU Time for Verifying Correct SET Array Implementations

Benchmark |PI| |PO| |Hex.| Mk=0 Mk=2 Mk=3 Mk=4

C17 5 2 16 0.01 0.01 0.01 0.01
cm138a 6 8 167 0.01 0.01 0.01 0.01

x2 10 7 109 0.01 0.01 0.01 0.01
cm85a 11 3 290 0.01 0.01 0.01 0.01
cm151a 12 2 110 0.01 0.01 0.01 0.01
cm162a 14 5 584 0.01 0.01 0.01 0.01

cu 14 11 259 0.01 0.01 0.01 0.02
cmb 16 4 228 0.01 0.01 0.01 0.01

cm163a 16 5 489 0.01 0.01 0.01 0.02
pm1 16 13 475 0.01 0.01 0.01 0.01
pcle 19 9 254 0.01 0.01 0.02 0.01
cc 21 20 617 0.01 0.01 0.01 0.01
i1 25 16 635 0.01 0.01 0.01 0.01

pcler8 27 17 1038 0.04 0.04 0.02 0.03
c8 28 18 894 0.01 0.01 0.02 0.02

unreg 36 16 1288 0.02 0.01 0.02 0.02
term1 34 10 34246 5.57 8.21 6.47 9.86
count 35 16 1936 0.04 0.02 0.04 0.05

b9 41 21 4383 0.07 0.07 0.05 0.12
cht 47 36 2380 0.03 0.03 0.03 0.04

apex7 49 37 12435 0.36 0.44 0.44 0.71
example2 85 66 13425 0.19 0.23 0.21 0.29

Total 6.46 9.19 7.44 11.29

Linux platform (CentOS 4.8). The experiments include two
parts. The first one focuses on verifying correct SET array
implementations and the second one focuses on verifying
incorrect SET array implementations. To generate correct
implementations, we used the automatic mapping approach
[4] to map a set of benchmarks from the MCNC benchmark
suite [22]. Since the SET array under consideration has only
one PO, we mapped the function associated with each PO
in a benchmark once at a time. Additionally, for each correct
implementation, we injected different errors into it to generate
incorrect implementations.

To show the importance of the Type 4 CNF formula and
its effect on the verification efficiency, we implemented the
proposed method with four versions. In the first version, the
CNF formula for an SET array consists of the formulas of
the Types 1–3 only without the Type 4 CNF formula, and this
version is denoted as Mk=0. In the second version denoted as
Mk=2, the CNF formula involves the Type 4 CNF formula with
k = 2. That is, the partial paths between two adjacent rows are
considered in this version. In the third and the fourth versions
denoted as Mk=3 and Mk=4, the CNF formulas involve the Type
4 CNF formula with k = 3 and k = 4, respectively.

Table I summarizes the experimental results of verifying
the correct SET array implementations. Column 1 lists the
benchmarks. Columns 2 and 3 list the numbers of PIs and
POs in each benchmark, respectively. Column 4 lists the size
of each SET array implementation in terms of the number
of hexagons. Columns 5–8 list the spent verification time
measured in second by the four versions of the proposed
verification method, respectively.

The experimental results show that all the four versions
can efficiently verify the correct implementations. Only the
benchmark term1 costs more than one second. This efficiency
comes from the fact that the automatic mapping approach does
not result in cyclic conducting paths in a correct SET array

implementation, and thus all the four versions require only
one SAT solving call for solving the verification problem.
In general, when the value of k increases, the verification
time increases as well. This is because a larger k results in a
larger formula. Thus, Mk=0, which always constructs a smallest
formula among the four versions, is better than the others for
verifying the correct implementations. However, it is possible
that a larger formula is easier to be solved than a smaller
formula when the larger formula has a smaller search space. It
is the reason why Mk=3 is better than Mk=2 in the experiments.

Next, let us consider the experiments of verifying incorrect
SET array implementations. To inject an error into an SET
array implementation, we randomly select one node and one of
its edges, and then change the status of the edge. For example,
if the status of a randomly selected edge is active high, active
low, or open, we change it to short. However, if the status is
short, we change it to active high. For comparison, we generate
four different types of incorrect implementations by injecting
different numbers of errors: one, three, five, and ten errors.
Similarly, we use the four different versions, Mk=0, Mk=2,
Mk=3, and Mk=4, to verify the incorrect implementations. Each
benchmark is repeatedly executed ten times for measuring the
average results.

The experimental results show that all the four versions can
successfully identify the incorrect implementations. Addition-
ally, they are still very efficient for most of the benchmarks in
the same benchmark set. Thus, we only show and discuss the
experimental results of the benchmarks that cost more than
one second for verification to be completed.

Table II shows the experimental results of the benchmark
term1. Column 1 lists the numbers of injected errors. Columns
2, 4, 6, and 8 list the spent verification time measured in
second by Mk=0, Mk=2, Mk=3, and Mk=4, respectively. Fur-
thermore, the numbers of solving calls required by the four
versions of the method are listed in Columns 3, 5, 7, and 9,
respectively.

According to Table II, we can observe that k = 2 is the best
choice for verifying most of the incorrect implementations.
Please note that finding out a valid solution is enough to
determine the implementation is incorrect. Thus, the verifi-
cation time depends on how much time is spent to find out a
valid solution. When the number of errors is fixed, although
increasing the value of k can reduce the number of invalid
solutions, it does not necessarily imply that a valid solution
can be identified more quickly. Thus, it is possible that Mk=4

requires more SAT solving calls than Mk=3 for some cases,
and therefore, spends more verification time, as can be seen
in the five-error case of this benchmark.

Furthermore, when the value of k is fixed, increasing the
number of errors could result in more cyclic conducting
paths, increasing the number of invalid solutions, and thus
more verification time is required. However, increasing the
number of errors could also result in more valid solutions,
increasing the possibility that the SAT solver finds a valid
solution. Thus, some cases show that the verification time
decreases when the number of errors increases. As a result,
there is no direct relationship between the number of errors
and the verification time.

1482 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 10, OCTOBER 2013

TABLE II

Experimental Results of Verifying Incorrect SET Array Implementations for Benchmark term1

|E|
Mk=0 Mk=2 Mk=3 Mk=4

T (s) |SAT | T (s) |SAT | T (s) |SAT | T (s) |SAT |
1 283.2 20161.0 193.4 6250.5 262.1 7352.8 234.2 6148.8
3 837.7 35110.5 406.8 13332.7 531.9 15533.5 442.4 12093.3
5 868.5 27911.0 754.5 22042.0 801.0 20930.8 807.5 21559.5

10 89.2 4139.5 106.4 3798.5 205.6 6557.2 182.3 5428.3

TABLE III

Experimental Results of Verifying Incorrect SET Array Implementations for Benchmark count

|E|
Mk=0 Mk=2 Mk=3 Mk=4

T (s) |SAT | T (s) |SAT | T (s) |SAT | T (s) |SAT |
1 591.7 110857.3 517.9 85149.3 562.8 85103.3 521.9 85092.8
3 0.1 37.5 0.1 115.3 0.1 126.8 0.6 1821.8
5 0.1 19.5 0.1 18.2 0.1 19.8 0.1 17.8

10 0.1 17.7 0.1 17.2 0.1 17.5 0.1 16.2

TABLE IV

Experimental Results of Verifying Incorrect SET Array Implementations for Benchmark apex7

|E|
Mk=0 Mk=2 Mk=3 Mk=4

T (s) |SAT | T (s) |SAT | T (s) |SAT | T (s) |SAT |
1 1576.2 99746.4 847.4 49655.4 347.1 26201.4 463.9 26332.2
3 >3262.1 >174816.4 730.9 53131.2 742.3 52619.4 883.5 53614.2
5 313.9 22695.0 62.9 5695.0 217.4 16037.6 1000.3 55715.0

10 1.3 592.2 2.1 473.4 2.6 346.2 2.5 271.8

Tables III and IV show the results of the benchmarks count

and apex7, respectively. In Table III, k = 2 is the best choice
as well. Furthermore, when the number of errors is larger
than or equals three, the nonequivalence is very easy to be
detected by all the four versions. Thus, only a little verification
time is spent. In Table IV, there exist some cases for which
Mk=0 cannot complete their verification within the time limit,
5000 seconds. Thus, the Type 4 CNF formula is necessary for
efficiently verifying these cases. Similarly, when the number
of errors is ten, only a little time is required for completing
the verification by all the four versions.

In summary, the proposed method can successfully verify
both the correct and incorrect SET array implementations. Ad-
ditionally, we practically do not need to construct a complete
CNF formula for an SET array. A simpler CNF formula with
a small value of k, two or three, is good enough for solving
the verification problem.

VII. Conclusion

In this paper, we proposed a SAT-based verification method
for the reconfigurable SET arrays. The proposed method
solved a problem that, in the past, designers did not know
whether a complicated SET array implementation is func-
tionally correct or not. We proposed a transformation method
for translating an SET array into a CNF formula. Then, the
equivalence checking problem of an SET array implementation
and its specification circuit was transformed into a Boolean
SAT problem, which was solved with a SAT solver. Since a
complete CNF formula for an SET array could be very large

and hard to construct, we further introduced a simpler CNF
formula. Moreover, because using the simpler CNF formula
could result in counterexamples, an effective counterexample-
addition method was engaged to enhance the performance by
pruning the search space. The experimental results showed that
the proposed method can successfully and efficiently verify
both correct and incorrect SET array implementations.

As the SET technology advances, the development of related
CAD tools is becoming more and more important. This paper
addressed one of the key issues, design verification, in the SET
array-based design flow, and, therefore, the proposed method
is a key enabler for using the promising SET arrays as the
design platform.

References

[1] N. Asahi, M. Akazawa, and Y. Amemiya, “Single-electron logic device
based on the binary dicision diagram,” IEEE Trans. Electron. Devices,
vol. 44, no. 7, pp. 1109–1116. Jul. 1997.

[2] R. Bryant, “Graph-based algorithms for Boolean function manipulation,”
IEEE Trans. Comput., vol. 35, no. 8, pp. 677–691, Aug. 1986.

[3] D. Brand, “Verification of large synthesized designs,” in Proc. Int. Conf.
Computer-Aided Design, 1993, pp. 534–537.

[4] Y. C. Chen, S. Eachempati, C. Y. Wang, S. Datta, Y. Xie, and
V. Narayanan, “Automated mapping for reconfigurable single-electron
transistor arrays,” in Proc. Design Autom. Conf., 2011, pp. 878–883.

[5] Y. C. Chen, S. Eachempati, C. Y. Wang, S. Datta, Y. Xie, and
V. Narayanan, “A synthesis algorithm for reconfigurable single-electron
transistor arrays,” ACM J. Emerging Technol. Comput. Syst., vol. 9,
pp. 5:1–5:20, Feb. 2013.

[6] C. E. Chiang, L. F. Tang, C. Y. Wang, C. Y. Huang, Y. C. Chen, S. Datta,
and V. Narayanan, “On reconfigurable single-electron transistor arrays
synthesis using reordering techniques,” in Proc. Design, Autom. Test Eur.
Conf., 2013, pp. 1807–1812.

CHEN et al.: VERIFICATION OF RECONFIGURABLE BINARY DECISION DIAGRAM-BASED SINGLE-ELECTRON TRANSISTOR ARRAYS 1483

[7] S. Eachempati, V. Saripalli, V. Narayanan, and S. Datta, “Reconfigurable
BDD-based quantum circuits,” in Proc. Int. Symp. Nanoscale Arch.,
2008, pp. 61–67.

[8] M. H. Devoret and H. Grabert, "Introduction to single charge tunneling,"
in Single Charge Tunneling, H. Grabert and M. H. Devoret, Eds. New
York, NY, USA: Plenum, 1992, pp. 1–19.

[9] H. Hasegawa and S. Kasai, “Hexagonal binary decision diagram quan-
tum logic circuits using Schottky in-plane and wrap gate control of GaAs
and InGaAs nanowires,” Physica E: Low-dimensional Syst. Nanostruc-
tures, vol. 11, pp. 149–154, Oct. 2001.

[10] P. S. Karre, P. L. Bergstrom, G. Mallick, and S. P. Karna, “Room
temperature operational single-electron transistor fabricated by focused
ion beam deposition,” Appl. Phys. Lett., vol. 102, no. 2, pp. 024316-1–
024316-3, 2007.

[11] S. Kasai, M. Yumoto, and H. Hasegawa, “Fabrication of GaAs-based
integrated 2-bit half and full adders by novel hexagonal BDD quantum
circuit approach,” in Proc. Int. Symp. Semiconductor Device Res., 2001,
pp. 622–625.

[12] L. Liu, V. Saripalli, E. Hwang, V. Narayanan, and S. Datta, “Multigate
modulation doped In0.7Ga0.3As quantum well FET for ultra low power
digital logic,” Electro Chem. Soc. Trans., vol. 35, no. 3, pp. 311–317,
2011.

[13] L. Liu, V. Saripalli, V. Narayanan, and S. Datta, “Device circuit co-
design using classical and nonclassical III-V multigate quantum-well
FETs (MuQFETs),” in Proc. IEEE IEDM, Dec. 2011, pp. 4.5.1–4.5.4.

[14] K. Matsumoto, M. Ishii, K. Segawa, Y. Oka, B. J. Vartanian, and
J. S. Harris, “Room temperature operation of a single-electron transistor
made by the scanning tunneling microscope nanooxidation process for
the TiOx/Ti System,” Appl. Phys. Lett., vol. 68, no. 1, pp. 34–36, 1996.

[15] H. W. Ch. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, “Car-
bon nanotube single-electron transistors at room temperature,” Science,
vol. 293, pp. 76–79, Jul. 2001.

[16] P. Rashinkar, P. Paterson, and L. Singh, System-on-a-Chip Verification:
Methodology and Techniques, Norwell, MA, USA: Kluwer Academic
Publishers, 2000.

[17] V. Saripalli, L. Liu, S. Datta, and V. Narayanan, “Energy-delay perfor-
mance of nanoscale transistors exhibiting single electron behavior and
associated logic circuits,” J. Low Power Electron., vol. 6, pp. 415–428,
Oct. 2010.

[18] S. J. Shin, C. S. Jung, B. J. Park, T. K. Yoon, J. J. Lee, S. J. Kim,
J. B. Choi, Y. Takahashi, and D. G. Hasko, “Si-based ultrasmall
multiswitching single-electron transistor operating at room-temperature,”
Appl. Phys. Lett., vol. 97, no. 10, pp. 103101-1–103101-3, 2010.

[19] G. S. Tseitin, “On the complexity of derivation in propositional calcu-
lus,” Stud. Constr. Math. and Math. Logic, 1968, pp. 115–125.

[20] Y. T. Tan, T. Kamiya, Z. A. K. Durrani, and H. Ahmed, “Room
temperature nanocrystalline silicon single-electron transistors,” J. Appl.
Phys., vol. 94, pp. 633–637, Jul. 2003.

[21] K. Uchida, J. Koga, R. Ohba, and A. Toriumi, “Programmable single-
electron transistor logic for future low-power intelligent LSI: Pro-
posal and room-temperature operation,” IEEE Trans. Electron. Devices,
vol. 50, no. 7, pp. 1623–1630, Jul. 2003.

[22] S. Yang, “Logic synthesis and optimization benchmarks, version 3.0,”
Tech. Rep., Triangle Park, NC, USA: Microelectron. Center North
Carolina, Jan. 1991.

[23] L. Zhuang, L. Guo, and S. Y. Chou, “Silicon single-electron quantum-
dot transistor switch operating at room temperature,” Appl. Phys. Lett.,
vol. 72, no. 10, pp. 1205–1207, Mar. 1998.

[24] [Online]. Available: http://minisat.se/
[25] [Online]. Available: http://www.princeton.edu/∼chaff/zchaff.html

Yung-Chih Chen received the B.S., M.S., and Ph.D.
degrees from the Department of Computer Science,
National Tsing Hua University, Hsinchu, Taiwan, in
2003, 2005, and 2011, respectively.

He was a Visiting Student with the Department
of Computer Science and Engineering, Pennsylvania
State University, University Park, PA, USA, from
June 2010 to March 2011. Then, he joined the
Department of Electronic Engineering, Chung Yuan
Christian University, Taoyuan, Taiwan, where he
was an Assistant Professor from 2011 to 2012.

He is currently an Assistant Professor with the Department of Computer
Science and Engineering, Yuan Ze University, Taoyuan. His current research
interests include logic synthesis, design verification, and design automation
for emerging technologies.

Chun-Yao Wang (S’00–M’03) received the B.S.
degree from the Department of Electronics Engi-
neering, National Taipei University of Technology,
Taipei, Taiwan, in 1994, and the Ph.D. degree from
the Department of Electronics Engineering, National
Chiao Tung University, Hsinchu, Taiwan, in 2002.

Since 2003, he has been an Assistant Professor
with the Department of Computer Science, National
Tsing Hua University, Hsinchu, where he is currently
an Associate Professor. In 2010, he was a Visiting
Professor with the Department of Computer Science

and Engineering, Pennsylvania State University, University Park, PA, USA.
He holds six patents. His current research interests include logic synthesis,
optimization, and verification for very large-scale integrated/system-on-chip
designs and emerging technologies. He has published over 50 technical papers
in these areas.

Dr. Wang received the Distinguished Teaching Award from the College of
Electrical Engineering and Computer Science, National Tsing Hua University,
in 2007 and 2008. In 2009, he was the recipient of the Excellent Young Elec-
trical Engineer Medal from the Chinese Institute of Electrical Engineering,
Taipei. In 2011, he was granted the Excellent Young Scholar Research Project
from National Science Council, Taiwan. Two of his research results were
nominated as Best Papers in the 2009 IEEE Asia and South Pacific Design
Automation Conference and the 2010 IEEE/ACM Design Automation Confer-
ence, respectively. He has served as Technical Program Committee Member
and Organizing Committee Member of several conferences, including Design,
Automation and Test in Europe, Asia and South Pacific Design Automation
Conference, Great Lake Symposium on Very Large Scale Integration, and
Embedded Systems Week.

Ching-Yi Huang received the B.S. degree from the
Department of Computer Science, National Tsing
Hua University, Hsinchu, Taiwan, in 2009, where
he is currently pursuing the Ph.D. degree in the
Department of Computer Science.

His current research interests include logic synthe-
sis and design verification.

