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Abstract—Artificial Neural Networks (ANNs) have been widely used to deal with various classification problems for decades. Different

algorithms for synthesizing ANNs have been proposed as well. The number of neurons in an ANN usually controls the tradeoff between

classification ability and computational efficiency. That is, more neurons tend to yield better results but are less efficient in either the

training or recalling phase. Furthermore, if the neurons are implemented by physical devices, the implementation cost can be

effectively reduced with fewer number of neurons in an ANN. In this paper, we propose a method to minimize the number of neurons

used in an ANN that is built by using Voronoi diagrams without suffering any capability loss. We have conducted experiments on a set

of benchmarks. The experimental results show that the resultant ANNs reduce the number of neurons by up to 94 percent.

Index Terms—Minimization, artificial neural networks, voronoi diagram
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1 INTRODUCTION

ARTIFICIAL Neural Network (ANN) is a model inspired
by biological neural networks, in particular, the brain

[8]. An ANN adapts a set of inputs, called training data, to
form its functionality. During the learning (or training) pro-
cess of ANN construction, different training algorithms are
applied to adjust the weights of connections between neu-
rons. By iteratively adjusting the weights, the functionality
of ANNs is also changed until approaching the target prob-
lem appropriately. In general, ANNs are used to classify
patterns in a multi-dimensional feature space for different
applications, such as computer vision [19] and speech rec-
ognition [11], that are difficult to solve by using the ordinary
rule-based programming [8].

An ideal ANN is able to learn from the training data and
recall after the training process in order to classify new pat-
terns. There are three types of learning paradigms in ANNs:
supervised learning [8], unsupervised learning [17], and
reinforcement learning [22]. Each learning paradigm is suit-
able for certain problems. For example, a task that falls
within the paradigm of supervised learning is pattern rec-
ognition [17], whereas a task that falls within the paradigm
of unsupervised learning is the estimation of statistical dis-
tributions [21].

Many training algorithms for ANNs have been proposed
in the last decades [8]. Most of them employed some forms
of gradient descent [14], such as backpropagation [8], [9], to

minimize the loss function or error function. Although
using this mathematical approach can theoretically achieve
high accuracy, the training process is very time-consuming.
Therefore, instead of using gradient descent, some other
approaches were proposed to reduce the training efforts [4],
[12], [23].

The previous work [4] exploited the Voronoi diagram
(VoD) [16] to build ANNs and features 100 percent accu-
racy in classifying the training data. Fig. 1a is the VoD
over a set of training data, which are represented as dots,
belonging to the same class. The construction of VoD is to
determine the hyperplanes, represented by the lines, on
the VoD. The hyperplanes exist in between every pair of
adjacent dots with an equal distance and is perpendicular
to the invisible edge connecting the pair of dots. Each dot
is within its separated area called Voronoi cell, formed by
hyperplanes as shown in Fig. 1a. From the viewpoint of
implementation, each hyperplane and Voronoi cell
requires a specific neuron in the construction of the ANN.
Thus, if a VoD can be constructed with fewer hyperplanes,
or Voronoi cells, or both, the number of the corresponding
neurons in an ANN will be minimized. As a result, the effi-
ciency of calculation in an ANN will be elevated, or the
hardware cost of ANNs will be reduced when ANNs are
implemented by physical devices [2], e.g., CMOS solu-
tions, capacituve implementations, conductance/current
implementations, single electron tunneling (SET) solu-
tions, and Resonant Tunneling Devices (RTDs). Note that,
our goal is to minimize the number of neurons without
compromising the capability. Fig. 1b is a minimized VoD
of Fig. 1a, where the functionalities of the original and
minimized ANNs are the same.

In this paper, we propose a method to minimize the
number of neurons in VoD-based ANNs by simplifying
its VoD. We conduct experiments on a set of benchmarks
[25], [26]. The experimental results show that the resul-
tant ANNs reduce the number of neurons by up to
94 percent.
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The main contributions of this work are two-fold:

1) To the best of our knowledge, this is the first work
that minimizes the number of neurons in VoD-based
ANNs.

2) The minimized ANNs obtained the same accuracy as
the original ANNs.

The rest of this paper is organized as follows. Section 2
gives the background of ANN and VoD. Section 3 presents
the proposed minimization method for VoD-based ANNs.
Section 4 shows the experimental results. Section 5 presents
the conclusion and future work.

2 PRELIMINARIES

2.1 ANN

There are two kinds of input data for ANNs, training data
set and test data set. The training data set is the input data
used to train the ANNs. The test data set, on the other hand,
is the input data used for classification after the ANNs are
constructed. The process of classifying the test data is called
recalling.

In the training phase, error functions are used to measure
the difference between the expected output and the actual
output of ANNs. An example of a common error function is
the mean squared error [8]. An error function feedbacks
information from the training data to adjust the weights of
connections between neurons. Since the termination condi-
tion in the training phase usually depends on the magni-
tude of error, it is not surprising that a well-trained ANN
can classify the training data with a very small error. In
other words, a high-level of accuracy of an ANN for classi-
fying the training data is always expected. However, the
training phase might be time-consuming to converge to an
acceptable error value. Although some heuristics for speed-
ing up the training phase of ANNs were proposed [14], [15],
the issue of error convergence has an inherent difficulty—
determination of ANN topology.

When solving a classification problem by using ANNs,
we first need to determine the topology of an ANN, such as
the number of hidden layers, the number of neurons in the
hidden layers, etc. The weights can be initialized randomly
or heuristically [5], [7]. Different network topologies have
been proposed for selection such as feedforward neural net-
work [20], recurrent neural network [18], etc. Then design-
ers conduct a learning algorithm to train the network. The
major difficulty with this approach is that it is not trivial to
determine the topology and the parameters of the ANN,
due to lack of knowledge about the problems to be solved.

Moreover, because the convergence of error function is not
always guaranteed, if the topology and the parameters of
the selected ANN is not appropriate, the ANN may even
fail to classify the training data correctly. Since determina-
tion of the topology and these parameters might be in a
trial-and-error manner, it usually takes a long time to reach
the local optimum of the error.

To solve the above-mentioned problems in the training
phase of ANNs, some training algorithms without using
gradient descent methods have been proposed [4], [12].
These algorithms used hyperplanes to partition the input
space and then separated the regions of different classes by
using some hyperplanes and additional AND and OR gates.
[4] and [12] used the VoD, and a Linear Discriminant Analy-
sis to construct the corresponding ANNs, respectively. As a
result, they avoided the issue of topology and parameter
determination and ensured the correctness of classifying
the training data to be 100 percent. We will discuss the con-
struction of VoD-based ANN in Section 2.3.

2.2 VoD Basics

A Voronoi diagram is a unique partitioning of a feature
space into regions called Voronoi cells (also known as Voro-
noi regions). Let X be a metric space with the distance func-
tion d. Let ðPkÞk2K be a tuple (ordered collection) of

nonempty subsets (the sites) in the space X, where K is a
set of indices. The Voronoi cell, or Voronoi region, Rk, asso-
ciated with the site Pk is the set of points in X whose dis-
tance to Pk is shorter than or equal to their distance to the
other sites Pj, j 6¼ k under the distance metric d [24]. In other
words, if dðx;AÞ ¼ inffdðx; aÞja 2 Ag, where inf represents
the infimum of a subset, denotes the distance between the
point x and the subset A, then

Rk ¼ fx 2 Xjdðx; PkÞ � dðx; PjÞ for all j 6¼ kg: (1)

Specifically, given two points p ¼ ðp1; p2; . . . ; pnÞ and
q ¼ ðq1; q2; . . . ; qnÞ in the Euclidean n-space, the distance d
between p and q is the Euclidean distance, defined by

dðp; qÞ ¼ dðq; pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
ðqi � piÞ2

s
: (2)

In this Euclidean case, each site Pk contains only one single
seed and the corresponding Voronoi cell Rk is a convex set.

For example, considering the set of seeds in Fig. 2a, its
VoD can be constructed as shown in Fig. 2b. Any point p in
a Voronoi cell is closer to the seed of its Voronoi cell than
any other seeds.

Fig. 1. (a) The VoD over a set of training data within the same class.
(b) The VoD after minimization.

Fig. 2. (a) A set of seeds. (b) The VoD of the seeds in (a).
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In elementary geometry, a polytope is a geometric object
with flat sides, and may exist in any number of dimensions
n as an n-dimensional polytope or n-polytope. For example,
a two-dimensional polygon is a 2-polytope and a three-
dimensional polyhedron is a 3-polytope [6]. For example,
the triangle in Fig. 3a is a 2-polytope and the cube in Fig. 3b
is a 3-polytope. A traditional polytope is a closed region as
shown in Figs. 3a and 3b. However, in our discussion, a pol-
ytope is allowed to be unbounded. As shown in Fig. 3c, the
domain (the gray area) of this 2-polytope is unbounded.

In the Euclidean space, an object is a convex set if and only
if every point on a straight line segment connecting twopoints
within the object is also within the object. For example, Fig. 4a
is a convex set. whereas Fig. 4b is not a convex set since some
point t on the line segment connecting points x and y lies out-
side the set. Given a set X of points in the Euclidean space, the
convex hull is the smallest convex set containing all the points
in X. For example, Fig. 4c is the convex hull of the given set of
points. Note that the convex hull of a finite set of points in the
feature space is also a convex n-polytope.

2.3 VoD-Based ANN

Fig. 5a is a model of a neuron. A neuron in ANNs receives
weighted inputs and sums them up to produce a value.
This value is passed through a nonlinear function u known
as a transfer function to get the output value. The step func-
tion, as shown in Fig 5(b), is chosen as the transfer function
for a VoD-based ANN, where T stands for the threshold. In
a neuron, the output f is then evaluated as:

f ¼ uðx1; x2; . . . ; xnÞ ¼
1 if

Xn
i¼1

xiwi � T

0 if
Xn
i¼1

xiwi < T:

8>>><
>>>:

(3)

That is, if the weighted sum is equal to or larger than the
threshold T, the output is 1; otherwise, the output is 0.

The function of a neuron can be illustrated as a hyper-
plane in an n-dimensional space, i.e., H : Sn

i¼1xiwi � T ¼ 0.
The half-spaces described by S

n
i¼1xiwi � T � 0 and

Sn
i¼1xiwi � T < 0 are denoted as the positive half-space Hþ

and the negative half-space H�, respectively. When any
point located in Hþ is applied to the corresponding neuron,
the output equals 1; otherwise, the output equals 0 [4].

Fig. 5c is an example of threshold logic gate that models a
neuron using a step function as the transfer function. The
two 1s in Fig. 5c are the weights of the inputs x and y and
the threshold value T is 2. The output f equals 1 if and only

if x� 1þ y� 1 � 2. The function of this neuron can be illus-
trated in a two dimensional plane as shown in Fig. 5d. In
Fig. 5d, when any point that is on or above the hyperplane L
is applied to the neuron, the output f equals 1; and when
any point below L is applied to the neuron, the output f
equals 0. The arrow in Fig. 5d represents the half-space
defined by the neuron. Since half-space can be defined by a
single neuron, any convex polytope can be formed by a set
of hyperplanes and one AND gate. For example, the convex
2-polytope in Fig. 5e can be formed by four neurons, H1-H4,
and one AND gate as shown in Fig. 5f. The AND gate in
Fig. 5f is used as a conjunction operation, and it can be
implemented by a neuron as well [4]. Thus, the output f of
the ANN in Fig. 5f equals 1 (0) when any point that is inside
(outside) the convex 2-polytope in Fig. 5e is applied to the

Fig. 3. (a) A polygon in a two-dimensional space. (b) A polyhedron in a
three-dimensional space. (c) An unbounded 2-polytope.

Fig. 4. (a) A convex set. (b) Not a convex set. (c) A convex hull of these
dots.

Fig. 5. (a) An artificial neuron model. (b) The step function with threshold
T. (c) A two input threshold logic gate. (d) The hyperplane represented
by (c). (e) A bounded convex 2-polytope. (f) The ANN representing the
convex 2-polytope in (e).
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network. Note that the construction method of ANN for
unbounded convex n-polytope is the same.

In general, VoD-based ANNs consist of four layers
including one input layer, two hidden layers, and one output
layer. We use Fig. 6 to explain how to derive a VoD-based
ANN. In Fig. 6a, assume that there are four seeds (training
data) belonging to two classes, S1 and S2. Fig. 6b is the corre-
sponding VoD-based ANN. The input layer is used to accept
the inputs and it is connected to the neurons in the first hid-
den layer. The neurons in the first hidden layer serve as the
hyperplanes H1-H5 in Fig. 6a for partitioning the feature
space. Each neuron defines two half-space of one hyper-
plane. After deploying the neurons in the first hidden layer,
AND gates in the second hidden layer are used to define
every Voronoi cell (bounded or unbounded convex 2-pol-
ytope)1 by collecting required half-space from the first
hidden layer. For example, the unbounded convex 2-poly-
tope R4 is defined by H1 and H5. Therefore, H1 and H5

are connected to the fourth AND gate. Note that different
half-spaces of a hyperplane are selected by assigning the
weights of the connections between the first and second
hidden layers to either 1 (solid lined arrow) or -1 (dashed
lined arrow), as Fig. 6b shows [4]. Finally, the OR gates in
the output layer are used to form the disjunction of the
convex 2-polytopes of the same class. As a result, when
any point in R1 or R2 of Fig. 6a is applied to the ANN of
Fig. 6b, the output (S1, S2) will be (1, 0), which indicates
that the point belongs to the class S1. In contrast, when
any point in R3 or R4 of Fig. 6a is applied to the ANN of
Fig. 6b, the output (S1, S2) will be (0, 1).

The training process for constructing a VoD-based
ANN is much faster than that of the gradient descent

method-based ANN, because the searching process for a
minimal error is no longer needed in a VoD-based ANN.
As a result, the VoD-based ANN is able to be derived
for classifying the training data with 100 percent accu-
racy. Furthermore, the ANN can be always derived for a
classification problem as long as the corresponding VoD
are built.

3 VOD-BASED ANN MINIMIZATION

In this section, we present our minimization algorithm for
VoD-based ANNs. Although VoD-based ANN is superior
on accuracy and efficiency, its main concern is the large
number of neurons. This large amount of neurons are pres-
ent due to many unnecessary hyperplanes in the feature
space. To alleviate this problem, we propose a method to
remove hyperplanes associated with certain redundant
training data. As a result, the corresponding neurons are
eliminated in the ANNs.

We first exploit Fig. 7 to introduce the terminologies used
in this section. Fig. 7 is the VoD of a two dimension classifi-
cation problem. Black and white dots indicate the seeds of
two classes, respectively.

Let Sall be the set of all Voronoi cells. Given the VoD and
Sall of a classification problem,we define the following terms:

Neighbor Cells: Let HSi be the set of hyperplanes associ-
ated with the Voronoi cell Ri for the seed i. Given two Voro-
noi cells, Ri and Rj, they are neighbor cells if and only if

HSi \HSj 6¼ ;. The set of pairwise neighbor cells, denoted
as SNC , is defined as:

SNC ¼ fðRi;RjÞjRi;Rj 2 Sall;

HSi \HSj 6¼ ;; i 6¼ jg: (4)

For example, in Fig. 7, Ra and Rb are neighbor cells to
each other, whereas Ra and Rd are not neighbor cells to
each other. SNC = fðRa;RbÞ; ðRa;RcÞ; ðRb;RcÞ; ðRb;RdÞ;
ðRc;RdÞg.

Boundary Cell: Let Ci be the class that the Voronoi cell Ri

belongs to. A cell Ri is called a boundary cell if and only if
there exists a cell Rj, where ðRi;RjÞ 2 SNC and Ci 6¼ Cj.

The set of boundary cells, denoted as SBC , is defined as:

SBC ¼ fRijRi 2 Sall; 9Rj; whereðRi;RjÞ 2 SNC; Ci 6¼ Cjg:
(5)

For example, in Fig. 7, SBC ¼ fRa;Rb; Rcg.

Fig. 6. (a) The VoD of a data set. (b) The ANN of (a).

Fig. 7. The VoD over a set of seeds.

1. In this example, the Voronoi cells are all unbounded convex 2-
polytope.
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Boundary Seed: A seed k is a boundary seed if and only if
k is the seed of the cell Rk, where Rk 2 SBC .

For example, in Fig. 7, seeds a, b, and c are boundary
seeds.

Isolated Cell: A Voronoi cell Ri is an isolated cell if and
only if Ri 2 SIC ¼ Sall � SBC , where SIC represents the set
of isolated cells.

For example, in Fig. 7, the Rd is an isolated cell.
Isolated Seed: A seed k is an isolated seed if and only if k is

the seed of the cell Rk, where Rk 2 SIC .
For example, in Fig. 7, seed d is an isolated seed.
Boundary Hyperplane: A hyperplane H is a boundary

hyperplane if and only if H ¼ HSi \HSj 6¼ ; for two
boundary Voronoi cells Ri;Rj 2 SBC , and Ci 6¼ Cj.

For example, in Fig. 7, the bold lined hyperplanes are
boundary hyperplanes.

Isolated Hyperplane: A hyperplane H is an isolated hyper-
plane if and only if H 2 HSi, where HSi is the set of the
hyperplanes that forms the Voronoi cell Ri 2 SIC .

For example, in Fig. 7, the dotted lined hyperplanes are
isolated hyperplanes.

In a classification problem, we first use each training
point as a seed to build a VoD and obtain its Sall. To mini-
mize the number of neurons in an ANN, we then locate the
set of boundary cells SBC and the corresponding boundary
seeds. Since we do not want to change the functionality of
the ANN after the minimization, we keep all the boundary
seeds while removing all isolated seeds from the training
data. After that, we use the reduced training data to derive
the new ANN.

Fig. 8 is a simple example to illustrate this minimiza-
tion process. Fig. 8a depicts a set of Voronoi cells Sall of
the same class, which consists of six Voronoi cells and the
corresponding six seeds. Note that Fig. 8a is the VoD of a
partial set of training data for brevity. There is one iso-
lated seed g within the class, and it is separated from
other cells by the isolated hyperplanes as shown in dotted
lines. The rest of the Voronoi cells are 2 SBC . Fig. 8b
shows the corresponding ANN of Fig. 8a. Note that the
input layer is omitted in this example. Each neuron in the
first hidden layer of Fig. 8b represents one hyperplane in
Fig. 8a and the five dotted lined neurons in the first hid-
den layer represent the five isolated hyperplanes. The
neurons in the second hidden layer of Fig. 8b are AND
gates for representing the convex 2-polytopes, with
respect to the Voronoi cells in Fig. 8a. Since none of
the Voronoi cells in Fig. 8a can be combined with another
one to form a larger convex 2-polytope, six AND gates are
required to represent the cluster of six Voronoi cells. The
dotted AND gate in the second hidden layer is used to
represent SIC . Finally, an OR gate is required in the out-
put layer to represent this class.

Since the isolated hyperplanes (dotted lines) in Fig. 8a
do not separate two seeds of different classes from each
other, the isolated hyperplanes are unnecessary and can
be removed. In order to remove the isolated hyperplanes,
we delete the isolated seeds from the training data and
re-construct the ANN with the reduced training data.
Fig. 8c is the VoD with the reduced training data. In this
simplified VoD, the five isolated hyperplanes (dotted
lines) and one isolated cell in Fig. 8a are removed, and
two new hyperplanes (dotted lines) in Fig. 8c are added.
Fig. 8d is the resultant ANN, where the number of neu-
rons is reduced by 23.5 percent.

Next, we present our proposed VoD-based minimization
method, where a simple algorithm for identifying all the
isolated seeds in the training data is shown in Algorithm 1.
The input is a set of training data TD and the output is the
set of isolated seeds IS. First, we initialize the status of every
seed s as an isolated seed from line 1 to line 1. Then we con-
struct the VoD based on the training data TD. After the VoD
is constructed, each hyperplane is examined to see if the
two seeds across the hyperplanes are within different clas-
ses. If the two seeds are within different classes, they are
both identified as boundary seeds and not isolated seeds, as
shown from line 1 to line 1. Fig. 9 is the flowchart of the pro-
posed approach. The input is the training data set. First, we
identify the isolated seeds in the training data set by Algo-
rithm 1. If there exists any isolated seed, we remove it from
the training data set. Then, we construct the VoD based on
the trimmed training data set. Finally, we derive the ANN
from the constructed VoD.

Note that the new ANN reserves the same functionality
after this minimization process since none of the boundary
hyperplanes are involved in this procedure. As another
example in Fig. 10 shows, the regions of class S1 and S2 are
the same before and after the minimization.

Next, we present the formal proof about the functionality
preserving of ANNs after applying the proposed minimiza-
tion process.

Fig. 8. (a) The VoD before minimization. (b) The ANN of (a). (c) The VoD
after minimization. (d) The ANNof (c), which uses fewer neurons than (b).
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Lemma 1. For an Ri 2 SIC , if there exists an Rj such that
ðRi;RjÞ 2 SNC , Ci ¼ Cj.

Proof. According to the definition of Ri 2 SIC , then
Ri =2 SBC . That is, it is not the case that 8Rj, ðRi;RjÞ 2 SNC

and Ci 6¼ Cj. Hence, Ci ¼ Cj. tu
Theorem 1. The functionality of the ANN keeps intact after

applying the proposed VoD-based ANN minimization method.

Proof. To prove Theorem 1, we need to prove that the
regions of all cells within the same class do not change
after the minimization. In other words, when an isolated
seed is removed and the VoD is updated, the region of
the isolated cell will be covered by other cells within the
same class in the n-dimensional space.

When an isolated seed is removed from a VoD, its iso-
lated cell will be removed as well on the updated VoD.
According to Lemma 1, the isolated cell and its neighbor
cells are within the same class. Thus, the region of the
isolated cell on the updated VoD can be covered by its
neighbor cells. Since the region of each class does not
change, the functionality of the ANN is the same after
the minimization. tu

4 EXPERIMENTAL RESULTS

The proposed algorithm for VoD-based ANN minimiza-
tion was implemented in C++ language. We conducted
experiments on a set of classification problem bench-
marks [25], [26] on a Linux platform with an Intel Xeon
E5530 2.40 GHz CentOS 4.6 platform and 64 GB memory.
The VoD was constructed by the tool Qhull [1], [27]. In
the Qhull, a VoD is obtained by converting the Delaunay
triangulation into its dual. The Delaunay triangulation is
achieved by computing a convex hull. Please see [27] for
more information.

Algorithm 1. Isolated Seed Identification
Input: a set of training data TD
Output: a set of isolated seeds IS
1: begin
2: for each seed s in TD do
3: isolated½s�  true; //initialization
4: end for
5: derive the VoD G of TD;
6: for each hyperplane h in G do
7: if the two seeds a, b across h are within different

classes then
8: isolated½a�  false;
9: isolated½b�  false;
10: end if
11: end for
12: for each seed s in TD do
13: if isolated½s� == true then
14: add s into IS;
15: end if
16: end for
17: return IS
18: end

To test if the constructed ANN is over-trained or not
from a given training data set, designers usually apply
another data set, called test data set, to the ANN. If the test
data set is not available from the benchmark suite, the origi-
nal training data set is usually divided into two sets, one is
training data set, the other is test data set. However, in our
approach, we focus on 100 percent accuracy on training
data and prefer not to divide the training data set into two
sets. The reason is as follows.

The VoD-based ANN is strongly related to the training
data set and guarantees to have 100 percent accuracy. How-
ever, if some training data is considered as new test data
arbitrarily, the structure of VoD will be changed and the
corresponding functionality of derived ANN might be
changed as Fig. 11 shows. Fig. 11a is an example of an origi-
nal VoD, and it contains two classes. If an isolated seed is
chosen to be the hidden training data in the experiments,
like the target seeds in Fig. 11b, the functionality will not be
changed even the ANN is derived with less training data,
as shown in Fig. 11c. However, if a boundary seed is chosen
to be the hidden training data in the experiments, like the
target seeds in Fig. 11d, the functionality will be changed as
shown in Fig. 11e. As a result, dividing the original training
data into two sets is not appropriate in our work.

In our experiments, we compare the number of neurons
in the ANNs before and after the minimization algorithm.

Fig. 9. The flowchart of the proposed approach.

Fig. 10. (a) The VoD before minimization. (b) The simplified VoD of (a).
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The experimental results are shown in Table 1. In Table 1,
Column 1 lists the benchmarks of the classification prob-
lems [25] ,[26]. Columns 2 and 3 are the number of
dimensions and classes of the benchmark, respectively.
The next three columns are the number of hyperplanes,
jHP j, the number of Voronoi cells, jcellj, and the number
of neurons, jneuronj, in the original VoD-based ANNs,
respectively. The next three columns are the correspond-
ing results after the minimization. Note that the number
of neurons is the summation of the numbers of hyper-
planes, Voronoi cells, and the classes. The last three col-
umns list the reduction percentage of the neurons in the
ANNs, the isolated seeds percentage in the training data
set, and the required CPU time for minimization, respec-
tively. The experimental results are divided into two
groups based on the magnitude of percentage of isolated
seeds: one is that with greater than or equal to 50 percent
of isolated seeds; the other is that with less than 50 percent
of isolated seeds.

For example, the benchmark banana has two dimen-
sions and two classes. Its VoD-based ANN has 15851
hyperplanes and 5,291 cells. Note that we have removed
the repeated cells before deriving the VoD-based ANN.
Therefore, the total number of used neurons is 21,144.
After the minimization, 5,078 hyperplanes and 1,698 cells
are left. The total number of neurons is reduced to 6,778.
That is, 67.9 percent neurons are removed after the mini-
mization. The required CPU time for minimization is
0.9 seconds.

According to Table 1, our minimization algorithm can
reduce the number of neurons in the resultant ANNs from 7
to 94 percent. It is clear that this reduction ratio varies with
different benchmarks. Specifically, for the first group with
greater than or equal to 50 percent of isolated seeds, the
reduction of neurons count is 81.2 percent on average. For
the other group, on the contrary, the reduction of neuron
count is 20.4 percent on average. The reason for this result is
the variation of the percentage of isolated seeds in the train-
ing data set.

According to Table 1, the number of isolated seeds in
the training data set directly affects the performance of
our minimization approach. That is, if the seeds within
the same class are close to each other and far from the
seeds in other classes, such as banana, there will be more
isolated seeds, and the new ANN can be minimized sig-
nificantly by our approach. Fig. 12a is the data distribu-
tion of the benchmark banana. Since the data within the
same class are close to each other, there are many iso-
lated seeds in the corresponding VoD. Thus, the reduc-
tion of neuron count is remarkable. Fig. 12b is the
remaining seeds after removing isolated seeds. On the
other hand, the reduction of neuron count in the bench-
marks haberman and newthyroid are not impressive. This
is because there are few isolated seeds in the training
data set. As a result, the number of neurons that can be
removed is limited.

The proposed minimization approach for ANNs is
based on its VoD. Thus, if the VoD of the original bench-
mark cannot be constructed due to certain reasons, e.g., a
high dimension of training data in the feature space, the
proposed approach will fail. This is the inherent

Fig. 11. (a) The original VoD. (b) The VoD with a set of selected target
seeds. (c) The updated VoD after removing the target seeds in (b).
(d) The VoD with another set of selected target seeds. (e) The updated
VoD after removing the target seeds in (d).

TABLE 1
The Experimental Results on the Number of Neurons Before and After the Proposed Algorithm

Group A

Before After

Benchmark jDimensionj jClassj jHP j jCellj jNeuronj jHP j jCellj jNeuronj Reduction (%) Isolated seed (%) Time (s)
banana 2 2 15851 5291 21144 5078 1698 6778 67.9 67.9 0.90
monk-2 6 2 336 432 770 20 20 42 94.5 95.4 1.73
average - - - - - - - - 81.2 - 1.32

Group B

Before After

Benchmark jDimensionj jClassj jHP j jCellj jNeuronj jHP j jCellj jNeuronj Reduction (%) Isolated seed (%) Time (s)
haberman 3 2 1663 283 1948 1550 256 1808 7.2 9.5 0.09
iris 4 3 1734 147 1884 1297 111 1411 25.1 24.5 0.13
data_bank. 4 2 20882 1380 22232 10851 696 11549 48.1 48.4 1.66
newthyroid 5 3 4491 215 4709 4073 196 4272 9.3 8.8 0.96
phoneme 5 2 177090 5349 182441 154980 4628 159610 12.2 13.5 107.02
average - - - - - - - - 20.4 - 21.97
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limitation of the proposed approach. Other dimension
reduction techniques [10] may be applied before deriving
the VoD for improving the applicability of this approach.
When the VoD can be derived, our minimization algo-
rithm can be applied successfully.

5 CONCLUSION AND FUTURE WORK

This paper presents the first minimization algorithm for
reducing the neuron count in a VoD-based ANN while
preserving its functionality. This minimization can be
achieved when the seeds are clustered substantially. The
experimental results show that the reduction percentage
of neuron count is from 7 to 94 percent. Our future work
are two directions: the first one is to apply the dimension
reduction techniques in the construction of VoD such
that the proposed minimization algorithm is applicable
to more benchmarks. The other is to propose an algo-
rithm that accepts some error tolerance compared with
VoD-based ANN, but is more efficient.
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