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Abstract— Single-electron transistor (SET) at room tempera-
ture has been demonstrated as a promising device for extending
Moore’s law due to its ultralow power consumption. However,
early realizations of SET array lacked variability and relia-
bility due to their fixed architectures and high defect rates
of nanowire segments. Therefore, a reconfigurable version of
SET was proposed to deal with these issues. Recently, several
automated mapping approaches have been proposed for area
minimization of reconfigurable SET arrays. However, to the best
of our knowledge, seldom mapping algorithms that consider
the existence of defective nanowire segments were proposed.
Furthermore, before the defect-aware mapping, we have to know
the locations of defects in SET arrays. Thus, this paper presents
the first diagnosis approach to identify the locations of defects in
SET arrays followed by two defect-aware algorithms for mapping
SET arrays in different scenarios. The experimental results show
that the proposed diagnosis method can detect 100% of defects
under a defect rate and distribution in SET arrays. As for the
mapping algorithms, the results show that our approach can
successfully map the SET arrays with 11.13% and 7.69% width
overhead on average in the baseline detour mapping algorithm
and defect-reuse mapping algorithm, respectively, in the presence
of 5000-ppm defects.

Index Terms— Diagnosis, optimization, reliability, single-
electron transistor (SET) array, synthesis.

I. INTRODUCTION

POWER consumption has become one of the primary
bottlenecks to meet Moore’s law. To deal with this

issue, many emerging low-power devices have been
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Fig. 1. (a) Physical architecture of a reconfigurable SET array [12].
(b) Operating modes. (c) Symmetric fabric architecture for input wiring.

explored recently. Among these devices, some demonstrations
of operations of single-electron transistors (SETs) at room
temperature have proved that these devices are promising
candidates to substitute traditional CMOS devices for future
designs [1]–[4].

Since only a few electrons are involved in the switching
process, SETs suffer from low transconductance. Therefore,
the conduction mechanism of the CMOS-based logic is not
applicable to SETs. To this end, a binary decision dia-
gram (BDD)-based [5] architecture was proposed as a platform
for implementing logic functions using SETs [6]. Using this,
a Boolean circuit can be implemented through mapping the
BDD of the Boolean function onto an SET array [7], [8].
However, the realization of the architecture proposed in [8]
is fixed and not amendable to functional reconfiguration.
Furthermore, if any of the nanowire segments or the SETs
is defective, the whole circuit becomes useless. This causes
its low yield due to a high defect rate of nanowires and
nanodevices. Fortunately, a reconfigurable version of SET
using wrap gate tunable tunnel barriers was proposed [9] to
increase the flexibility and reliability of the SET arrays [6]–[8].
The electrostatic properties through in-depth device simulation
were also presented in [10] and [11], which showed that this
device can provide an energy–delay product that is an order
of magnitude lower than traditional CMOS devices.

Fig. 1(a) illustrates the structure of the reconfigurable SET
array adapted from [12], which can be divided into three
layers. The bottom layer is the device layer, which is composed
of the hexagonal nanowire network with wrap gate SETs.
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The middle layer is used to configure the operating modes of
every transistor. The top layer takes charge of input signal con-
nections to SETs. If some nanowires or SETs (bottom layer)
are defective after manufacturing, we still have a usable SET
array through configuration in the middle layer.

Recently, this success of SET array realization has attracted
the development of its automation tools [12]–[19]. The first
automated synthesis approach was proposed in [13], which
presented a product-term-based mapping approach that syn-
thesizes a logic circuit by mapping all its product terms into the
SET architecture. Based on the product-term-based approach,
Chiang et al. [15] proposed mapping approaches to reduce
the number of hexagons of the mapped SET arrays under
symmetric fabric constraint using product-term reordering and
variable reordering techniques. However, the area of an SET
array on a chip is the product of its bounded height and width.
As a result, Chen et al. [12], [16] and Liu et al. [17], [18] pro-
posed width minimization approaches. The algorithm proposed
in [12] dynamically chose the best unmapped product terms
to achieve a maximal sharing. References [16], [17] and [18]
focus on minimizing the number of product terms to obtain
more compact SET arrays.

In contrast to the product-term-based mapping approaches,
Zhao et al. [19] proposed a BDD-based mapping approach,
which exploited the structure similarity between an SET array
and a BDD, to synthesize SET arrays.

Although these previous works are effective, they all assume
that the device layer of the SET array is defect free. This
assumption, however, does not match the real situation.
Therefore, if some nanowires or SET devices are defective
after manufacturing, the previous approaches might fail to
map. This is because the mapping process must avoid the
defective areas for correct mapping.

To consider the reliability issue of SET arrays and establish
a robust automation flow, two important techniques must be
developed: 1) a diagnosis method for identifying the locations
of defects in an SET array and 2) a defect-aware mapping
approach for mapping a Boolean circuit into a defective SET
array with respect to the locations of defects detected by the
diagnosis process. Although Huang et al. [20] have proposed
the first defect-aware approach for mapping SET arrays, some
details of the algorithms were not introduced and considered.
Besides, the algorithm was not well integrated with a diagnosis
process into a complete defect-aware mapping flow. As a
result, in this paper, we propose a diagnosis approach for SET
arrays and a defect-aware mapping flow for mapping defective
SET arrays.

In this paper, we first propose a defect model, considering
three types of defects: single-stuck-at-open, double-stuck-at-
open, and stuck-at-short, on SET arrays. We also propose
an assumption about the defect distribution in the array.
To diagnose an SET array, we propose an expand-and-all-pass
traversing method, which can achieve a 100% defect coverage
under the assumption of defect distribution. In the defect-
aware mapping algorithm, we propose a baseline detour
mapping algorithm and a defect-reuse mapping algorithm.

We divide the experiments into two parts in this paper.
In the first part, the experiment was conducted for verifying

Fig. 2. (a) Structure of a reconfigurable SET device [21]. (b) Formulations
of wrap-around Schottky split gates and the top control gate [9].

the validity of the diagnosis method. In the second part,
we conducted two sets of experiments for the defect-aware
mapping algorithms over a set of IWLS2005 benchmarks [24].
In the first set of experiment, we uniformly and randomly
injected 0.5% or 5000-ppm defects into SET arrays. This
defect rate is a user-defined parameter, and 0.5% is higher
than that in the conventional MOS process, which reflects the
vulnerability of nanowires and nanodevices. The experimental
results show that our approach can successfully map the SET
arrays. The width increases are 11.13% and 7.69% on average
in the baseline detour algorithm and defect-reuse algorithm,
respectively, compared with the defect-free SET arrays.

In the second set of experiments, we used different defect
rates and observed the corresponding width variation for some
benchmarks. The experimental results show that the width is
increased slowly in the defect-reuse algorithm compared with
that in the baseline detour algorithm.

Finally, we also provide our diagnosis and mapping tool
with graphical user interface (GUI) to present the mapping
results of SET array. The link for downloading the tool is
released at [25].

II. PRELIMINARIES

A. Reconfigurable SET

As shown in Fig. 1(a), the bottom layer of an SET array
is composed of the hexagonal nanowire network with recon-
figurable SET devices. The structure of a reconfigurable SET
device is shown in Fig. 2 [9], [21], where a pair of Schottky
gates, called split gates, are wrapped around the fin that
connects the source and drain, and the top control gate is built
upon the splits gates. Specifically, the split gates are connected
to the configuration grid in the middle layer of the SET array,
and the top control gate is connected to the input signals in
the top layer.

By providing the split gates a voltage bias through the grid
in the middle layer, the SET can be set in three modes of
operations: 1) active; 2) open; and 3) short modes. In the
active mode, the split gate bias is adjusted to make the
tunneling resistance of the source and drain junctions to exceed
the resistance quantum, but is still low enough to permit
efficient tunneling. Then the voltage bias applied from the top
control gate (input signal) controls the dot potential to block
or permit electrons tunneling.

In the open mode, the split gate bias is set to a sufficiently
negative value to let the depletion regions from both sides to
encroach and pinch off the nanodot island completely. Finally,
in the short mode, a large enough positive split gate bias is
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Fig. 3. (a) SET array. (b) Example of a ⊕ b. (c) Simplified diamond-shaped
network of a ⊕ b [13].

applied so that the tunnel junctions become almost transparent
and the tunneling resistance is significantly reduced. In other
words, the device behaves like a near ohmic conductor.

B. Reconfigurable SET Array

A reconfigurable SET array can be represented as a hexag-
onal network as shown in Fig. 3(a). At the top of the SET
array, there is a current detector measuring the current coming
from the current source, represented as 1, at the bottom. When
the electrons transported from the current sources are detected
through a conducting path, which is controlled by the input
variables, the output value is 1; otherwise, it is 0.

Each sloping edge in the SET array represents an SET
device and can be configured as one of four modes: high,
low, short, or open. A high (low) edge indicates that the corre-
sponding SET device operates in the active mode controlled by
a variable x (x ′). Furthermore, a short (open) edge is electrical
short (open), where the corresponding SET device operates
in the short (open) mode. The connections to the current
source can also be configured as either short for connection
or open for disconnection. For example, Fig. 3(b) shows an
implementation of a ⊕ b. Since all the vertical edges of the
hexagons are electrically short, for the ease of discussion, only
the sloping edges are preserved in the abstract graph. Fig. 3(c)
shows the corresponding diamond-shaped abstract network of
the hexagonal network in Fig. 3(b).

C. Symmetric Fabric Constraint

To reduce the wiring area of SET arrays, symmetric fabric
constraint [9] was imposed in all the previous works. The
symmetric fabric constraint enforces that a pair of left and
right edges of a node device must be one of (high, low),
(low, high), (short, short), or (open, open), as shown
in Fig. 1(b). Moreover, the constraint enforces that both
(high, low) and (low, high) configurations are not allowed to
appear in the same row simultaneously, as shown in Fig. 1(c).

Since the determination of the configuration architecture,
either (high, low) or (low, high) for one row, is independent
of the proposed diagnosis methodology, the configuration
architecture of each row is assumed to be (low, high) for the
ease of discussion in Section IV.

Fig. 4. Example of product-term-based mapping procedure. (a) p0.
(b) p0 + p1. (c) p0 + p1 + p2.

D. Product-Term-Based Mapping Approach

The objective of the product-term-based mapping approach
is to configure a path in the SET array for each product term
while avoid creating invalid paths that correspond to invalid
product terms. Fig. 4 illustrates an example of the product-
term-based mapping procedure. Given the first product term
p0 = 11 100, we start from the root node below the current
detector, and find or configure an edge for each bit in p0
from the top row to the bottom row (also called from a higher
level to a lower level). The mapping rule is to configure
high for 1, low for 0, and short for don’t care, denoted
as −. The mapping result of p0 is shown in Fig. 4(a).
For p1, we still map from the root node. Since the first two
bits of p1 are the same as that of p0, the configurations at
the coordinations of (x, y) = (0, 0) and (−1, 1) are shared
between these two product terms. Then the mapping path
of p1 is branched from (0, 2) toward (1, 3) and then (2, 4),
as shown in Fig. 4(b). For p2, since no configuration can be
reused in the mapping result of Fig. 4(b), we use the expansion
operation with short edges at (x, y) = (2, 0) and (4, 0) for
successfully mapping p2, as shown in Fig. 4(c).

E. Branch-Then-Share

Branch-then-share (BTS) product terms are two product
terms that branch in one row and merge in the succeeding
row such that the remaining edges are all shared [18]. The
BTS forms structures that shrink the width of mapping area.
In this paper, the configurations for two consecutive rows
are classified into two types: 1) twin type and 2) invert
type. The twin type (invert type) represents the BTS that
occurs at two consecutive rows having the same (opposite)
configurations. Please refer to [18] for the details.

Furthermore, we observe that some BTS may form a
BTS group where these BTS are mapped at consecutive and
neighboring locations. Fig. 5(a) shows a mapping result of a
BTS group. Fig. 5(b) shows the same example with a different
mapping result, where the original BTS group is separated into
two BTS groups.

F. Expansion Operation

As mentioned in Section II-D, the expansion operation
is applied when the space for mapping a product term is
not enough. In [13], the expansion operation was allowed
only at the first row of SET array. Reference [18] then
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Fig. 5. (a) Example of consecutive BTS for product terms p0 + p1+ p2+ p3.
(b) Mapping result of p0 + p1 + p2 + p3 if we do not group these product
terms into a consecutive BTS group.

Fig. 6. Example of expansion at any row. (a) Mapping result of p0.
(b) Mapping results of p0 + p1 after a successful expansion.

allows expansion at any row for having smaller mapping area.
As a result, these algorithms found the lowest feasible location
for expansion without causing invalid paths. For example, as
shown in Fig. 6(a), to map the product term p1 after p0, the
configuration (short, short) for the last bit − at (x, y) = (1, 7)
is not allowed. This is because this configuration will create an
invalid conducting path with respect to a nonexistent product
term 11111110 no matter the current source is located at either
(0, 8) or (2, 8) for p1. Thus, we need to use an expansion
operation to map p1. In this example, (1, 7), (0, 6), and (1, 5)
could be the locations for expansion. However, the expansion
operation from (1, 7) and (0, 6) will create invalid paths as
well. Thus, (1, 5) is the lowest feasible location for expansion,
and the mapping result of p0 + p1 is shown in Fig. 6(b).

Furthermore, when considering the BTS group, the lowest
feasible location is not always the best choice for expansion.
For example, as shown in Fig. 7(a), the lowest expansion
location for p2 is (x, y) = (2, 6). However, p2, p3, and p4
are a BTS group as highlighted. If we expand at (x, y) =
(2, 6) for p2, we have to expand again at an upper row for
mapping p3 and p4, as shown in Fig. 7(b). In contrast, if the
expansion location for p2 is higher than the branch location
of the BTS group, e.g., (1, 3), as shown in Fig. 7(c), the
structure with respect to the BTS group can be preserved. As a
result, the width of the mapping result is reduced as shown
in Fig. 7(d).

Fig. 7. (a) Example of expansion at the lowest feasible location for p2.
(b) Mapping result of p0 + p1 + p2 + p3 + p4 without considering the BTS
group. (c) Example of expansion for p2 with considering the BTS group of
p2 + p3 + p4. (d) Final mapping result of p0 + p1 + p2 + p3 + p4.

III. DEFECT MODEL AND DEFECT DISTRIBUTION

In this section, we first introduce the considered defect
model, and then propose an assumption about the defect
distribution in the SET arrays.

A. Defect Model

Open and short are common types of defects that occur
in the SET array. These defects occur when the SET device
is defective and results in either a permanent short or open
condition based on the operation mechanism of the SET device
as mentioned in Section II-A [9]. In addition, the nanowires
connected to the SET devices would also suffer from open
and short defects caused by common manufacturing defects.
Open defect could arise from excessive thinning of the etched
fin, which would lead to physical disruption in the continuity
of the tunnel junctions in the fin. Open could also arise from
over etching of nanowires. On the other hand, short defect
could arise from the variation in fin thickness of an SET,
which would lead to the variation of the effect from the voltage
bias of the split gate on the mode control of the SET. That
is, in the active and open modes, the varied effect of the
negative voltage bias of the split gate would fail to form a
complete depletion region to pinch off tunneling, and results
in a permanent short mode. Short could also arise from wire
bridging between source and drain.

Fig. 8(a) shows a defect-free node device. If an open defect
occurs on an SET device or occurs on a nanowire connected to
the SET device, i.e., on the left edge or the right edge of a node
device as shown in Fig. 8(b), the electrons transported from
the lower node device will never pass through the defective
SET device. This single defective edge is named as a single-
stuck-at-open defect. If an open defect occurs on a vertical
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Fig. 8. Proposed defect model. (a) Defect-free node device. (b) Single-stuck-
at-open defects. (c) Double-stuck-at-open defect. (d) Stuck-at-short defects.

Fig. 9. Fabric representations of the three types of failures.

nanowire of a hexagon, as shown in Fig. 8(c), the electrons
transported from the lower SETs will never pass through the
vertical edge, either. In this case, we say that this node device
has a double-stuck-at-open defect. If a short defect occurs on
an SET device or occurs on the nanowires connected to an
SET device, as shown in Fig. 8(d), this defective edge will
always be conducted. We name this defect a stuck-at-short
defect. Note that the connections to the current sources could
be defective and are also considered in this paper.

In the succeeding discussion, these three types of defects
are considered. Their corresponding representations on the
network are shown in Fig. 9, where DOpen and DShort
represent the permanent configurations caused by the defects
and their functionalities are the same as open and short
configurations, respectively. A node having one of the defects
is called a defective node in this paper.

B. Assumption of Defect Distribution

A typical defect rate is usually less than 0.5% = 5000 ppm
in the conventional MOS process. Since the SET is more
vulnerable than MOS, its defect rate could be as higher
as 2% = 20 000 ppm. That means two defects occur among
100 node devices on average, and the number of defective
nodes is not many in an SET array. Thus, we make two
assumptions about the defect distribution in the proposed
diagnosis method as follows.

1) Both open and short defects do not occur on a defective
node simultaneously.

2) Two defective nodes are not adjacent to each other.
For example, in Fig. 10(a), if the node device in the middle of
the SET array is defective, its six adjacent nodes are assumed

Fig. 10. (a) Adjacency between nodes. (b) Possible defect distribution.

to be normal nodes. Fig. 10(b) shows a possible distribution
of defects in an SET array. We can see that three defective
nodes are not adjacent. Note that the connections to the current
source can be defective as well. For example, an open defect
occurs at (0, 6) of Fig. 10(b).

IV. DIAGNOSIS APPROACH

A. Overview

Unlike the diagnosis procedure for traditional Boolean
circuits [22], [23], we have to configure at least one path
between the current source and the current detector of an
SET array first before diagnosis. Then the test patterns
are generated and cooperated with the corresponding
configurations. The problem formulation is as follows.

Problem Formulation: Given an n (height) × m (width)
SET array with a distribution of defects, we generate the test
patterns and determine the specific configurations on node
devices. Then we report the locations and the types of the
detected defects if exist.

Note that we adopt the static diagnosis process in this
paper, which means that the test patterns and the corresponding
configurations are predetermined before starting the diagnosis
process. Furthermore, any locations of the identified defects
will not feedback to the diagnosis program immediately dur-
ing the diagnosis process. In other words, the test patterns,
configurations, and their sequences are not dynamically
adjusted. Once the test patterns and the corresponding con-
figurations are generated, all of them must be applied to the
array in the diagnosis process sequentially.

We utilize two ideas to identify the defects.
1) If a path between the current detector and the current

source is conducted (the SET array outputs 1) under an
input pattern, every edge on the path does not suffer
from an open defect.

2) Given a conducted path under an input pattern, if the
path is still conducted after reconfiguring a node as
(open, open) or reconfiguring the connection to the cur-
rent source as (open), there is a short defect occurring
at the edge or the connection accordingly.

In other words, after configuring a path and applying a
corresponding input pattern, those edges that have no open
defects, called nonopen-defect edges, can be first identified
along the path. Then after reconfiguring each node along
the path as open mode, we can know whether the nonopen-
defect edges are short-defect edges or not. For example, the
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Fig. 11. Example showing the idea of defect identification. (a) Path conducted
after applying the input pattern 0101. (b) Identify and mark the nonopen-defect
edges along the path. (c) Path is not conducted when the node at (−1, 1) is
reconfigured as (open, open). (d) Identify and mark a short defect at (0, 2)
through the (open, open) reconfiguration at (0, 2).

SET array in Fig. 11(a) outputs 1 after applying the input
pattern 0101. Thus, we can realize that the edges along the
path are nonopen-defect edges, as highlighted in gray boxes
in Fig. 11(b). When we reconfigure (−1, 1) as (open, open) as
shown in Fig. 11(c) and apply the pattern 0101, the output of
the SET array becomes 0 (nonconducted), which means that
the right edge of the node at (−1, 1) does not suffer a short
defect. However, when we reconfigure (0, 2) as (open, open) as
shown in Fig. 11(d) and still apply the pattern 0101, the SET
array outputs 1 rather than 0. As a result, we can identify that
the left edge of the node at (0, 2) suffers from a short defect,
as highlighted in the dark gray box.

To identify open-defect edges, on the other hand, we can
first identify all the nonopen-defect edges and short-defect
edges in an SET array, then the remaining edges, i.e., the
edges distinguished from nonopen-defect edges and short-
defect edges, are the edges having open defects.

To identify all the defects, we have to configure all the
possible paths in the SET array. In this paper, we propose
an expand-and-all-pass method to diagnose the SET array.
Fig. 12 shows the concept of the expand-and-all-pass method.
The sequence of the diagnosis process starts from the triangle-
shaped subarray rooted at (0, 0), as shown in Fig. 12(a). Then
the diagnosis area, i.e., the subarrays under diagnosis, will
be gradually expanded from (0, 0) to both sides through the
expansion operation at the first row, as shown in Fig. 12(b).
For each subarray under diagnosis, we configure every possible
path within the subarray and apply corresponding patterns to
identify nonopen-defect edges and short-defect edges path by
path. After checking all the paths in the subarrays, those edges
that are not nonopen-defect edges and not short-defect edges
are identified as open-defect edges. Finally, the nonopen-defect
edges are regarded as normal edges.

However, there are some exceptions that have to be dealt
with. First, an open defect occurring at the first row of
the SET array can be identified after checking all the paths
of two adjacent subarrays (the details will be explained

Fig. 12. (a) Abstract of expand-and-all-pass traversing from (0, 0).
(b) Abstract of expand-and-all-pass traversing from (−3, 1) and (3, 1).
(c) Example that defects occur at the first row. (d) Conditions of a defect
occurring at (0, 0).

Fig. 13. Examples of the influence of the sequence of path configuration
with respect to the required node configurations. (a) Five configurations
with the pattern 0100. (b) Additional four configurations with the pattern
0110 after (a). (c) Additional two configurations with the pattern 0101
after (b). (d) Additional two configurations with the pattern 0101 after (a).
(e) Additional two configurations with the pattern 0110 after (d).

in Section IV-B). If an open defect is identified at the first row,
the diagnosis process expanded outward from the defective
node will not further identify any defects. Thus, the edges
outside this diagnosis boundary will be marked as unknown
edges, as shown in Fig. 12(c).1 The short defects, however,
are harmless to the edges at the first row, except for (0, 0),
since these nodes are used only for expansion. Thus, we do
not identify the short defects occurring at the first row, except
for (0, 0), in the diagnosis process.

Next, for the node at (0, 0), since it is directly connected to
the current detector, it is not allowed to suffer from any types

1Note that we apply the expansion only for the first row in the proposed
static diagnosis. The reason is that the available space for expansion at the
first row serves as an indicator of the available mapping width of the given
SET array.
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Fig. 14. Examples for demonstrating the process of identifying non-open-defect edges. (a) The defect distribution. (b) A conducting path with the
pattern 0000. (c) The non-open-defect edges are marked. (d)(e)(f)(g)(h) (open, open) reconfigurations at (0, 0), (−1, 1), (−2, 2), (−3, 3), and (−4, 4),
respectively.

of defects; otherwise, the succeeding mapping process after the
diagnosis would fail with a very high probability. Thus, if any
defect at the node of (0, 0) is identified, the diagnosis process
will be terminated and this SET array will be discarded due
to uselessness for mapping. Fig. 12(d) shows all the cases that
a defect occurs at the node of (0, 0).

In the expand-and-all-pass method, the order of the path
configuration in the diagnosis process influences the required
number of node configurations. Here we directly use an
example to illustrate this issue. In Fig. 13, the notation
(left, right, x, y) represents the configuration (left, right) of
a node device at the location (x , y) where (left, right) is
one of the four operating modes, i.e., (low, high), (high, low),
(open, open), and (short, short). However, for the configuration
of the connection to the current source, we use the notations
of (short, x , y) or (open, x , y).

To configure the path in Fig. 13(a), we have the configura-
tions of (low, high, 0, 0), (low, high, −1, 1), (low, high, 0, 2),
and (low, high, −1, 3). Note that a short configuration
(short, −2, 4) is also required for connecting to the current
source. Thus, |config| = 5 for this path.

When we configure another path as shown in Fig. 13(b),
we have the configuration of (open, open, −1, 3), (low, high,
1, 3), (open, open, −2, 4), and (short, 0, 4). Thus, four addi-
tional configurations are needed. Similarly, to configure the
path as shown in Fig. 13(c), two additional configurations are
required, i.e., (open, open, 1, 3) and (low, high, −1, 3). Thus,
the total number of configurations from Fig. 13(a)–(c) is 11.

In contrast, if we change the order of the path configuration,
e.g., exchanging the pattern 0110 with 0101, the required
number of configurations would be changed as well. As shown
in Fig. 13(d) and (e), if we configure the path in Fig. 13(d)
[originally in Fig. 13(c)] first, we have the configurations
of (open, −2, 4) and (short, 0, 4) since the other previous
configurations on node devices can be reused. Therefore, this
path requires only two additional configurations. Finally, to
configure the path in Fig. 13(e), (open, open, −1, 3) and
(low, high, 1, 3) configurations are required. The total number
of configurations is reduced to 9 from 11. To minimize the
required number of configurations in the proposed expand-
and-all-pass method, we gradually configure the paths from
the left to the right to traverse every path in a subarray.

B. Example

Fig. 14(a) shows the defect distribution on an
SET array where all nodes are initially configured
as (open, open). Note that the unspecified nodes in the
array are all configured as (open, open) as well for the ease
of demonstration. In addition, the edges in the white boxes of
the grid mean that these edges have not been identified yet.

As shown in Fig. 14(b), we start to traverse the subarray
rooted at (0, 0) from the leftmost side in the subarray.
We can see that there is a path conducted with the pattern 0000
and with the configurations {(low, high, 0, 0), (low, high,
−1, 1), (low, high, −2, 2), (low, high, −3, 3), and



2328 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 6, JUNE 2016

Fig. 15. Examples for demonstrating the process of identifying short-defect edges. (a) A conducting path with the pattern 0001. (b)(c) The paths cannot be
conducted with the patterns 0010 and 0011, respectively, due to an open defect. (d) A conducting path with the pattern 0100. (e) A conducting path with the
pattern 0101. (f)(g)(h)(i)(j) (open, open) reconfigurations at (0, 0), (−1, 1), (0, 2), (−1, 3), and (0, 4), respectively.

(short, −4, 4)}. Thus, we can know that the edges along the
conducting path do not have any open defect. These edges
are then marked as nonopen-defect edges, as highlighted in
the gray boxes of Fig. 14(c). Next, we configure the node
at (0, 0) as (open, open), as shown in Fig. 14(d) to check
whether the left edge of the node at (0, 0) suffers from a
short defect. The SET array outputs 0 since this path is not
conducted under the pattern 0000. Therefore, we can conclude
that the left edge of the node at (0, 0) does not suffer from
a short defect. We continue to configure the lower node,
i.e., (−1, 1) as shown in Fig. 14(e), as (open, open) and apply
the same pattern 0000; we can conclude that the left edge of
the node at (−1, 1) is not a short defect. Similarly, we can
conclude that the edges along this path do not suffer from
any short defects after these (open, open) reconfigurations, as
shown in Fig. 14(f)–(h).

To traverse the next path, we reconfigure the connection
of the current source from (−4, 4) to (−2, 4) and apply the
pattern 0001, as shown in Fig. 15(a). Since the SET array
outputs 1, the connection at (−2, 4) can also be marked

as nonopen-defect edge. After having (open, open)
reconfigurations along this path, we can also know that
the edges along this path do not suffer from any short defects.
Next, as shown in Fig. 15(b) and (c), the next configured paths
with the patterns 0010 and 0011 cannot be conducted due to
the existence of an open defect at the right edge of the node
at (−2, 2). Therefore, no additional nonopen-defect edges are
marked.

After checking the conducted path with the pattern 0100
as shown in Fig. 15(d), the path shown in Fig. 15(e) is
also conducted with another pattern 0101. Next, we configure
(open, open) along the path as shown in Fig. 15(f)–(i) to
identify short-defect edges, and no short-defect edges are
identified. However, when (open, 0, 4) reconfiguration is set as
shown in Fig. 15(j), the path is conducted with the pattern 0101
due to a short defect at (0, 4). As a result, we can assert that
the connection at (0, 4) suffers from a short defect.

Fig. 16(a) shows the nonopen-defect and the short-defect
edges after checking all the paths in the subarray under the
left edge of the node at (0, 0). Since there exists at least one



HUANG et al.: DIAGNOSIS AND SYNTHESIS FOR DEFECTIVE RECONFIGURABLE SET ARRAYS 2329

Fig. 16. Examples for demonstrating the method of identifying open defects, unknown edges, and normal edges. (a) A conducting path with the pattern
0111. (b)(c) The steps to identify a double-open-defect at (1, 1). (d) The step to identify a single-open-defect on the right edge of the node at (0, 0). (e) The
result of the diagnosis process.

conducting path from the left edge of the node at (0, 0) to the
current source in this subarray, we can confirm that the left
edge of the node at (0, 0) does not suffer from an open defect.
Next, when checking the paths in the subarray under the right
edge of the node at (0, 0), we can find that no conducting
paths exist along the right edge of the node at (0, 0) as shown
in Fig. 16(b). However, we cannot know the exact reason for
blocking all the paths. The reason might be either a double-
stuck-at-open defect at (1, 1) or a single-stuck-at-open defect
on the right edge of the node at (0, 0). To identify which
one is the actual reason, we perform the expansion operation
from (1, 1) to the right and diagnose the subarray under (3, 1).
Since there exists at least one conducting path, as shown
in Fig. 16(c), we can confirm that there is no open defect on the
right edge of the node at (0, 0). As a result, a double-stuck-
at-open defect is identified at (1, 1). On the contrary, if we
still cannot configure any conducting path after the expansion
from (1, 1) as shown in Fig. 16(d), we can realize that there
exists a single-stuck-at-open defect on the right edge of the
node at (0, 0).

Finally, Fig. 16(e) shows the results of the diagnosis process
for this example. Since the left edge of the node at (−2, 0)
suffers from an open defect, the diagnosis process expanded
toward the left from (−2, 0) will not further identify any
defect. Thus, we mark the edges that cannot be reached
as unknown edges, highlighted in the black boxes. For the
mapping process, the unknown edges will be treated as highly
vulnerable edges and cannot be used. Note that the unknown
edges occurring at the rightmost side of the SET array result
from the ordinary configuration boundary. The final step is
to change the nonidentified edges to open-defect ones, and
change the nonopen-defect edges to normal ones.

C. Overall Flow

Fig. 17 shows the flow of the diagnosis method. Given the
size of an SET array, we initially set all edges as nonidentified

Fig. 17. Flowchart of the proposed diagnosis approach.

and start the expand-and-all-pass from the root at (0, 0).
For each path in a subarray, we first identify and mark
nonopen-defect edges, and then identify the short-defect edges
through (open, open) reconfigurations. After examining all
the paths in the subarray, we check if the node at (0, 0) is
defective. If the node at (0, 0) is defective, we discard it;
otherwise, we expand the subarrays under diagnosis toward
the left and right, and continue to diagnose the subarrays
under the expansion locations. When the expansions toward
both sides meet the boundaries of the SET array, we terminate
the process. We then mark the edges outside the diagnosis
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Fig. 18. Examples of baseline detour mapping algorithm. (a) Mapping result
of 10-0 without defects. (b) Mapping result when there is a DOpen at the right
edge of the node at (−1, 3). (c) Mapping result when there is a DShort at
the left edge of the node at (−1, 1).

boundary as unknown, mark the nonidentified edges as open-
defect ones, and mark the nonopen-defect edges as normal
ones.

This algorithm can guarantee 100% defect coverage under
the defect distribution assumed in Section III-B. This is
important to the succeeding defect-aware mapping algorithm
since the incomplete information about defects could result in
incorrect results by the defect-aware algorithm. Specifically,
the undetected short defects could create invalid paths due to
the unexpected connections between paths, and the undetected
open defects could block the paths that should be conducted
under certain input patterns.

V. DEFECT-AWARE MAPPING ALGORITHMS

Once the locations of defects on a given SET array have
been identified by the diagnosis process, the defect-aware
mapping algorithms are able to map a Boolean circuit into
the defective SET array. In this section, based on the defect
model, we propose two defect-aware mapping algorithms. The
first one is the baseline detour mapping algorithm, which
can successfully map SET arrays by detouring the defective
devices. The other one is the defect-reuse mapping algorithm,
which reuses defective devices for width reduction.

A. Baseline Detour Mapping

When defects occur in SET arrays, we have to deal
with them in the mapping process. Since defects are only
open or short, they can be treated as certain already been
configured edges that do not always satisfy the symmetric
fabric constraint.

In the baseline detour mapping algorithm, if there is only
one DOpen edge or DShort edge at a node device, we
configure the other edge as open before mapping. In addition,
since the DShort edge possibly causes invalid paths, we
configure (open, open) to node devices that are adjacent
to and below the DShort edge for isolation. We call these
(open, open) configurations a side protection and a bottom
protection, respectively.

For example, Fig. 18(a) shows the original mapping result
of the product term 10-0. If there occurs a DOpen defect at
the right edge of the node at (−1, 3) in the SET array, as
shown in Fig. 18(b), we detour the mapping by the short edge
and add a (high, low) configuration at (1, 3) for mapping the
product term. If there occurs a DShort defect at the left edge
of the node at (−1, 1), as shown in Fig. 18(c), we add a side

Fig. 19. (a) Expansion meeting defects. (b) Modified expansion.

Fig. 20. (a) DOpen defects are not on the path to be configured. (b) DShort
defects are not on the path to be configured.

protection and a bottom protection at (−3, 1) and (−2, 2),
respectively, before mapping the product term. Then, we
expand two nodes to the left at the first row to detour the
defect, and the original (high, low) configuration at (−1, 1)
of Fig. 18(a) is moved to (−5, 1) in Fig. 18(c). The rest of
mapping follows the ordinary mapping algorithm.

In the last examples, we use short edges to change the
configuration direction or use expansion to detour the defec-
tive area for mapping. However, the expansion itself might
encounter defective area as well. If the expansion meets
defective area, the mapping process looks for another edge
at the upper rows for a trial of expansion again. For example,
as shown in Fig. 19(a), assume that the product term 1001-100
has been mapped. We would like to map another product term
1001-1-1, and an expansion at (−2, 6) is required. However,
during the expansion to the left for two nodes, we meet a
(DOpen, DOpen) defect at (−5, 5). Therefore, we discard this
and expand at another location of (1, 5) as shown in Fig. 19(b).
Finally, the product term 1001-1-1 is successfully mapped.

B. Defect-Reuse Mapping

Since the defects are open or short, and they are the
same with normal configurations, except singular (one edge)
configuration, we can reuse the defects if they are applicable
for further width reduction. Therefore, in this section,
we propose a defect-reuse mapping approach.

For a single DOpen or DShort defect occurring at a node
device, we leave the other edge intact such that it can be
configured as any desired type. Therefore, if the defective
edges are not on the conducting path during mapping a product
term, we can configure the other edge of the defective node
device as usual. For example, Fig. 20(a) and (b) shows valid
configurations when DOpen or DShort defects are not on the
path to be configured. We reuse the other edge of a defective
node to form the conducting paths.
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Fig. 21. (a) Two DShort edges occur in an SET array. (b) Side pro-
tection addition. (c) Mapping result of 100−0100 after reusing the DShort
at (−1, 3). (d) Side protection removal and bottom protection addition.
(e) Reusing the DShort at (−3, 5) for expansion. (f) Final mapping result.

In the mentioned baseline detour approach, we isolate all
DShort edges using the side protection and bottom protection
to avoid creating invalid conducting paths. However, DShort
edges could be reused when short configurations are needed.
Therefore, we do not isolate DShort edges in the beginning.
In fact, the side protection and bottom protection have different
purposes. The side protection is used to protect the conducting
path from short connections to other configurations, which
would create invalid paths, when we map a product term
downward. However, the side protection would have a side
effect that blocks the expansion operation. On the other hand,
the bottom protection is used to protect the expansions from
short connections to other configurations. However, the bottom
protection would have a side effect that blocks the mapping
path downward. Therefore, to reuse the DShort edges without
creating invalid conducting paths, we add the side protection
of the DShort edges only and remove any bottom protection
before mapping a product term downward. On the other hand,
before expanding the mapping to the left or to the right, we add
only the bottom protection of the DShort edges and remove
any side protection.

For example, assume that there are two DShorts in the SET
array of Fig. 21(a). Before mapping the product term, the
side protections are added at (1, 3) and (−5, 5), as shown
in Fig. 21(b). When mapping a product term 100-0100, the
DShort edge at (−1, 3) can be reused for the don’t care bit
of the product term, as shown in Fig. 21(c). For mapping
another product term 100-01-1, we need to expand to the left
at (−2, 6). Before expansion, the side protections at (1, 3)
and (−5, 5) are removed, and the bottom protection is added
at (−4, 6), as shown in Fig. 21(d). Note that we do not have
to add the bottom protection at (0, 4) since this location has
been configured by the first product term. Fortunately, the
DShort edge at (−3, 5) can be reused as well for expansion,

Fig. 22. Flowchart of the proposed defect-aware mapping algorithm.

as shown in Fig. 21(e). To continue mapping the product term
from (−4, 6), we expand at (−5, 5). Finally, the product
term 100-01-1 is successfully mapped, as shown in Fig. 21(f),
and the unspecified edges are all configured as (open, open).

C. Overall Flow

Fig. 22 shows the overall flow of the proposed defect-aware
mapping algorithm. Given an SET array, we can either perform
the diagnosis flow mentioned in Section IV-C to obtain the
defect map or directly use a known defect map generated by
any source for the defect-aware mapping algorithm. A key
point is that the diagnosis process must achieve a high enough
defect coverage; otherwise, the correctness of the mapping
results by the defect-aware mapping algorithms would be
affected. Note that the proposed mapping algorithm can deal
with any distribution of defects. However, since (0, 0) is
the location connecting to the current detector, any defect
occurring at (0, 0) would make the mapping process fail. As a
result, we assume that the SET arrays having defects at (0, 0)
are discarded before the mapping process, which means that no
defect occurs at (0, 0) in the given SET array. Moreover, if the
mapping area exceeds the width of the given SET array or the
diagnosis boundary, the mapping process will be terminated.2

In the proposed mapping algorithm, the preprocessing
procedures including variable reordering, architecture deter-
mination, product-term reordering, and BTS grouping are
performed first. Before mapping, if the mapping is in the
baseline mode, we first configure open for the other edge
of a node having a single defective edge. Next, for each
product term (PT) to be mapped, we first adjust the protections
for short defects in the defect-reuse mode. When mapping
the product term, if the mapping space is not enough or
the mapping process creates an invalid path, we undo the
mapping and expand the mapping at a proper row. Note that
the protections for short defects will also be adjusted before the
expansion in the defect-reuse mode. If the mapping process is

2For the ease of discussion, we omit this situation in Fig. 22.
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TABLE I

EXPERIMENTAL RESULTS OF THE PROPOSED DIAGNOSIS METHOD

successful, we proceed to map the next product term. After all
the product terms are successfully mapped in the SET array,
we configure all the remaining edges that are not configured
yet as open and output the final mapping result.

VI. EXPERIMENTAL RESULTS

The experiments are divided into two parts. The first
part shows the validity of the proposed diagnosis flow.
In the second part, two sets of experiments were conducted
to show the capability of the proposed defect-aware
mapping algorithms. We implemented all the algorithms in
C language and conducted the experiments on an Intel Xeon
E5530 2.40-GHz CentOS 4.6 platform with 64-GB memory.

A. Diagnosis Algorithm

We conducted diagnosis experiments for different sizes
of SET arrays with different defect rates. The defects
were randomly injected based on the distribution assumed
in Section III-B, and 20 experiments were conducted to
obtain the average results. Note that the SET array with a
defective node at (0, 0) was discarded and not included in the
experiments.

Table I summarizes the experimental results. Column 1
lists the height (H ) and width (W ) of the SET arrays.
Columns 2–4 list the defect rates of different defect types,
single-stuck-at-open (SO), double-stuck-at-open (DO), and
stuck-at-short (SS). Column 5 lists the coverage of detected
defects. The defect coverage is calculated as (number of
detected defects within the diagnosis boundary/number of all
defects within the diagnosis boundary) × 100%. Column 6
lists the ratio of the number of unknown edges with respect to
the number of total edges. Column 7 lists the required CPU
time. For example, the diagnosis process conducted in an SET
array of H × W = 15 × 15 with a defect rate of 3% for each
defect type reports 100% defect coverage within the diagnosis
boundaries. About 18% edges were reported as unknown. The
required CPU time under this setting is 0.86 s.

According to Table I, the diagnosis method can achieve
a 100% defect coverage under the assumed defect distribution.

TABLE II

EXPERIMENTAL RESULTS OF THE BASELINE DETOUR MAPPING
ALGORITHM AND THE DEFECT-REUSE MAPPING ALGORITHM

Fig. 23. The comparison of width with different defect rates on benchmarks
(a) cu, (b) cm151a, (c) c8, and (d) sct, between the baseline detour mapping
algorithm and the defect-reuse mapping algorithm.

The 100% defect coverage is important to the defect-aware
mapping algorithm since the incomplete information about
defects could result in incorrect results by the defect-aware
algorithm. The required CPU time for the diagnosis remark-
ably increases when the height of the SET array increases.
This is because the height of the SET array influences the
number of paths to be configured. The ratios of unknown edges
are varied since the defects were randomly injected. However,
when the size of SET array becomes larger, the probability of
open defect occurring at the first row near (0, 0) is smaller,
which results in smaller ratios of unknown edges.
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B. Defect-Aware Mapping Algorithms

Two sets of experiments were conducted for defect-aware
mapping algorithms over a set of IWLS 2005 benchmarks [24].
The first experiment shows the result comparison between
baseline detour mapping algorithm and defect-reuse mapping
algorithm. The second one shows the width variation with
respect to different defect rates between two algorithms.
In these experiments, the defects were randomly injected into
the SET array with a fixed ratio of failure types. In addition,
we conducted the mapping algorithms for ten defect maps of
a benchmark to obtain the average results.

In the first experiment, the defect rate was set as 0.5% of
the number of sloping edges of the SET array where 0.1% is
for stuck-at-short, 0.2% is for single-stuck-at-open, and 0.2%
is for double-stuck-at-open.

Table II summarizes the experimental results of the first
experiment. Column 1 lists the benchmarks. Columns 2 and 3
list the width of the mapping result and the CPU time for
defect-free SET arrays, respectively. Columns 4–6 show the
average width of the mapping result, the ratio of the increased
width compared with defect-free mapping, and the CPU
time in the baseline detour mapping algorithm. Columns 7–9
show the corresponding results in the defect-reuse mapping
algorithm.

For example, the original mapping algorithm requires
0.10 s to map the benchmark lal on a defect-free SET
array with 388 width. The baseline detour mapping algorithm
requires 0.14 s to obtain the average result of 434.7 width,
or 12.04% [(434.7 − 388)/388 × 100%] increased width
compared with the original width. The defect-reuse mapping
algorithm requires 0.16 s to map the SET array with 9.48%
increased width compared with the original width.

According to Table II, the widths of the mapping results
obtained by the defect-reuse mapping algorithm are less than
that by the baseline detour mapping with a little CPU time
suffering. On average, the ratios of increased width are 11.13%
and 7.69% in the baseline detour mapping algorithm and
defect-reuse mapping algorithm, respectively. The defect-reuse
mapping algorithm reduces 3.44% width on average.

In the final experiment, we map SET arrays with different
defect rates. Due to the page limit, we show only the results
of four benchmarks, cu, cm151a, c8, and sct. Other bench-
marks have similar results. Fig. 23 shows the experimental
results. The x-axis represents the defect rates, and the y-axis
represents the normalized width of the mapping results. The
dotted line and the dashed line represent the widths of the
mapping result by the baseline detour mapping algorithm and
the defect-reuse mapping algorithm, respectively.

For example, the width of the mapping result by the
baseline detour mapping algorithm of benchmark cm151a is
increased to 216.47% of the original width when the defect
rate is increased from 0% to 5%. In contrast, the width of
the mapping result by the defect-reuse mapping algorithm is
increased only to 138.82% of the original width with the same
defect rate, respectively.

According to Fig. 23, we can see that the width was
increased when more defects were injected. We can also
see that the width difference was getting larger between

the baseline detour mapping algorithm and the defect-reuse
mapping algorithm when a higher defect rate was applied.
However, for the benchmarks c8 and sct, we can also see that
the width difference was getting smaller when the defect rate
is higher than a certain value. This is because the distribution
of the defects becomes crowded when the defect rate becomes
larger, which reduces the probability of reusing the defects by
the defect-reuse mapping algorithm. Thus, the width of the
mapping result by the defect-reuse algorithm becomes close
to that by the baseline detour mapping algorithm when the
defect rate is larger than a certain value.

In summary, the defect-reuse algorithm results in less width
of the mapping area compared with the baseline detour
algorithm among the benchmarks and different defect rates.

VII. CONCLUSION

We propose the first approach integrating the diagnosis
and mapping of reconfigurable SET arrays. The diagnosis
method can achieve 100% coverage of defects under the defect
distribution. The mapping algorithms can successfully map
SET arrays in the presence of defects. The experimental results
show that the defect-reuse mapping algorithm results in less
width of the mapping results compared with the baseline
detour mapping algorithm.
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