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Abstract— Power consumption has become one of the primary
challenges to meet Moore’s law. For reducing power consumption,
single-electron transistor (SET) at room temperature has been
demonstrated as a promising device for extending Moore’s law
due to its ultralow power consumption in operation. Previ-
ous works have proposed automated mapping approaches for
SET arrays that focused on minimizing the number of hexagons
in the SET arrays. However, the area of an SET array is the
product of the bounded height and the bounded width, and
the height usually equals the number of inputs in the Boolean
function. Consequently, in this paper, we focus on the width
minimization to reduce the overall area in the mapping of the
SET arrays. Our approach consists of techniques of product term
minimization, branch-then-share (BTS)-aware variable reorder-
ing, SET array architecture relaxation, and BTS-aware product
term reordering. The experimental results on a set of MCNC and
IWLS 2005 benchmarks show that the proposed approach saves
45% of width compared with the work by Chiang et al., which
focused on hexagon count minimization, and also saves 13% of
width compared with the work by Chen et al., which focused on
width minimization.

Index Terms— Area minimization, mapping algorithm,
single-electron transistor (SET).

I. INTRODUCTION

REDUCING power consumption has become one of the
primary challenges in chip designs to meet Moore’s law.

To deal with this issue, many ultralow-power devices have
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Fig. 1. (a) Node device in the SET array. (b) Behavior of the node device.

been explored. Because the power consumption of single-
electron transistors (SETs) [3]–[6], which work with only one
or a few electrons during switching operations, is ultralow,
SETs are considered a promising candidate that substitutes
conventional CMOS devices for future VLSI/system-on-chip
designs [7]–[11].

The SET devices were studied in many research
groups [12]–[17]. A recent effort in [15] experimentally con-
firmed a reconfigurable single-electron device that can be oper-
ated in short, Coulomb blockade, and open-mode operations.
This paper also indicates that scaling of the device dimen-
sion beyond the proof-of-concept experimental device will
enable a room temperature operation. Hence, designs that use
these devices become imperative. The SET device exploits a
multigate quantum well-field-effect-transistor structure, which
uses a pair of split gates with a separation of 80 nm, to achieve
the single-electron device behavior at temperature of 4.2 K.

Although the SET is a promising candidate device to
substitute the CMOS, it has a poor driving capability and
poor threshold control due to the involvement of only one
or a few electrons in the switching process. Therefore, the
conduction mechanism of the conventional CMOS-based logic
is not applicable to SETs. As a result, a binary decision
diagram (BDD)-based architecture [18] was proposed as a
suitable platform for implementing logic functions using
SETs [19]. Therefore, a Boolean circuit can be implemented
by mapping its BDD onto a BDD-based SET array that is
represented as a hexagonal nanowire network controlled by
Schottky wrap gates [3], [20], [21].

In the BDD-based SET array, each node device, as shown
in Fig. 1(a), has two receiving edges and one sending edge.
It works like a switch that receives the electrons from its
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Fig. 2. (a) Original SET array. (b) Area of the SET array is intact even
though the number of hexagons is reduced.

preceding devices through either its left or its right edge
and sends the electrons to its succeeding device depending
on the control variable, as shown in Fig. 1(b). The control
variable is the input variable of a Boolean circuit. The node
device can be realized by controlling nanowires with wrap-gate
SET that has two operating modes: 1) active-high (high) and
2) active-low (low). Either the left or the right edge can be high
or low. For example, in Fig. 1(b), when the control variable
xi equals 0 and the left (right) edge is low, the node device
receives the electrons through the left (right) edge. Similarly,
when the control variable xi equals 1 and the left (right) edge
is high, the node device receives the electrons through the left
(right) edge. Furthermore, all node devices at the same row in
the SET array are controlled by a single-input variable.

The realization of the BDD-based SET architecture in [21]
is fixed and not amendable to functional reconfiguration. This
structure cannot be changed to implement another different
function due to the involvement of an etching process in
its realization. Thus, a reconfigurable version of SET that
uses wrap gate tunable tunnel barriers was proposed in [22].
This device can be operated in three distinct modes with
respect to wrap gate bias-voltages: 1) active; 2) open; and
3) short. Thus, it enables functional reconfiguration and
increases the flexibility and reliability of the BDD-based SET
arrays [3], [19]–[21].

In parallel with the advances of SET array realization, the
automatic synthesis methods were proposed in [23] and [24].
These works sequentially mapped each product term of a
Boolean function instead of its whole BDD to solve the
mapping problem coming from the nonplannar, i.e., having
crossing edges, BDD representation. Furthermore, the pro-
posed mapping approach in [1] focuses on reducing the num-
ber of hexagons in the mapped SET arrays using reordering
techniques. This paper statically analyzed product terms and
variables for extracting features to share nodes and edges in
the mapping process. For simplicity, these previous works only
allow the same type of configuration, either (high, low) or (low,
high), in the whole SET array.

The major purpose of the automatic mapping approach
should be to map a circuit within a given SET array area
successfully. Although approaches in [1], [23], and [24] min-
imized the number of hexagons mapped in SET arrays, the
reduction of mapped area might not be significant. Minimizing
the number of hexagons would not reduce the SET device cost
and the SET array area. For instance, Fig. 2(a) and (b) shows
an example that different numbers of hexagons result in the
same area of SET array. In fact, the area of an SET array is

Fig. 3. (a) SET array fabric. (b) Example of a ⊕ b. (c) Simplified diamond-
shaped network of a ⊕ b [23].

determined by its bounded height and bounded width.1 Width
minimization is more important for an automatic mapping
approach to map a circuit into an SET array successfully.
As a result, in this paper, we propose an approach to focus on
minimizing the width of the SET arrays.

Let us discuss factors influencing the width of mapped SET
array. First, fewer product terms usually result in a mapping
with a smaller width. Therefore, minimizing the number of
product terms is a feasible method. Second, if node or edge
sharing among product terms is more, the width could be
reduced as well. Finally, if the configuration in each row
of SET array is relaxed to different types, more mapping
opportunities can be exploited for width minimization. Thus,
in this paper, we propose an approach that consists of four
techniques: 1) product term minimization; 2) branch-then-
share (BTS)-aware variable reordering; 3) SET array archi-
tecture relaxation; and 4) BTS-aware product term reordering
for minimizing the width of SET arrays.

We conduct the experiments on a set of MCNC and
IWLS 2005 benchmarks. The experimental results show that
the proposed approach can minimize the width of SET arrays
by saving 45% of width, compared with a previous method [1],
which focused on the hexagon count minimization. In addition,
comparing with a previous work [2], which focused on width
minimization, our approach can save 13% of width.

The rest of this paper is organized as follows. Section II
reviews the SET device and introduces the background.
Section III introduces the proposed approach for minimizing
the mapping width of SET arrays. Section IV shows the
experimental results. The conclusion is drawn in Section V.

II. BACKGROUND

This section introduces the SET device and the background
of this paper.

A. Reconfigurable BDD-Based SET Array

A reconfigurable BDD-based SET array consists of three
layers: 1) Input signal layer; 2) configuration layer; and
3) device layer. The input signal layer involves metal wires
to conduct input signals to SET devices. The configuration
layer involves metal wires to control the operation modes of
SET devices, e.g., high, low, short, and open. The bottom
layer is the device layer that is composed of SET device

1The height of an SET array is usually the same as the number of inputs
in a circuit.
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Fig. 4. (a) Constraint-free mapping. (b) Mapping with the fabric constraint.

network [2], [22]. A reconfigurable BDD-based SET array
can be represented as a hexagonal network, as shown
in Fig. 3(a) [22]. There is a current detector at the top and
a current source, represented as 1, at the bottom. When the
electrons are transported from the current source to the current
detector through a conducting path, which is controlled by the
input variables, the current is detected and the output value
of the Boolean circuit is 1; otherwise, it is 0. All the sloping
edges in the SET array can be configured as high, low, short,
or open. A high edge indicates that the corresponding node
device operates in active mode controlled by a variable x .
Conversely, a low edge is controlled by x ′, and it is an
electrical opposite of a high edge. Furthermore, a short (open)
edge is electrically short (open), where the corresponding SET
device operates in short (open) mode. For example, Fig. 3(b)
shows an implementation of a ⊕ b. The current detector detects
the current, i.e., the function is evaluated as 1, when either
(a = 1, b = 0) (left path) or (a = 0, b = 1) (right path). This
behavior exactly represents the function of a ⊕ b.

B. Notation

For ease of discussion, a simplified abstract diamond fabric
was proposed in [23] and used in [1] and [24]. In the simplified
diamond fabric, since all the vertical edges of the hexagons
are electrically short, only the sloping edges are preserved.
Fig. 3(c) is the corresponding diamond-shaped network of the
hexagonal network in Fig. 3(b).

C. Fabric Constraint

Fig. 4(a) shows a configured SET array without imposing
any mapping constraint. However, there is a practical mapping
constraint called fabric constraint that has to be met. The
constraint limits the configurations of an SET array due to
the manufacturing limitation [1], [14], [22]–[24]. Hence, our
work maps the SET arrays under the fabric constraint as well.

A reconfigurable SET device involves metal wires to
configure itself into high, low, short, or open mode. The
configuration of metal wires physically dominates the SET
array area [2]. In manufacturing, an SET array would have
a higher circuit density when the combinations of metal
wires in the configuration layer are reduced [22]. To reduce
the area, we only configure the combination of the metal
wires of an SET device as one of (high, low), (low, high),
(short, short), or (open, open), and both the (high, low) and
(low, high) configurations are not allowed to appear in the
same row simultaneously. This constraint on the configuration

Fig. 5. LTG implementing the function f = x1 + x2x ′
3.

combination is called the fabric constraint. We use the notation
(high, low) or (low, high) to represent the configuration of each
row in an SET array. Fig. 4(b) shows an SET array that meets
the fabric constraint. In Fig. 4, P1 ∼ P3 are product terms,
where “−” means don’t care.

III. PROPOSED APPROACH

In this section, we introduce the proposed approach that
consists of four techniques for the width minimization of
SET arrays: 1) product term minimization; 2) BTS-aware
variable reordering; 3) SET array architecture relaxation; and
4) BTS-aware product term reordering. We will discuss them
in Sections III-A–III-D.

A. Product Term Minimization

In general, fewer product terms usually result in a mapping
with a smaller width. Therefore, in addition to the BDD-based
approach used in [1], [23], and [24], we can use other methods
to figure out the product terms of a circuit. Note that these
product terms obtained have to be mutually disjoint to each
other as obtained from its BDD.2 This is because only one
path can be conducted at a time in an SET array from its
physical characteristic [22]. As a result, we compute disjoint
product terms from a threshold network representation of a
circuit. The threshold network representation of a circuit can
be obtained from [25]

f (x1, x2, . . . , xn) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if
n∑

i=1

xiwi ≥ T + δon

0 if
n∑

i=1

xiwi < T − δoff .

(1)

A threshold network is a network composed of linear
threshold gates (LTGs). The parameters of an LTG are weights
wi : i = 1 ∼ n, which correspond to inputs xi : i = 1 ∼ n,
and a threshold value T [26]. Parameters δon and δoff are
positive numbers that are used for solving the defect tolerance
issue of an LTG implementation. In this paper, we consider a
threshold network as a functional representation of a Boolean
network and do not consider the implementation issue. Thus,
we assume that both parameters δon and δoff are zero. The
output f of an LTG is evaluated by (1) [27], [28].

For example, in Fig. 5, the LTG generates 1 if 2x1 +
x2 − x3 ≥ 1, and generates 0 otherwise. Since {x1 = 1} or
{x2 = 1, x3 = 0} can uniquely make the LTG become 1, the
Boolean function it represents is f = x1 + x2x ′

3.

2General logic optimization methods, e.g., Espresso, are not applicable to
this paper, since the resultant product terms are not disjoint.
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Fig. 6. LTG with a critical input a.

In this paper, we assume the weights and the threshold value
of an LTG are integers, and use a weight-threshold vector
〈w1, w2, . . . , wn; T 〉 to represent an LTG. We also transform
the negative weights of an LTG into positive ones by applying
a positive–negative weight transformation procedure [26] for
ease of analysis in this paper.

1) Background of LTG: We review the background of an
LTG [29]—input grouping, critical input, and critical-effect
vector—that will be used in our product term computation
procedure.

a) Input grouping: Given an LTG, the input grouping is a
process that separates the inputs and its corresponding weights
into different groups. We know that the relationship between
the weighted summation and the threshold value determines
the output value of an LTG. If the weight of one input is
equal to the threshold value, this input can change the output
from 0 to 1 alone. On the other hand, if the weight of an
input is smaller than the threshold value, this input needs the
weights from the other inputs to change the output from 0 to 1.
Thus, the inputs of an LTG can be separated as one or more
groups based on this idea.

b) Critical input: Given a single-group LTG, an input x j

with its corresponding weight w j is critical if and only if the
LTG satisfies (2), where n is the number of inputs in this gate

n∑

i=1,i �= j

wi < T . (2)

That is, the LTG will become a useless gate3 when x j is
assumed 0. For example, in Fig. 6, input a is critical because
the summation of weights of inputs b ∼ d is less than the
threshold value.

By the definition of the critical input, we know that assign-
ing 0 to a critical input of a single-group LTG can make this
gate become a useless LTG. This characteristic of a single-
group LTG can be used to compute the product terms of
an LTG.

c) Critical-effect vector: Given a single-group LTG, it
has a critical-effect if it satisfies (3), where n is the number
of inputs in this gate

n∑

i=1

xiwi = T . (3)

An input assignment that satisfies the requirement of the
critical-effect for an LTG is called a critical-effect vector.
For example, in Fig. 7, input assignments 101 and 110
are the critical-effect vectors of LTG 〈2, 1, 1; 3〉 due to the
satisfaction of (3). Changing any input from 1 to 0 in the

3Given a nonempty LTG, it is a useless LTG if and only if it always has
the output value of 0.

Fig. 7. LTG and its critical-effect vectors [29].

Fig. 8. Example for demonstrating the computation of onset and
offset from an LTG having a single-input group. (a) LTG 〈2, 1, 1; 2〉.
(b) Temporarily modified LTG considering a = 0 and the derived onset and
offset. (c) Temporarily modified LTG considering (a, b) = (0, 1) and the final
onset and offset of the LTG 〈2, 1, 1; 2〉.

critical-effect vectors will also change the output from 1 to 0.
In addition, (3) is a necessary condition if the given LTG is
obtained from an ILP-based synthesis algorithm [25]. That
means all the critical-effect vectors of an LTG satisfy (3).

2) Onset and Offset Computation for an LTG: Before
computing the product terms of a threshold network, we have
to compute the onset and offset of each LTG in the threshold
network. We first consider the case that an input is a
single-input group of an LTG. Since this input can indepen-
dently change the output from 0 to 1 when it is assigned 1,
we can first compute the onset that involves this input of 1.
We use an example to demonstrate this procedure. Given an
LTG 〈2, 1, 1; 2〉, as shown in Fig. 8(a), this LTG has two
groups and represents the function f (a, b, c) = a + bc. If we
assign 1 to the input a, the output becomes 1 under any
combinations of b and c. Hence, we can realize (a, b, c) =
(1,−,−) is one of the onsets of this LTG, where “−” denotes
don’t care. Then, we consider the situation that the input a is
assigned to 0. Since a can be ignored when it is assigned to 0,
the LTG can be temporarily modified as 〈1, 1; 2〉, as shown
in Fig. 8(b) for deriving other onset elements. In Fig. 8(b),
we also explicitly express the undetermined onset and offset of
(a, b, c) = (0, X, X) in the table, where X denotes unknown.
The onset and offset expressions with X have to be refined
to the expressions that do not contain X in the succeeding
procedure.

Next, we consider the situation that an input is a critical
input of an LTG. According to the definition of a critical input,
we know that if the critical input is assigned to 0, the output
is 0. Thus, one of the offset of this LTG is the one that involves
this critical input of 0. For example, in the modified LTG
of Fig. 8(b), the input b is a critical input.4 Hence, we can
realize (b, c) = (0,−) is one of the offset of this modified
LTG. Combining the input a of 0 with (b, c) = (0,−),

4The input c is also a critical input, we can also consider the input c first.
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Fig. 9. Example for demonstrating the computation of onset and offset
from an LTG having no single-input groups and no critical inputs. (a) LTG
〈3, 2, 2, 1; 5〉 and one of its onset. (b) Modified LTG and derived onset
and offset considering (a, b) = (1, 0). (c) Modified LTG and derived
onset and offset considering (a, b) = (0, 1). (d) Modified LTG and
derived onset and offset (a, b) = (0, 0). (e) Final onset and offset.

we obtain (a, b, c) = (0, 0,−), which is one of the offset of
this LTG, as shown in the table of Fig. 8(c). Then, we consider
the situation that the input b is assigned to 1 [(a, b) = (0, 1)].
Note that we also have to modify this LTG where b is assigned
to 1. Since the input b has been assigned to 1, we remove the
input b from the LTG and decrease the threshold value by
the weight of input b from the LTG. Thus, the resultant LTG
becomes 〈1; 1〉, as shown in Fig. 8(c). For this modified LTG
in Fig. 8(c), we can compute its onset and offset as (c) = (1)
and (c) = (0), respectively. Combining (a, b) = (0, 1) with c,
we obtain another onset (a, b, c) = (0, 1, 1) and another offset
(a, b, c) = (0, 1, 0) of this LTG. Since c is the last input of
the LTG, the onset and offset of the original LTG 〈2, 1, 1; 2〉
have been completely derived, as shown in Fig. 8(c).

In the example of Fig. 8, we use the concepts of single-
input group, critical input, and an LTG modification process
to derive the onset and offset of an LTG. However, some LTGs
might have neither single-input groups nor critical inputs.
Thus, for these LTGs, we derive their critical-effect vectors
instead. Since the inputs have been sorted by weights, we can
easily obtain the critical-effect vectors by solving (3) [30].
By the definition of critical-effect vector, we know that the
output of a critical-effect vector is always 1. Hence, the
critical-effect vector is definitely the onset of the LTG. For
the LTG that has more than one critical-effect vectors, we first
derive the critical-effect vector that has the least number of 1.
This is because this critical-effect vector can form a bigger
product term,5 such that the total number of product terms
can be minimized. We use an example, as shown in Fig. 9, to
demonstrate this computation process with the critical-effect
vectors.

Given an LTG 〈3, 2, 2, 1; 5〉, as shown in Fig. 9(a), this
LTG represents the function f (a, b, c, d) = a(b + c) + bcd .
Since there is no single-input groups and no critical inputs
in this LTG, we derive the critical-effect vector having the

5A bigger product term means that it contains more minterms.

Fig. 10. Example for demonstrating the computation of product terms from
a threshold network. (a) Threshold network and the precomputed onset and
offset of each LTG. (b) Derived input assignments from (a). (c) Resultant
product terms.

least number of 1, 1100. From this critical-effect vector, we
can compute (a, b, c, d) = (1, 1,−,−) is one of the onset
of this LTG, as shown in Fig. 9(a). Then, we consider the
remaining combinations (a, b) = (1, 0), (0, 1), or (0, 0), as
shown in Fig. 9(b)∼(d), respectively. Consider the inputs
(a, b) = (1, 0), because the inputs (a, b) are (1, 0), the
threshold value of this LTG is modified as 5−3 × 1−2 × 0 = 2
and the modified LTG is shown as Fig. 9(b) by removing the
inputs a and b. Since this modified LTG has a single-input
group, we can easily compute its onset as (c, d) = (1,−)
and offset as (c, d) = (0,−) by the method mentioned
previously. Combining (a, b) = (1, 0) with (c, d) = (1,−) or
(0,−), we obtain one onset of the original LTG (a, b, c, d) =
(1, 0, 1,−); one offset (a, b, c, d) = (1, 0, 0,−). Similarly,
if the inputs (a, b) is (0, 1), or (0, 0), the LTG is modified
as Fig. 9(c) or (d), respectively. In Fig. 9(c), the onset is
derived as (0, 1, 1, 1), and the offset is derived as (0, 1, 1, 0)
and (0, 1, 0,−). In Fig. 9(d), because this modified LTG is a
useless LTG, we can realize (a, b, c, d) = (0, 0,−,−) is one
of the offset of LTG. In summary, all the onset and offset of
the LTG 〈3, 2, 2, 1; 5〉 are derived, as shown in Fig. 9(e).

In this computation process, we can ensure that the product
terms in the onset and offset are disjoint. This is because we
disjointly decompose the input space.

3) Product Term Computation From a Threshold Network:
After computing the onset and offset of each LTG, we then
compute the product terms of a threshold network. Given a
single-output threshold network, we compute its disjoint prod-
uct terms from the primary output (PO) toward the primary
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Fig. 11. Example of product term minimization via swapping the symmetric
inputs. (a) Original threshold network and the computed product terms.
(b) Threshold network after swapping n1 with n2. (c) Resultant threshold
network after swapping n3 with d from (b) and the computed product terms.

inputs (PIs) in a breadth-first search manner. The product
terms (onset) of the whole threshold network then can be
derived level by level. This is because for two connected LTGs,
Gi → Gi+1, the input space of Gi+1 represents the function
of Gi . In particular, if one input of Gi+1 is assigned to 1 (0),
it represents the onset (offset) of Gi . Thus, each input of an
LTG can be replaced by the onset (offset) of its fanin gate
when the input assignment is 1 (0).

We use an example, as shown in Fig. 10, to demonstrate the
product term computation from a threshold network. Fig. 10(a)
shows a given threshold network and the precomputed onset
and offset of each LTG.

The elements in the onset of the LTG f 〈2, 1, 1; 2〉 are
(n1, n2, n3) = (1,−,−) and (0, 1, 1), as shown in Fig. 10(a).
For the first element (n1, n2, n3) = (1,−,−), we assign
1 to n1. Thus, we use the onset of n1 to derive the input assign-
ments, (a, b) = (1, 1). Then, we also assign − to n2 and n3,
and the corresponding input assignments are (b, c) = (−,−)
and (c, d) = (−,−), as shown in the fourth row of Fig. 10(b).
Similarly, the second element (n1, n2, n3) = (0, 1, 1) in the

Fig. 12. Example of 2-bit BTS.

Fig. 13. (a) Types of BTS. (b) Notations of BTS.

onset is also used to compute the product terms of LTGs, as
shown in the last four (2 × 1 × 2) rows of Fig. 10(b).

After having the input assignments in the product term table
of Fig. 10(b), we need to further refine these input assignments
such that no conflict exists for a single input. For example, in
the fourth row of Fig. 10(b), the input assignments of (a, b),
(b, c) are (1, 1), (−,−), respectively. Because “−” represents
either 0 or 1, we can assign b as 1 without causing any
conflicts. Thus, the input assignment of the fourth row can
be refined as (a, b, c, d) = (1, 1,−,−), as shown in the third
row of Fig. 10(c).

For the product term that has conflict values, 0 and 1, in
one variable, we discard this product term. For example, in the
last three rows of Fig. 10(b), there exists a value conflict to
either variable b or c. Therefore, we discard all of them. As a
result, the resultant product terms of this threshold network
are obtained and summarized in Fig. 10(c).

Next, we propose a technique that swaps the symmetric
inputs in an LTG to obtain a smaller set of product terms.
Since the don’t care bit “−” covers 1 and 0, and having more
“−” in a product term generally causes the product term set
of a function smaller, we prefer to create more don’t care bits
in one product term during the computation process. Based
on this preference, we propose a method that changes the
locations of symmetric inputs in an LTG as follows, so that
more “−” appear in one product term.

For an LTG with symmetric-inputs, we first check the
locations of “−” in its onset and offset. Next, we check the
fanin gate sizes6 of these symmetric inputs, and swap these
symmetric inputs so that “−” corresponds to a larger fanin
gate.

For example, in Fig. 11(a), the LTG f 〈1, 1; 1〉 has two
symmetric inputs. In its onset, since the location of “−” is

6The fanin gate size is defined as the number of inputs in the fanin gate.
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Fig. 14. (a) Original variable order. (b) Move all-share variables to the left. (c)–(f) Reorder variables according to the quantity of bit values.

the second input and n1 is a larger fanin gate, we swap n1
with n2. The new threshold network is shown in Fig. 11(b).
Next, we consider the LTG n2 in Fig. 11(b), which also
has two symmetric inputs. The location of “−” is in the
second input of the offset, and n3 is a larger fanin gate
than d . Thus, we swap n3 with d accordingly. The resultant
threshold network is shown in Fig. 11(c) and the number of
computed disjoint product terms is reduced from 7, as shown
in Fig. 11(a), to 4.

In this paper, for each output function, we compare the
number of product terms computed from the LTG-based
method and the BDD-based method, and choose the smaller
set of product term for SET array mapping.

B. BTS-Aware Variable Reordering

1) BTS Basis: The concept that two-product terms share
some path segment in an SET array was proposed in [1].
These product terms are named BTS product terms, as they
branch in one row and merge in the succeeding row such that
the remaining path segments are shared with edges. If some
product terms are BTS and mapped adjacently, the mapped
width can be reduced. As a result, the more BTS are identified
in the mapping process, the smaller width results in. For
example, in Fig. 12, the product terms 001001 and 010001
are BTS, where only two variables are configured as different
types of edges in the second and third rows. These product
terms branch at the second row and merge at the third row
such that the remaining path segments are shared. Therefore,
the width of the resultant array is minimized.

In this paper, we exploit different types of configurations
among the rows to create more opportunities for BTS. The
configuration for two consecutive rows is classified into two
share types: 1) twin type and 2) invert type. Hence, we
enumerate bit value combinations for two consecutive rows, as
shown in Fig. 13(a), where twin type (invert type) represents
that the BTS occurs at two consecutive rows that have the same
(opposite) configurations. We use subscripts t (for twin), and
i (for invert) to denote the BTS types, as shown in Fig. 13(b).
Note that we only mark BTS with t and i at the branch row for
simplification. For those variables in the BTS, we call them
branch variable and share variable, as shown in Fig. 13(b).

Since the BTS structure is beneficial to width reduction,
we would like to identify as many BTS as possible using
a two-phase variable reordering method as introduced in the
following sections.

Fig. 15. (a) Invalid path creation for mapping P2. (b) Expansion at the first
row for mapping P2. (c) Expansion at the third row for mapping P2.

Fig. 16. (a) Invalid path occurs when a product term expands at a location
lower than BTS location. (b) Correct mapping when expansion is at the first
row. (c) Correct mapping when variables are reordered.

2) Variable Reordering: To create more share edges among
product terms, we first move the variables that have the same
value among all the product terms, called all-share variables, to
the front-end of the variables. Since don’t care “−” provides
more flexibility to the succeeding mapping process, the all-
share variables with don’t care are arranged in the back-end
of all-share variables.

For example, given seven product terms, as shown
in Fig. 14(a), we move all-share variables b and d to the
front-end of all variables, as shown in Fig. 14(b). Moreover,
since variable b is “−” and d is 1, d is followed by b.
Next, the order of the remaining variables is based on their
quantities of values, 0, 1, and “−” among all the product terms.
Since variables a and c have a maximal number of certain
value, one of them is arranged next. For the situation that two
variables have the same maximal value, their order is set as
the original order. Therefore, we put a next to b. Next, since
the determined variable order is used for all the product terms,
we determine the order based on the product terms that have
more same value. Therefore, we ignore P6 and P7, and choose
the variable c as the next variable, as shown in Fig. 14(c).
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Fig. 17. (a) New product terms after the first phase of variable reordering. (b) BTS collection and variable ordering. (c) New product terms after the second
phase of variable reordering.

We keep selecting the variable with a maximal value until all
the variables are reordered. Fig. 14(d)–(f) shows the remaining
steps, and the order in Fig. 14(f) is the result of first phase.

When space for mapping a product term is not enough,
we have to apply expansion operations during the mapping.
Without expansion, invalid paths might occur. For example,
configuring P2 after P1, as shown in Fig. 15(a), will create
invalid paths that represent product terms 1100-1 and 110100.
Fig. 15(b) and (c) shows the correct mapping results of
Fig. 15(a) with expansion at different rows. From this example,
we observed that expanding at a lower row could save more
width in an SET array. However, an invalid path might be
created when the expansion level is lower than the BTS
location. Fig. 16(a) shows such an example that creates an
invalid path when expansion occurs at a level lower than BTS
location. Fig. 16(b) shows a correct mapping that expands
at a higher row. Fig. 16(c) shows a mapping with a smaller
width after moving BTS to a lower row using another variable
order. Thus, we further reorder the variables such that the BTS
location is moved as lower as possible for width minimization.

For identifying BTS, we scan the product terms pairwisely
according to the BTS types in Fig. 13. For the last example
with an initial variable order in Fig. 17(a), P1 and P4 are BTS
with branch variable c and share variable e. After recording
all the BTS, we calculate the number of BTS each variable
involved. We then choose the branch variable that is involved
in most BTS and put its share variable next to it. If this share
variable is also a branch variable of another BTS, put its
share variable next to it as well. Otherwise, choose a variable
from the remaining variables that is involved in most BTS.
Finally, we insert the variables that are not branch variables in
the front-end of the ordered BTS variables to lower the BTS
location.

For example, in Fig. 17(b), c is a branch variable involved in
most BTS. Therefore, we choose c and put its share variable e
next to it. Since e also is a branch variable, e is followed by
its share variable g. Next, we select i from the remaining
variables and i is followed by its share variable f . The partial
ordering of these variables is c → e → g → i → f . Finally,
we insert h in the front-end of the ordered BTS variables to
lower the BTS location. The order becomes d → b → a
→ h → c → e → g → i → f , as shown in Fig. 17(b).
Note that the P1 and P5 are not a BTS anymore since the
variables c and g are not adjacent under this variable order.

Fig. 18. (a) Type conflict. (b) Group conflict.

Fig. 17(c) shows the new product terms after the second phase
of variable reordering. Note that not all BTS structures can be
implemented simultaneously under one variable ordering, we
will discuss this in Section III-B3.

3) BTS Identification: First, we introduce the share group
that we will use in the BTS identification. In each product
term, one BTS or consecutive BTS, either twin type or invert
type, form a share group. For example, in Fig. 18(a), P4 has
two-consecutive BTS forming a share group, P3 has no share
group, P5 has two share groups, and the others have one share
group.

Then, we define two kinds of conflicts between BTS. The
first one is named type conflict. Due to the fabric constraint,
one variable can have only one configuration. Hence, the invert
type and twin type are not allowed to occur in the same
variable. Once the BTS requires both types to appear in the
same row, it is called type conflict. For example, in Fig. 18(a),
the configuration of variable e is required to be both (high,
low) and (low, high) due to the BTS requirement. However, it
violates the fabric constraint.

The other conflict is group conflict. If more than one share
group are kept in a product term, it is called group conflict.
This is because more than one share group in a product term
might create invalid paths. For example, in Fig. 18(b), invalid
paths 1-0-0111- and 1-0-1011- occur due to two-share groups
in a product term. As a result, we choose one share group
in P5 to avoid this group conflict.

Fig. 19 shows the process of BTS identification on the same
example. Fig. 19(a) shows all the BTS with subscripts t and i
where the same BTS type uses the same subscript. We first
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Fig. 19. Process of BTS identification. (a) Original BTS types. (b) Updated
BTS types after discarding the invert type in variable c. (c) Final result of the
BTS identification.

Fig. 20. Mapping result when (a) only one configuration is allowed in an
SET array. (b) Hybrid configuration is allowed in an SET array.

eliminate the type conflict. We check each variable to see
whether it has both twin and invert types, and choose the
type that can support more BTS. In Fig. 19(a), there is a type
conflict in variable c. Since the twin type can support three
product terms (P1, P4, and P5), which are more than that the
invert type can support, we choose the twin type and discard
the invert type. After checking all the variables, we check
group conflict for each product term. In Fig. 19(b), there is a
group conflict in P5. We calculate the number of BTS each
share group can support, and choose the first share group in P5.
This is because it can support three BTS (P1, P4, and P5),
which are more than that the second-share group supports.
Fig. 19(c) shows the final result after the BTS identification.

C. SET Array Architecture Relaxation

The previous work [1] constrained the rows of an SET array
to be either all (high, low) or all (low, high) for simplifying
the mapping algorithm. This restriction, however, may lose the
opportunities for achieving a smaller width in SET arrays due
to inflexibility. Thus, in this paper, we relax the restriction such
that either (high, low) or (low, high) is allowed to configure
each row of SET arrays. We call this relaxed architecture
hybrid architecture. Note that this architecture relaxation does
not violate the mentioned fabric constraint. With the hybrid
architecture, more BTS structures are possibly created, and a
product term can be mapped with a smaller width, as shown
in the example of Fig. 20.

In this stage, to determine the configuration of each row
in the hybrid architecture, we check the values in variables
among all the product terms under the precomputed variable
order. Without loss of generality, we configure the first row
as (high, low). If there exists a BTS between two variables,
we determine the configuration according to its BTS type.

That is, as mentioned in Fig. 13(a), the twin type BTS requires
the configurations of two adjacent rows to be identical, and
the invert type BTS requires the configurations of two adjacent
rows to be different. For the other variables, we set a row’s
configuration as the same as its previous row if more than
half of the variable’s bit values are changed among all the
product terms. Otherwise, we set the row’s configuration as
the opposite one to its previous row.

For example, in Fig. 21(a), the configuration of the first row
is set as (high, low) by default. For the second row (variable
b), since more than half of the product terms change the bit
values against the first row, we set the second row as same
as (high, low). Then, we determine the following three rows’
configurations as (high, low) since they all change more than
half of bit values among the product terms. For the sixth row
(variable e), we determine it as (high, low) since it is a twin
type BTS with the previous row. The seventh row is configured
as (high, low) due to the same reason. For the eighth row, we
determine it as (low, high) since less than half of the bit values
are changed. Similarly, the last row is configured as (high,
low). Fig. 21(a) lists the final configurations of the SET array
under the hybrid architecture.

D. BTS-Aware Product Term Reordering

In this section, we then introduce the product term reorder-
ing algorithm. Since our approach sequentially maps the
product terms to form the SET array, the ordering of product
terms affects the mapping width. The proposed product term
reordering method consists of two steps and they are: 1) group-
ing tree construction and 2) product term order determination.

1) Grouping Tree Construction: By building a grouping
tree for all the product terms, we can realize which product
terms have better share relationships with others. With this
information, the mapping order can be determined. In the
beginning, all the product terms are in one group. We scan
all the product terms from the first variable until one product
term has different bit values with the other product terms in
the same variable. The product terms with the same bit value
in the variable are grouped into one group. We keep grouping
the product terms until each group contains only one or two
product terms, which is called a leaf group. This is because
such grouping facilitates the order determination among the
product terms. For example, in Fig. 21(b), since the bit values
in the variables d and b are the same for all the product terms,
and the third variable of P6 and P7 is 1, P6 and P7 are grouped
as a leaf group. Next, the similar procedure is applied to the
other group of P1 ∼ P5. The final grouping tree is shown
in Fig. 21(b).

2) Product Term Order Determination: After constructing
the grouping tree, we determine the product term order. First,
we choose a BTS product term having the lowest branch
variable location to map. Then, we choose the product term
that belongs to the same BTS. Next, we choose the product
term that is within the same leaf group. If there are more
than one BTS product term having the same lowest branch
variable location, we determine their orders by the levels in
the grouping tree in the descending order. If there are no BTS
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Fig. 21. (a) Determined configuration in hybrid architecture. (b) Demonstrate of product term reordering.

Fig. 22. Proposed algorithm.

product terms, we determine the order from the bottom to the
top and from the smaller leaf groups to larger ones in the
grouping tree. If there are no rules to distinguish two product
terms, we follow their original orders.

For example, in Fig. 21(b), we first choose P4, then P5 to
map since P4 is a BTS with the lowest branch variable location
and P5 is its corresponding BTS product term. Then, we map
P1 since it is the corresponding BTS product term of P5. Next,
we map P2 since P2 and P5 are in the same leaf group. Next,
P3 is mapped according to the level of the group tree. Finally,
P6 and P7 are mapped according to the original order. The
final order of these product terms is shown in Fig. 21(b).

E. Proposed Algorithm

In this section, we summarize the proposed algorithm,
which is shown in Fig. 22. Given the Boolean netlist and
the LTG network of a benchmark, we first derive the prod-
uct terms from its BDD and LTG network, and choose
the set having fewer product terms to map. Then, we use
a two-phase variable reordering technique to determine a
variable order used in the mapping process. In this stage, BTS
product terms are analyzed and collected first, and the useful
BTS are identified by eliminating conflict cases. Next, we

determine the configuration of each row of SET array based on
the BTS types and the quantity of bit value changes among
all the product terms. Finally, we reorder the product terms
based on the group relationship in the grouping tree and BTS
relationship. After having the set of reordered product terms,
we sequentially map it into an SET array with a minimal
width.

IV. EXPERIMENTAL RESULTS

The proposed algorithm was implemented in C language.
The experiments were conducted on a set of MCNC [31] and
IWLS 2005 [32] benchmarks in a 3.0 GHz Linux platform
(CentOS 4.6), as used in [1] and [23]. The format of the
benchmarks is .pla. For each benchmark, we calculated the
number of product terms, hexagons, and BTS, and the width
of the mapped SET arrays. We also measured the CPU
time for the product term computation (Tpt) and the overall
algorithm (Ttal). Note that the SET array is mapped from each
PO of benchmarks. That means the result of each benchmark
is the summation of that in each PO.

Table I summarizes the experimental results of the method
in [1] and our approach. Columns 1–3 show the benchmark
information. To compare with [1], we used the same bench-
marks in [1]. Columns 4–9 show the experimental results
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TABLE I

COMPARISON OF EXPERIMENTAL RESULTS BETWEEN [1] AND OURS

TABLE II

COMPARISON OF EXPERIMENTAL RESULTS BETWEEN [2] AND OURS

reported in [1]. Columns 10–15 show the corresponding results
of our approach. Column 16 shows the ratio of reduction on
the width of each benchmark. For example, a large benchmark,

simple_spi, has 148 PIs and 144 POs. The previous work
cost 13.05 s to map 3065 product terms into an SET array
with 129 039 hexagons and 12 483 widths while our approach
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reduced the number of product terms to 1959 and mapped an
SET array with 324 618 hexagons and 5872 widths in 11.77
s. The ratio of reduction on the width is 47.04%.

According to Table I, we find that our width minimization
approach reduces 28% of product terms and 45% of the width
compared with the approach in [1] on average even though
the number of hexagons increases. The increase of hexagon
count does not always widen the SET arrays and the hexagon
count is not our minimization objective. If we consider the
ratio of width in each benchmark, the width ratio between our
approach and [1] can be down to 28.69%, and the average
width ratio is 65.40%. The reasons for the width-saving are
that our approach creates fewer product terms, more BTS
(more than five times on average), and more flexibility in the
SET architecture.

As compared with the results in [1], the CPU time over-
head for the benchmark i2c comes from the product term
computation. This is because we use two methods to extract
product terms and the LTG-based product term extraction
causes much time. In addition, the CPU time overhead for
the benchmark apex7 comes from the sophisticated mapping
algorithm with SET architecture relaxation, while the number
of product terms is not reduced. However, we observed that
if our approach can obtain much fewer product terms for
a benchmark, we could reduce the overall CPU time, e.g.,
the benchmark simple_spi is the case. This CPU time saving
comes from the fact that the number of product terms to be
mapped in the mapping procedure is a dominating factor in
the overall synthesis process.

We also compare our result with [2], which focused on the
width minimization of SET arrays as well. Table II shows the
comparison between [2] and our approach.

In Table II, Columns 1–3 show the benchmark informa-
tion, only the benchmarks reported in [2] are shown here.
Columns 4–7 show the experimental results reported in [2].
Columns 8–11 show the corresponding results of our approach.
Column 12 shows the ratio of width reduction of each bench-
mark. According to Table II, our approach reduces 14% of
product term number and 13% of width compared with [2],
with 1.9 s CPU-time overhead.

In [2], the dynamic product term reordering might obtain
better results than ours in some circuits due to large path
sharing, which is similar to our BTS method. However, we
used both product term minimization and BTS-aware variable
reordering to minimize the width. Moreover, we also relax
the SET architecture to make the mapping more flexible and
create more BTS. As a result, on average, we can reduce 14%
of the number of product terms and 13% of width compared
with [2].

V. CONCLUSION

Synthesis algorithms for SET arrays have been rapidly
developed in recent years due to a promising achievement in
SET technology. In this paper, we propose a mapping approach
for reducing the width of SET arrays. Our approach analyzes
the major factors that influence the width of SET arrays:
1) the number of product terms; 2) the number of BTS product

terms; and 3) the hybrid architecture. The corresponding
variable reordering and product term reordering techniques
are also proposed. The experimental results show that our
approach is effective for minimizing the width of SET arrays.

Our future work is to consider the issue of reconfigurabil-
ity for defective devices existing in the SET arrays during
mapping.
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