AN AVPG FOR SOC DESIGN VERIFICATION WITH PORT ORDER FAULT MODEL

Chun-Yao Wang, Shing-Wu Tung and Jing-Yang Jou

Department of Electronics Engineering,
National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
{wcyao,swtung,jyjou} @eda.ee.nctu.edu.tw

ABSTRACT

Embedded cores are being increasingly used in the design of
large system-on-a-chip (SoC). Because the high complexity of
SoC, the d(::sign verification is a challenge for system integra-
tor. To reduce the verification complexity, the port order fault
(POF) model has been used for verifying the core-based de-
sign [1]. Ir:| this paper, we present a verification scheme and
an automatic verification pattern generation (AVPG) system
based on POF model.

1. INTRODUCTION

Spurred by process technology leading to the availability of more
than 1 million gates per chip, and more stringent requirements

upon time-flo-market and performance constraints, system level

integration and platform-based design [2] are evolving as a new

paradigm in system designs. A multitude of components that are
needed to implement the required functionality make it hard for
a company to design and manufacture an entire system in time
and within reasonable cost. Hence, design re-use and Intellectual
Property(IP} trading shall now be considered a necessity. How-
ever, present design methodologies are not enough: to: deal with
IPs which come from different design groups and are: mixed' and
matched to create a new system design. In particular; verifying
whether a désign satisfies all requirements is a difficult task.

The focus of core-based design verification should be on how
the cores communicate with each other [3]. By creating the test-
benches at 4 high level. a connectivity-based design fault (port
order fault, POF) model proposed in [4] is used for reducing
the time on core-based design verification [1]. It assumes the IPs
are pre-verified and verifies the interconnections among them only.
The POF mddel has been used in library coherence [4] and reduces
the time on library verification.

In [1]. however, it simplifies the POF model to the simple
POF(SPOF) model(only two ports misplaced at a time) and co-
operates wit’:h the stuck at fault(SAF) automatic test pattern gen-
eration(ATPG) to generate the verification set. In our AVPG, we
consider all \possible misplacements among the ports rather than
SPOF and only use the simulation information of the circuit to
generate the verification set. In this paper, in addition to AVPG, we
also present a verification scheme to ease the design verification.
We have integrated the POF AVPG into SIS [5] and conduct the
experiments on ISCAS-85 and MCNC benchmarks. Experimental
results show that the AVPG can efficiently generate verification set

This work was supported in part by ROC National Science Council
under Grant NSC89-2215-E-009-009

0-7803-6685-9/01/$10.00©2001 IEEE

Figure 1: POF model

with high POF coverage. The association of the proposed verifica-
tion scheme and verification set can detect POFs occurred among
the blocks and provides a sufficient high level of confidence on the
correctness of the core-based design.

2. PRELIMINARY

Definition 1: The type I POF is at least one output misplaced with
an input. The type II POF is at least two inputs misplaced. The
type III POF is at least two outputs misplaced [4].

Example 2.1: A fault free 4-bit adder is shown in Fig. I(a). The
function of the adder is {Cout, S(3 : 0)} = A(3: 0) + B(3 :
0) 4+ Cin. An example of the type I POF is shown in Fig. i(b).
Input B0 is misplaced with output S0. Fig. (c) shows an example
of the type II POF. Input A(3 : 0) are misplaced. Fig. 1(d) shows
an example of the type III POF. Output S(3 : 0) are misplaced.

It has been proven that the type II POF dominates the type |
and III POFs [4]. In this paper, we consider the type I1 POF.
Example 2.2: Given a 4-input circuit, we number the inputs from
1 to 4. Any input permutation is a port sequence of the circuit.
The 1234 denotes the fault free port sequence and 2134 denotes
port | and port 2 are misplaced. The number of the POFs is 4!-1.

3. INTEGRATION VERIFICATION

3.1. Design Verification of System Chip

Fig. 2(a) depicts a generic verification scheme for core-based sys-
tem chip. Since these cores, BLK1. BLK2 and BLK3, are pre-
verified, the verification efforts during integration phase should
focus on the interconnections among the cores. To verify the in-
terconnections from BLK1 and BLK2 to BLK3. designers apply
patterns T to the primary inputs(PIs) of the integrated design, then
compare the responses R to the expected results in the primary out-
puts(POs). If the responses R are inconsistent with the expected
one, some interconnections are misplaced. The generation of pat-
terns T depends on the functionalities of BLK 1. BLK2 and BLK3.

-
Apply pofterns
Tto BLKY and Observe
BLK2's Pls response R
. trom BLK3' s
- PO

e s A

PP EMULIX

[—
P " = POl - P
core
(o] TP

[O ngs ! "
o 1‘7 POs

)

Figure 2: Generic Verification Scheme

nermat moac
. (RSN

AvPa

Figure 3: System Design Verification

As more cores are involved in the integration verification, the pat-
terns T become harder to generate. In section 3.2, we propose a
verification scheme that allows us to ignore the functionalities of
BLKI and BLK2 when verifying the interconnections.

3.2. Verification Scheme

Fig. 2(b) shows the proposed verification scheme of a core. An
IP consists of a pre-designed core, a de-multiplexer(DEMUX) and
a multiplexer(MUX). The DEMUX and MUX are both controlled
by S. When S is set to 0. the core is operated in normal mode.
The signals coming from Pls go through the core and propagate to
POs. When S is set to 1, the core is operated in POF mode. The
signals bypass the core and propagate to POs.

In Fig. 3, we show the operation of verifying the interconnec-
tions among BLKI1, BLK2 and BLK3. We set the BLKI and
BLK2 to POF mode and BLK3 to normal mode, the generated
POF verification set no longer depends on the functionalities of
BLKIi and BLK2. Because the scheme allows the input verifica-
tion set to bypass the corel and core2 and to go into the core3.
Hence. we only need to consider the functionality of BLK3 when
generating the verification set.

If the number of PIs(|PI|) of the BLK3 is m, from the configura-
tion shown in Fig. 3, we know the sum of the number of POs(]PO|)
of the BLK 1 and BLK?2 must be equal to m. However, the individ-
ual [PI| of the BLK! and BLK?2 could be great than, equal or less
than the individual |PO|. The scheme must have enough bus width
1o propagate the verification set from the AVPG to the Pls of the
BLK3 through the BLK 1 and BLK2. Therefore, for the core whose
|[POJ great than |PI|, we add a bus with (JPO] - |PI|) bits from the
PIs of each block to its MUX, thus the AVPG would have enough
bus width to propagate verification set. The modified verification
scheme is shown in Fig. 2(c). The bold line is the additional bus.

4. OUR AVPG SYSTEM FOR POF

The AVPG reads the combinational circuit and generates the
heuristic verification patterns iteratively. It terminates when the
fault coverage reaches 100% or the iterations over the bound. The
main algorithm in our AVPG is the heuristic verification pattern
generation algorithm.

4.1. The RUPS Representation

Typically, SAF ATPG build fault list explicitly first, then generate
random and deterministic test patterns. For our POF AVPG, how-
ever, we generate heuristic patterns instead of them. Furthermore,
we do not enumerate fault list explicitly, this is because the num-
ber of POFs in an N-input circuit is (N!-1). This number grows
rapidly when N increases, for instance, as N=69, N!-1x1.7x 10°®.
Hence, we use-a proper representation to indicate the remaining
undetected port sequences(RUPSs) during the algorithm.
Example 4.1: (12345678) represents the RUPSs caused by the all
possible misplacements among port 1 ~ port 8. The number cf
RUPSs is 8!. (125)(4)(3678) indicates the RUPSs that caused by
all possible misplacements among the port 1, 2 and 5 or among the
port 3,6.7 and 8. The number of the RUPSs is 3!x 1!x4!. Please
note that the port number 4 is the only one element in its group.
This means that the port sequences whose port number 4 in the
wrong position have been detected. (1)(2)(3)(4)(5)(6)(7)(8) repre-
sents that all 8!-1 POFs are detected. Each group has only one
element, therefore, no misplacement could be occurred in each
group. The number of the RUPS is (1!)* =1 and it is the fault
free port sequence. When we induce the RUPSs from (12345678)
to (I)(2)(3X4X5)(6)(7)8), we can claim all POFs are detected.

4.2. The Heuristic Verification Pattern Generation

In this section, we describe the heuristic verification pattern gen-
eration algorithm in our AVPG. Before the illustration of the algo-

" rithm, we state an important theorem.

Theorem 1: For an N-inpur circuit, assume the POF caused
by the misplacement of input ports z; and x; and denoted as
POF(z.2:;) can be detected by a partern V with m bits s and
(N-m) bits Os, then this pattern can actually detect m! x (N-m)!
POFs in rotal. This characteristic is called the domination
property of a POF pattern.

Example 4.2: For a 4-input circuit, given a pattern 1000 which
detects the POF(1.2) and the output of 1000 is A. Because the 1000
detects POF(1,2), the output of the 0100 must not equal A. The
additional misplacements occurred among the O bits themselves in
0100 make the pattern, 0100, remain the same. Thus, this pattern
1000 actually detect 1! x 3! POFs and they are {2134, 21432,
3124, 3142, 4123, 4132}=x1xx (x means any other port numbers).

The best way to explain our algorithm is to discuss it with an ex-
ample. Given an 8-input combinational circuit, the initial RUPSs
are (12345678). The number of RUPSs is 8!=40320. In Fig. 4(a),
we generate "one O patterns” and simulate the outputs. We use
symbolic output representation and group the port numbers into
the same group if their outputs are the same, This grouping re-
sult (1)(2345678) are the updated RUPSs. We explain clearly why
the simulation results of these “one O patterns” can induce the
RUPSs from (12345678) to (1)(2345678). If we apply the pat-
tern 01111111 into the circuit and assume the circuit is fault free,
the port sequence is 12345678 and the output is .40 as shown

V-260

01111111 -> AO Fet e &1 10000000 - A1
TOI T LIL —> BO H : . . Ao 01000000 -~ 131 _
11001811 ~» BO H H Gore [00100000 -~ B1 o
11101111 - BO H : 00010000 ~.- A1
11110111 -> BO (b) 00001000 —:» Al
11111011 —> BO N T 00000100 —> Al =
11111101 —> RO H {)) ny 00000010 —-> A1l
11111110 > BQ et et &1 core 00000001 > Al . N -
RUFSs= (1) (2345878) : : KUPSs= (235 (140678) RUPSs=(1) (23) (45678)
(a) (e} () (e
G IGXEZ G GG G L | P 452 G <ied GL G2 G3
1 1 0 G111l -» A3 1 o 1 Q01 ~2RS 1] o 11000 -: A6 W P>
R I u 1 cioll - AG I 0 U 10100 - A6 o ol i1l - Az
It 01011y r A2 t 0 1 oLl -ws L0 0 10016 v O 10 11111 => B
1 &t O 11011 -- A3 L b 1 il A P o oM - RIPSs= (1) (2) (3) (45GTK)
1 10 1110 = A3 1 o 1 10011+ AS t 00 GLIoe >Be (£)
1 T 0 11110 - A3 t 4] 1 10101 L] a ALOLO =356
RUPSs= (1) (2) (3) (45678) e olia t o o 00t AS
N e i L0 0 anjie =b3e
(g e 1 L0 0 U001 —aB6 T,
[11100 e o acour s 3 Q — gae
_— XY s =53 51 -& 5P
GAGAGR G o Ut [FEREI U] Yy o 1007 Tooa
o 1 FOOO0 = Aq 01 100 Wi 010l 1ou Lojooe Lon 1a0og ¢"
0 1 1 01000 KITTTTORST TRy 1O 0loay 1on 01100 - G= Q
6 1 1 00lo0 OV of St o1 toaal wxx ZZI101 Lou 010Ju s
o 1 1 00010 o sona CV of $3 LOU BOLlG
© . L . 10U 00I0)) i
o 1 1 00001 A i a1 IRRII) G} 100 Q0N RUFPEs=(12 (23 {(3) (43> (B (7) (&
RUFSs- (1) (2) (3) (43673 LAy o NXX | ZIEAN
M) CEE CRE) (L]
RUPSs= (1) (23 (37 €15) (6) (TH) RUPSs= (1) (27 (32 (an) <B&) ()

Figure 4: An Example of POF Verification Patterns Generation

in Fig. 4(b). However, if the port 1 and port 2 are misplaced
with each other, the port sequence becomes 21345678. When
we apply the pattern OL111111 into it, the real pattern assigned
into it is 10111111, this makes the output become B0 as shown
in Fig. 4(c). Because the fault free output .40 and faulty out-
put B0 are different. we claim this pattern 01111111 can detect
the port sequence 21345678. Furthermore, according to Theo-
rem |, the port 2 ~ 8 are all Is. arbitrary POFs occurred among
the port 2 ~ 8 after the POF(1,2) would evaluate to the same
output(B0). Thus, the pattern 01111111 can detect X IXXXXxx
port sequences. For another situation, if the port 1 and 3 are
misplaced with each other, the port sequence becomes 32145678.
When we apply the same pattern 01111111 into it, the real pattern
assigned into it is 11011111, this makes the output become B0
again. Thus. 01111111 can detect this port sequence 32145678
and dominate port sequences xx 1xxxxx. For the other ports, such
as port 4, 5, 6, 7 and 8. when port | is misplaced with them, they
have similar results. Thus, the port sequences can be detected
by OILI11111 are {x1xxxxxX, XXIXXxXxXx, XXxX1XXXX, XXXX1xxx,
xxxxx1xx, xxxxxxIx. xxxxxxxl}. We have figured out the port
sequences that are detected by OL111111, we can decide which
port sequences that cannot be detected by 01111111 as well.
These port sequences are {1xxxxxxx} and can be represented as
(1)(2345678) in our RUPSs representation. Hence, the updated
RUPSs are (1)(2345678) after we choose 01111111 as verification
pattern.

We have generated the "one O patterns™ and discussed the effect
of them. We find that the "one | patterns™ have the same property
and can reduce the RUPSs further. Fig. 4(d) shows the "one 1
‘patterns’ and the corresponding outputs. We choose {01000000,
00100000} as verification patterns and the corresponding RUPSs
are (23)(145678). The overall RUPSs when we select {O1111111,
01000000, 00100000} as verification set are (1)(23)(45678). This
result comes from the intersection of the RUPSs (1)(2345678) and
(23)(145678) as shown in Fig. 4(e). Why do we intersect the two
RUPSs to get the updated RUPSs? This is because there exists
some RUPSs that are in (1)(2345678) but not in (23)(145678). For
instance, port sequence 13456782 € (1)(2345678) and cannot be
detected by {O1111111}. however, it ¢ (23)(145678) and can be

detected by {01000000, 00100000}. Therefore, when we choose
{01111111, 01000000, 00100000} as the verification set, the real
RUPSs are the intersection of (1)(2345678) and (23)(145678). The
number of the RUPS:s is reduced to 1!x2!x5!=240.

Thereafter, we continue to find the verification pattern for
the RUPSs (1)(23)(45678). The RUPSs have three groups and
we number them from G1 to G3. ie.. G1 is (1), G2 is (23)
and G3 is (45678). We have known that if we can make the
RUPSs (1)(23)(45678) become (1)(2)(3)4X5X6)(7)(8), the re-
maining 240 port sequences are detected. Our strategy is to at-
tack one group at one iteration. The group Gi with |Gi| > 2 is
called possible target group, which can be chosen as target group
arbitrary at any one iteration. Here we choose G2 as the target
group first. For the inputs in the G1 or G3, we heuristically as-
sign values to them and let the assigned values be the same if they
are in the same group. For the inputs in the G2, we assign “one
0 patterns” to them. Fig. 4(f) shows such assignments and the
corresponding outputs. Since the outputs, .42 and B2, are differ-
ent, we can choose any one of them, for instance, 00111111, as
verification pattern, then the updated RUPSs are (1)(2)(3)(45678).
Why do we let the assigned values in the same group be the same?
This is because we want to fully exploit the domination prop-
erty of a pattern to reduce the size of RUPSs rapidly. We explain
this idea. We rewrite the RUPSs (1)(23)(45678) as {(1)23(45678),
(1)32(45678)}. According to the outputs of these two patterns
shown in Fig. 4(f), we know that we can detect POF(2,3) obviously
when we choose either one pattern as verification pattern. Further-
more, the same assignments in the G3 make the POFs occurred
among the ports in the 3 be detected simultaneously. Therefore,
the RUPSs (1)32(45678) are detected completely and the updated
RUPS:s are (1)23(45678), we present it as (1)(2)(3)(45678).

For the next iteration, we apply the same procedure. We choose
G4, (45678), as target group. the assigned patterns which G4 is
assigned in “one O patterns” are shown in Fig. 4(g). Since the
outputs are all the same(.43), the RUPSs remain the same. Again,
another set of patterns which G4 is assigned in "one 1 patterns”
are shown in Fig. 4(h). Because the outputs are still the same(.44),
the RUPSs cannot be reduced further in this iteration.

We generate (;) "one O patterns” and (;) “one | patterns”

V-261

and use them as part of the input patterns to attack the target group
Gi with |Gi|=N. However, when the outputs of the assigned pat-
terns are all the same, we will extend our strategy to generate (;)
"two Os patterns” and (;) “two ls patterns”. This strategy is
based on the following fact. We rewrite the combination formula,
(M)=miy as N!=("") xm!(N-m)!. This identity means that

m)- mi(N-m m
the N! port sequences can be distributed over (fn) patterns and
each pattern covers m!x(N-m)! port sequences disjointly. There-
fore, we can further extend to (7:) “m Os/1s patterns™ for attacking
a target group G4 with |G¢|=N if necessary, where m< |[IN/2].

Fig. 4(i) shows the generated (3) "two Os patterns” in the G4

and the assigned values in the G1~G3 to attack the target group
G4. We group the patterns into two sets S1 and S2 according to
their outputs and focus on the assignments in the G4. Here we
define the characteristic vector of a set of patterns first for better
illustration in the succeeding discussion.
Definition 2: Given a set of patterns with the same length, we
calculate the number of | digit in the same bit position to form a
vector with the same length. This vector is called the characteris-
tic vector(CV) of the given set.

The CV of S1 and S2 are 11022 and 55644, respectively. and
are shown in Fig. 4(i). We examine the patterns in the S1. The 5!
port sequences are distributed over the (3) patterns. If we choose
S1 as verification patterns. the port misplacements that transform
at least one pattern in the S1 into S2 are all detected according
to the different outputs in S1 and S2. The RUPSs are exactly
the misplacements that cannot achieve this transformation. In
other words, assume we say the S1 patterns will transform to ST
after some port misplacements where [S1|= |S1|. If S1' U 51
= 51, these port misplacements are the RUPSs. We find that a
property will be held if S1' U S1 = S1. The property is the CVs
of S1’ and S1 are identical. Hence. we figure out the CV of S1
and regard the port misplacements that make the CV of ST be
identical to that of S1 as the RUPSs. The CV of S1 is 11022,
the port misplacements of (45) or (78) keep the CV remaining the
same. Thus. when we add S1 into our verification set, the updated
RUPSs become (1)(2)3)(45)(6)(78). Fig. 4(j) shows the generated
patterns that assign “two 1s patterns™ to G4 and heuristic assign-
ments to the other groups. The CV of S3 is 22101, therefore. the
RUPSs are (1)(2)3)(45)(68)(7) when we include S3 into the ver-
ification set. When we include both S1 and S3 into the verifica-
tion set. the updated RUPSs are (1 }(2)(3)(45)(6)(7)(8) as shown in
Fig. 4(k) which come from the intersection of (1)(2)(3)(45)(6)(78)
and (12)(3)(45)68)(7). Thus. the size of RUPSs is reduced to
(1) x 21=2.

We apply the same procedure to reduce the RUPSs iteratively.
However. if we cannot reduce the RUPSs further under the it-
eration bound. we terminate the AVPG and return the verifi-
cation set and fault coverage(F.C.). The fault coverage is de-
fined as 1- ”0"”:;"2‘:1/2'1510;31},}1 Fs n this example, the verification
set is {OL111111, 01000000. 00100000, 0OL11111, 10101011,
10110011, 10011000, 10010100, 10001001 }. which is shown in
bold in Fig. 4. The undetected POF is 12354678 and the fault cov-
erage is 1-~=99.998%.

T1

5. EXPERIMENTAL RESULTS

The POF AVPG described above has been integrated into SIS [5]
environment. Experiments are conducted over a set of ISCAS-85
and MCNC benchmarks. Table | summaries the experimental re-

our AVPG

parameters
bench [PT} [POT Tits. pats. F.C. timetsec.)
clT S 2 12 5 1 <1
c880 60 26 703 243 0.99999999 7
<1355 41 32 1032 64 t 134
c1908 33 25 1497 51 1 42
c432 36 7 372 38 L 4.6
c499 41 32 616 33 1 8.3
3540 30, 22 2034 145 | 727
5315 178 123 4360 371 1 931
¢2670 233 140 2043 521 0.09999999 721
c7552 207 108 6098 1627 0.99999999 1826
c6288 32 32 4800 30 0.99999999 17s
des 256 245 7412 428 1 159
alud 14 8 1278 22 1 28
apez8 135 99 904 234 0.99999999 406
9 88 63 1453 139 1 47
i8 133 81 4626 266 1 415
i 199 67 1311 292 i . 103
i6 138 67 1037 165 1 77
i5 133 66 556 155 1 63
duke2 pad 19 1746 T4 1 834
rot 138 107 1424 524 0.99999999 246
x1 51 35 2144 275 0.99999999 3.1
3 135 99 - 1816 40 0.99999000 171
x4 94 71 1040 382 099999999 69
pair 173 b 137 2667 217 ! 3

Table 1: Experimental Results

sults of our AVPG. We set the iteration bound to 100. The CPU
time is measured on Ultra Sparc II workstation. According to Ta-
ble 1, we find that the F.C. of more than half benchmarks achieve
100% and the processing time are acceptable. Furthermore, the
size of the verification sets are very small as compared with the
number of POFs. For example, the number of POFs in ¢5315 is
178!-1, but the size of the verification set is only 371 for reach-
ing 100% F.C.. For the other benchmarks. the F.C. also reach
99.999999% high. The experimental results illustrate that our
AVPG is not a complete algorithm. it is an effective one though. If
we want to guarantee the completeness of AVPG, the exhaustive
assignments in all input ports are indispensable. and this make the
AVPG be time-consuming. Hence. we set the iteration number to
bound the processing time and also provide the very high E.C..

6. CONCLUSIONS

In this paper. we have presented an AVPG system based on POF
model. To reduce the time on functional verification in core-based
design methodology, we adopt the connectivity-based POF model
to elevate the abstraction level of the design verification. In our
AVPG, we solve the N! POF problem systematically with using the
domination property of a valid pattern and the implicit RUPSs
representation. We also propose a verification scheme for verify-
ing the interconnections among the cores. The association of the
verification scheme and verification set can detect POFs occurred
among the integrated cores and provide a sufficient high level of
confidence on the correctness of the core-based design.

7. REFERENCES

{1] Shing-Wu Tung and Jing- Yang Jou. “Verification pattern generation for core-
based design using port order fault model.”. The 7th Asian Test Symposium.
Dec. 1998, pp.402-407.

H. Chang. L. Cooke. M. Hunt. G. Martin. A. McNelly etal.. “Surviving the
SOC revolution - a guide to platform-based design.” Kluwer Academic Pub-
lishers. 1999.

J. Rowson and A. Sangiovanni-Vincentelli. “Interface-based design.” Pro-
ceedings of the Design Automation Conference. 1997. pp.178-183.

Shing-Wu Tung and Jing-Yang Jou. "Library coherence checking using port
order fault model.” The fourth Asia Pacific Conference on HDL. Aug. 1997.
pp-83-90.

E. Sentovich et al.. "SIS: a system for sequential circuit synthesis.” Memoran-
dum UCB M93/41. UC, Berkeley,

5

&

[+

5

