
Language-Based High Level Transaction Extraction on On-chip Buses∗

Yi-Le Huang, Chun-Yao Wang, Richard Yeh†, Shih-Chieh Chang, Yung-Chih Chen

Dept. of Computer Science †SpringSoft, Inc.
National Tsing-Hua University Hsinchu, Taiwan, Republic of China

Hsinchu, Taiwan, Republic of China richard yeh@springsoft.com.tw
kiwe@nthucad.cs.nthu.edu.tw

{wcyao,scchang,dr948308}@cs.nthu.edu.tw

Abstract— With the increasing in silicon densities,

SoC designs are the stream in modern electronics sys-

tems. Accordingly, the verification for SoC designs is

crucial. One of the main problems in SoC verification

is to verify whether the interface of a block works prop-

erly in its intended system. Transaction-based verifi-

cation methodologies have been proposed to deal with

this problem, and they allow users creating tests and

writing test benches more easily. Furthermore, verify-

ing interface designs in transaction level is very efficient.

Previous work creates extractor manually for one on-

chip bus (OCB), and the extra efforts are needed for

another OCBs. In this paper, we present a language-

based methodology to specify the bus behaviors in trans-

action level. Then the actual signals on the buses can be

extracted to a higher level of abstraction. The bus be-

haviors displayed in transaction level significantly reduce

the verification efforts for verification engineers. Fur-

thermore, the corresponding transaction extractors are

automatically generated. We demonstrate the success of

our approach on AMBA AHB and Sonics’ OCP buses.

I. Introduction

Block-based and platform-based design methodologies are
the stream in the era of SoC. A complex design is parti-
tioned into several smaller blocks with well-defined func-
tionality and the corresponding interface by these design
methodologies. These smaller blocks are called Intellectual
Properties (IPs). The IPs can be obtained from internal
departments or licensed from 3rd party IP vendors. It is
very convenient and time-saving for SoC designers to reuse
these pre-designed and pre-verified IP cores. In the past,
designers negotiated the interface among IPs face to face
for integrating an SoC design successfully. With the growth
of design complexity, the interfaces become more complex
and the information negotiation cannot achieve the goal,
even be infested with bugs. Therefore, standard and effi-
cient interface protocols play crucial roles in the SoC design
methodology. Many OCBs, e.g., AMBA[4], CoreConnect[8],
WISHBONE[10], and OCP[11], are promoted to fully ad-
dress communication issues among blocks. With buses, func-
tional blocks can exchange data easily. Designers only have
to design interfaces between their IPs and the buses, rather

∗This work was supported in part by ROC National Science Council
under Grant NSC93-2220-E-007-012.

than the interfaces to other blocks in its intended system. In
addition, since IP suppliers create IP cores based on a spe-
cific bus, reusing those IP cores to integrate an SoC design
would be much easier under the identical bus architecture.

Nevertheless, new problem occurs due to the usage of
OCBs. OCB providers always introduce the bus behaviors
by the bus protocol specifications. However, the bus specifi-
cations are written in natural languages with some auxiliary
waveforms almost. Thus, the specifications are informal and
possibly ambiguous for some properties due to the intrinsic
characteristic of natural languages. There would exist many
misunderstandings and different interpretations among de-
signers when reading the same bus specification. Conse-
quently, inconsistencies between the interface designs may
occur. However, if OCB providers release the bus specifica-
tion in the form of formal language, the mentioned problem
will be solved. Furthermore, the bus protocol verification
will be achieved easily and automatically as well.

One of the major verification problems for IP vendors and
users is whether the interface of an IP interacts properly
with its intended bus system. Current practice for the prob-
lem is to create the bus monitors manually. Monitors are
programs or circuits that are used to observe the interface
signals in the simulation runs. Then the verification is con-
ducted by comparing the simulation results and the inter-
preted bus behaviors. There are two possible drawbacks for
this practice. First, the interpreted bus behaviors may be
erroneous. But this drawback will be eliminated when the
description of bus specification is in formal forms. Secondly,
it is time-consuming and labor-intensive for observing the
detailed interface signals to determine if the interface is pro-
tocol compliant. It is especially true for more complicated
bus protocols. Thus, displaying high level transactions in
the bus monitor will improve the readability and shorten
the verification time. Besides, the generation of the monitor
is a tedious work. The repetitive efforts for creating different
monitors for different OCBs are inevitable.

In this paper, we demonstrate an approach that gener-
ates corresponding monitors for different OCBs automati-
cally. The monitor extracts the interface behaviors from the
detailed signals to the high level transactions, and displays
transactions in nWave environment[9]. That is, the input
of the monitor is the detailed interface signals on the bus;
the output is the corresponding transactions. The monitor
is called transaction extractor in this work. The transac-
tion extractor is generated with respect to the formally de-

transaction level Write operation, Length = 1, Addr =
123, Data = 456, Size = 1 byte

signal level
HADDR

HBURST

HWDATA

HREADY

HRDATA

0

456

123

HSIZE

HWRITE

0

Fig. 1. Transaction level v.s signal level

scribed bus protocol. By examining extracted transactions,
the level of verification is raised from signal level to transac-
tion level. The formal bus protocol description in this work
is obtained by a translation from official protocol specifica-
tion document manually. Notice that this work does not em-
phasize the completeness and correctness of the translation
of protocol specification from natural languages to formal
languages, though we try our best for it. As long as the
protocol is formally described, the proposed approach can
be applied directly. We believe that the formal description
of bus protocol without ambiguity is possible in the future.

The remainder of this paper is organized as follows. Sec-
tion II presents the preliminary of this paper. Section III
describes our approach for specifying the bus protocols for-
mally. Section IV introduces that how to generate the trans-
action extractor based on corresponding formal protocol de-
scriptions. Section V presents that how to enrich the ex-
tracted transactions with useful information for verification.
We present experimental results in Section VI and conclu-
sions in Section VII.

II. Preliminaries

To raise the verification level to a higher level of abstrac-
tion, the transaction-based methodology[5] has been pro-
posed. The approach reduces the debugging and cover-
age analysis efforts by presenting verification information in
transaction level. For example, the signal level information
is shown in the lower half of Fig. 1. Its corresponding trans-
action level information is shown in the upper half of Fig.
1. It is obvious that transaction level information is much
easier to read than signal level information. On the other
hand, formal property languages such as OVL[2], CTL[7], or
regular expressions, have been proposed to describe bus pro-
tocols formally. The properties extracted from bus protocols
can be specified by them. Here we adopt regular expressions
as the vehicle for describing bus protocols formally. This is
because regular expressions are in excelling at describing be-
haviors over time. Furthermore, its readability is better than
others. Fig. 2 and 3 show the examples of properties de-
scribed by CTL and OVL respectively. They are not easy to
be understood in general. Also, many public property spec-
ification languages are regular expression-based, e.g., Ac-
cellera’s PSL[1]. Thus, these languages can be exploited di-
rectly with/without customized operations for achieving this
goal. Besides, in nature the regular expressions are equiv-
alent to FSMs (finite state machines). Since FSMs can be

easily implemented by executable programming languages,
this feature facilitates the automatic generation of transac-
tion extractors.

Oliveira et al.[12] achieve automatic generation of IP in-
terface monitors based on formal protocol descriptions. It
provides the flexibility of creating monitors. But only sig-
nal level information is observed on the monitors. Ara
et al.[3] propose a specification-based verification approach
with CWL[6] that generates verification patterns, simula-
tion checker, and coverage analyzer automatically. But the
checker still only focuses on the signal level information,
rather than transaction level information. Therefore, in this
paper, we combine the advantages of presenting verification
information in transaction level and automatic generation
of monitors. The monitors which are used to observe the
transaction level information are generated automatically.

π |= fUIg iff I-consistent, and ∃ (si , ηi) ∈ π suchthat si |=
g, and for all (si , ηi) preceding (si , ηi) in π , si |= f

Fig. 2. An example of a property described in CTL

assert next #(1,2,0,0,0,”error: ERROR should be followed
by OKAY after 2 cycles”) error check3 (HCLK,HRESETn,
(HRESP==‘RSP ERROR) && (HREADY==1’b0), (HRESP
==‘RSP OKAY));

Fig. 3. An example of a property described in OVL

III. Protocol Description

In this section, we introduce in detail our regular
expression-based descriptions for bus protocols. For conve-
nience and user-friendliness, we quote some basic PSL syntax
in our protocol descriptions. Examples taken from AMBA
AHB will illustrate the concepts of our protocol descriptions.

There are two layers, symbol layer and sequence layer,
in the protocol descriptions. In the symbol layer, symbols
are used to describe behaviors or properties in one cycle.
Some related interface signals are grouped into a specific
symbol and therefore this symbol represents the combina-
tion of these signals. Besides, symbols can also be used to
simplify the sequence layer.

In the symbol layer, users define some symbols to repre-
sent properties or characteristics in one cycle. Each sym-
bol can be followed by Boolean expressions or arithmetic
formulae consisting of defined symbols or reserved interface
signals. It is similar to the variable declaration in C lan-
guage and other programming languages. Users can declare
Boolean-type symbols to represent internal one-cycle prop-
erties, and integer-type or string-type symbols to store in-
formation in a given cycle, as shown in Fig. 4. We explain
some symbols that are defined in Fig. 4. In AMBA AHB,
the control signals such as HSIZE, HPROT, and HBURST
have to be stable during two cycles. Thus, Control stable
can be defined as shown in Fig. 4. All transfers within a
burst must be aligned to the address boundary that is equal
to the size of the transfer. We use the symbol Address align
to formally describe this property. In AMBA AHB, there are
four kinds of address phases and we use symbols to describe
the individual characteristics of them. They are shown as
NonseqAddress, SeqAddress, IdleAddress, and BusyAddress

boolean Control stable =((prev(HSIZE)==HSIZE) && (prev(HPROT)
==HPROT) && (prev(HBURST)==HBURST));
boolean Address align =(((int)HADDR % (1<<HSIZE))==0)?1:0;
boolean NonseqAddress = (HRESETn && (HTRANS==2) &&
Address align);
boolean SeqAddress = (HRESETn && (HTRANS==3) && Address align
&& Control stable);
boolean IdleAddress = (HRESETn && (HTRANS==0));
boolean BusyAddress = (HRESETn && (HTRANS==1) &&
Control stable);
boolean ERROR 1 = (HRESETn && !HREADY && (HRESP==1));
boolean ERROR 2 = (HRESETn && HREADY && (HRESP==1));
int burst counter = (HBURST == 0)?1:(1<<(HBURST/2+1));

Fig. 4. Examples of partial symbol layer of AMBA AHB

in Fig. 4. These symbols can contain some defined symbols
as well. Furthermore, the defined symbols can be reused for
describing multi-cycle behaviors concisely in the sequence
layer and they are available to the sequences elsewhere.

The sequence layer is the kernel of our protocol descrip-
tion. Since a sequence in this layer usually contains some
regular expressions, it is used to represent the behavior dur-
ing several cycles, and it is adequate to describe transac-
tions of bus protocols. A sequence consists of pre-declared
sequences, symbols, and bus interface signals. The syntax of
sequence declaration is similar to that in the temporal layer
of PSL, as shown in Fig. 5. We assume that readers have
been familiar with the regular expressions and Accellera’s
PSL, and skip the detail of them. Fig. 6 illustrates an exam-
ple of the sequence declaration. The sequence first address
contains zero or many cycles that NonseqAddress is true and
HREADY is deasserted and one cycle that NonseqAddress
is true and HREADY is asserted.

Sequence Declaration ::= sequence

Sequence Name(Instantiated Sequence List) = Sequence

Instantiated Sequence List ::= sequence Name {,Name}
Sequence ::= {Regular Expressions}

Fig. 5. The syntax of sequence declaration

sequence first address()=
{
(NonseqAddress && !HREADY)[∗];
(NonseqAddress && HREADY)
}

Fig. 6. An example of sequence declaration

Fundamentally, a regular expression specifies a list of to-
kens. In this paper, tokens are Boolean expressions of bus
interface signals, symbols, and pre-declared sequences. It ex-
cels at describing behaviors over time. Unfortunately, with
the growth of interface protocol complexity, describing the
full details of typical interface protocols with regular expres-
sions reveals the limitations of it. That is, the complexity
of using the regular expressions for describing interface pro-
tocol grows exponentially. As a result, we introduce two
features, pipeline operator and information storage, in this
paper to eliminate the exponential blow-up issue of describ-
ing protocols by public regular expression-based languages,
such as PSL. We describe these features in the following two
paragraphs.

Transactions are almost fully pipelined in high-
performance bus protocols. Phases of transactions may be

overlapped with each other in a given cycle. It would be
very difficult to describe the pipelining behaviors with cycle-
by-cycle statements, such as using pure regular expressions.
This is because it requires users to manually specify all pos-
sible parallel behaviors, all possible combinations of phases.
Hence we enhance the regular expressions by a new operator,
pipeline operator (→). It can easily describe the pipelining
behaviors. If an event is described as (A → B), it means
that there must be a sub-event B next to the sub-event A,
and there is no ”vacuum” between them. In addition, B
would overlap with the subsequent event. For convenience,
if an event contains a pipeline operator, it is called an over-
lapped event. The sub-event before the pipeline operator is
called normal-part of it and that behind the pipeline opera-
tor is called overlapping-part. For example, in AMBA AHB,
a transfer has an address phase and a data phase, and two
transfers could be overlapping. The address phase of one
transfer and the data phase of the previous transfer may be
overlapped with each other in a given cycle. Therefore, we
can use the pipeline operator to concatenate the phases for
describing the pipelining transfers clearly and successfully.
In Fig. 7, the timing diagram of the overlapped events with
the pipeline operator is illustrated.

Time

Address phase
normal-part

Data phase
overlapping-part

Address phase
normal-part

Data phase
overlapping-part

Fig. 7. The timing diagram of { (Address phase → Data
phase)[*] }

Symbol declaration can be used to simplify the representa-
tions of regular expressions due to it is also allowed to store
information. As a result, symbols become parts of regular
expressions, and appear in Boolean expressions. Besides,
symbols can be assigned to values or operated in an incre-
ment or decrement operation. Since operations on symbols
are naturally mixed with regular expressions by the nota-
tion ’&&’, they are executed when the mixed tokens are
matched. For example, in AMBA AHB, an incrementing
burst can be of any length, but the upper limit is set by the
fact that the address must not cross a 1KB boundary. It is
convenient for users to describe this property by using sym-
bols. In Fig. 8, the string-type symbol last address is used
to store the address of transfers in a burst. It is prepared
for describing this property as ”!((int)HADDR>>10 XOR
(int)last address>>10)”. It states that the upper (32-10)
bits of the address of the current transfer must be equal to
that of previous transfer. On the other hand, in AMBA
AHB, the signal of HMASTER must be stable during a
transaction. By using pure regular expressions, transactions
of each master are only slightly modified versions. Encoding
every possible situations is necessary but painful. Symbols
can be used to reduce the effort of describing this kind of
behavior. In Fig. 8, the integer-type symbol current Master
is used to record which master is active on the bus. It is pre-
pared for describing that the HMASTER has to be stable
during a transaction in the symbol stable master.

Besides, many behaviors are the same except some signals

// symbol layer
string last address;
int current Master;
boolean stable master = (HMASTER == current Master);

// sequence layer
sequence nonseq (sequence first address, error resp,
retry resp, split resp, ok resp) =
{
((first address && stable master && !((int)HADDR>>10 XOR
(int)last address>>10) && (last address = HADDR))
$ (error resp ‖ retry resp ‖ split resp ‖ ok resp))
}

Fig. 8. An example of a sequence with information storage

// symbol layer
int current Master;

// sequence layer
sequence arbitration[2]() =
{
(<HBUSREQ%s> && !<HGRANT%s>)[∗];
(<HBUSREQ%s> && <HGRANT%s> && !HREADY)[∗];
(<HBUSREQ%s> && <HGRANT%s> && HREADY &&
(current Master=<%d>))
}

Fig. 9. The arbitration phases of AMBA AHB described by a
array-type sequence

in them, and those signals are usually named based on a
specific rule. In general, users usually have to declare many
sequences with similar behaviors. For example, in AMBA
AHB, HBUSREQ0 and HGRANT0 are in correspondence
with the master 0, while HBUSREQ1 and HGRANT1 are
in correspondence with the master 1. The behaviors of the
arbitration phase of masters are similar except the signals
of their own. If there are two masters in the bus, users
have to describe the arbitration phases of them with two
individual but similar sequences. To reduce the effort of
declaring many similar sequences, the array-type sequences
are supported in our protocol descriptions. In the array-type
sequences, a particular syntax, < string%s >, is allowed for
presenting tokens of regular expressions. Besides, the index
of array-type sequences may be useful information. It can be
obtained by the syntax of < %d > if the type of it is integer
and < %s > if string. With array-type sequences, users
only need to specify the behaviors of arbitration phases one
time, as shown in Fig. 9. Whatever the number of masters
in the bus is, only one array-type sequence is required for
specifying arbitration phases of them.

IV. Translations of Protocol Description to
Extractor

The translations of the symbol layer and sequence layer
are described in this section. The translations of the sym-
bol layer are straightforward, similar to variable declarations
and assignments in other programming languages. We just
have to declare variables corresponding to symbols. Opera-
tions of symbols can be implemented by the primitive func-
tions in the programming languages. Therefore, the trans-
lations of the symbol layer can be implemented easily.

The translations of the sequence layer can be implemented
by creating the FSMs corresponding to sequences. The ker-
nel of each sequence is the regular expressions, and the regu-
lar expressions are equivalent to FSMs in nature. Tokens are
the transition functions of FSMs. If a token is a sequence,

when it is processing, the FSM will hold its state. Then,
the FSM transits to next state until it is matched. If it fails
matching, the FSM will be reset and return to the initial
state. Finally, if an FSM traverses from the initial state to
the end state, it means that the behavior satisfies the se-
quence and a transaction will be extracted by the extractor.
It, then, would be recorded in an FSDB-format file with the
information of start time and end time.
Pipeline Operator:

For (A → B), if A is matched, the FSM transits to the
state N+1 and a parallel engine will be attached to this state.
This engine is used to check B. If it fails matching, the FSM
will be reset. This can be seen in Fig. 10.

state
N

state
N+1

A

B

Fig. 10. Translations of (A → B)

Repeat Operator:
For (A[*];B), if A is matched, the FSM transits to the

state N+1 and there is a self-loop of A in this state. Then,
the state N+1 can transit to the state N+2 when matching
B. Besides, the repeat operator * accepts empty string. If
B is matched in the state N, the FSM transits to the state
N+2 directly. This can be seen in Fig. 11.

state
N

A state
N+2

B

B

A

state
N+1

Fig. 11. Translations of (A[*];B)

For (A[*]), if the repeat operator * is attached to the last
token, an additional state, N+2, is added to the FSM. If A is
matched, the FSM will transit to the state N+1 and there is
a self-loop of A in this state. Then, if A fails matching, the
FSM will transit to the end state N+2. Because the repeat
operator * accepts empty string, in state N, the FSM can
transit directly to the end state N+2 if A fails matching.
With the additional state, the FSM will match A as many
as possible. Therefore, this feature makes the transaction
extractor extracts transactions of the longest length. This
can be seen in Fig. 12.

state
N

A !A

!A

A

state
N+2

state
N+1

Fig. 12. Translations of (A[*])

For (A[+];B), it is similar to (A[*];B) but the repeat op-

erator + does not accept empty string. Therefore, the tran-
sition arcs from the state N to the state N+2 are removed
in Fig. 11 and 12.
Operations of Symbols:

Operations of symbols will be regarded as actions of states.
If the FSM transits from the current state to the next state,
the actions of the next state will be executed. Besides, if
there is a self-loop in a state, the actions of this state will
be executed once the transition function of the self-loop is
matched.

In sum, we have successfully translated our protocol de-
scriptions, including new features, into the executable trans-
action extractor. It raises the verification level to a higher
level of abstraction. We have also demonstrated our method-
ology by generating the transaction extractors of ARM’s
AMBA AHB and Sonics’ OCP, and the high level trans-
actions are fully extracted successfully.

V. Attribute Description

To show the corresponding useful information upon the
extracted transactions for verification, the details of trans-
actions have to be kept. Thus, the attribute descriptions
are used for obtaining information of transactions. The at-
tribute description is specified in another file, but corre-
sponds with the protocol description. Since different veri-
fication engineers could prefer seeing different information
on the extracted transactions. The attribute description is
customized by individuals who refer to the same protocol de-
scription. Thus, the well-specified protocol descriptions can
be reused easily among verification engineers. In this section,
we introduce that how to obtain useful information by spec-
ifying the attribute descriptions. The attribute description
exploits sequences to store the information of transactions.
Then, these sequences are used to map with the sequences
in the protocol descriptions.

The features of attribute description are summarized as
follows:
• Using integer-type and string-type local variables to

store the information.

• Supporting increment, decrement and assignment(+ or

+=) operations on local variables.

• Providing hidden/visible attributes attached to local

variables, only visible local variables could be treated

as the transaction information.

• Being executed in overlapping-part if an operation is

prefixed by ’#’, otherwise operations are executed in

normal-part.

• Being regarded as a Boolean variables if an instantiated

sequence appears in a Boolean expression. True if it is

matched, otherwise false.

• Obtaining the information of instantiated sequences by

the syntax of sequence name.variable name.

• Supporting the operation enqueue for adding relation-

ships between extracted transactions.

Finally, we illustrate the mapping between protocol de-
scriptions and attribute descriptions with an example, as
shown in Fig. 15. The operations, (address = HADDR) and
(ReadorWrite = first address.ReadorWrite), in Fig. 15(b)

are mapping to first address in Fig. 15(a). These operations
are naturally concatenated by the notation ’&&’. The infor-
mation of address will be stored in the local variable address.
The information of read/write will be stored in ReadorWrite.
The operation, enqueue(split resp,address), in Fig. 15(b) is
mapping to (error resp ‖ retry resp ‖ split resp ‖ ok resp)
in Fig. 15(a). If split resp is true, address will be stored in
an internal queue. Then, if address of another transaction
is equivalent to that in the queue, the relationship between
this transaction and that in the queue will be added. It is
used for obtaining the information if transfers are related to
SPLIT responses.

sequence nonseq (sequence first address, error resp,
retry resp, split resp, ok resp) =
{
(first address → (error resp ‖ retry resp ‖ split resp ‖
ok resp))
}

(a)A sequence in the protocol descriptions

sequence nonseq () =
{
visible int ReadorWrite;
visible string address="";

((address = HADDR) && (ReadorWrite =
first address.ReadorWrite) && #enqueue(split resp,address))
}
(b)The corresponding sequence in the attribute descriptions

Fig. 15. Sequence mapping between protocol descriptions and
attribute descriptions

With the attribute descriptions, extracted transactions
are enriched by useful information. The relationships be-
tween specific transactions are available. Thus, the debug-
ging process can be conducted in transaction level and the
verification effort is reduced.

VI. Experimental Results

In this section, we show the experimental results of the au-
tomatically generated transaction extractor base on AMBA
AHB and Sonic’s OCP bus protocols. The results are shown
in Fig. 13 and 14, respectively. Due to page limit, only
sampled results are shown.

When different bus protocols have been formally described
by our language-based methodology, a unique compiler will
generate the corresponding transaction extractors without
manual effort. The input of a transaction extractor is a
simulation log file of bus interface signals dumped from an
SoC design, and the output is the extracted transactions in
FSDB-format. It can be displayed in nWave environment,
as shown in Fig. 13 and 14. In Fig. 13, visible local variables
of sequences are shown as the attributes of the transactions.
In addition, the hierarchical relationships between transac-
tions are also highlighted (it is displayed in gray color due
to printing). In Fig. 13, an extracted transaction in AMBA
AHB is displayed on the label transaction (Column 1) with
attributes of address, data, and etc (Row 4). It is made up
of four transfers, one nonseq and three seq, displayed on the
label transfer (Row 3). The corresponding address phases
and data phases are also shown on the label address phase
(Row 1) and data phase (Row 2). In Fig. 14, a simple sin-
gle write transfer in OCP is extracted as well. Please notice

Fig. 13. Sampled experimental results of AMBA AHB

Fig. 14. Sampled experimental results of Sonic’s OCP

that if the transactions cannot be extracted successfully, it
implies the behaviors of signals do not follow the protocol de-
scriptions and they could be erroneous behaviors. Thus, the
approach does not only achieve extraction but also achieve
interface verification implicitly.

VII. Conclusions

In this paper, we propose a language-based methodology
that demonstrates the automatic generation of transaction
extractors is possible for various OCBs as long as the pro-
tocols are described formally. Those extracted transactions
are also enriched by some useful attributes. As a result, the
information presented for debugging is in terms of transac-
tions, rather than signals and waveforms.

References

[1] Accellera. ”Property Specification Language Reference Manual
Version 1.01,” 2003.

[2] Accellera. ”Open Verification Library Assertion Monitor Reference
Manual,” June 2003.

[3] Koji Ara, Kei Suzuki. ”A Proposal for Transaction-Level Verifi-
cation with Component Wrapper Language” in Proc. of Design,
Automation and Test in Europe Conference and Exhibition, pp.
82-87, 2003.

[4] ARM Limited. ”AMBA Specification Rev (2.0),” 1999.

[5] Cadence Berkeley Labs. ”The Transaction-Based Verification
Methodology,” August 2000.

[6] Component Wrapper Language Specifications and Users man-
ual, available at http://koigakubo.hitachi.co.jp/.sl/cwl/html/ en/,
2002.

[7] Pallab Dasgupta, Arindam Chakrabarti, P.P. Chakrabarti. ”Open
Computation Tree Logic for Formal Verification of Modules,” in
Proc. of International Conference on VLSI Design, pp. 735-740,
2002.

[8] International Business Machines Corporation. ”The
CoreConnectTM Bus Architecture,” 1999.

[9] NOVAS Software, Inc. ”FSDB API of Debussy 5.4,” Mar 2003.

[10] OpenCores Organization. ”WISHBONE SoC Architecture Speci-
fication Revision B.3,” September 7, 2002.

[11] Sonics Incorporated. ”Open Core Protocol Specification 1.0 Doc-
ument Version 1.2,” 2000.

[12] Marcio T. Oliveira, Alan J. Hu. ”High Level Specification and
Automatic Generation of IP Interface Monitors,” in Proc. of Design
Automation Conference, pp. 129-134, June 2002.

