
PEACH: A Novel Architecture for Probabilistic
Combinational Equivalence Checking ∗

Shih-Chieh Wu and Chun-Yao Wang

Department of Computer Science

National Tsing Hua University, HsinChu, Taiwan R.O.C.

Email: {mr934359, wcyao}@cs.nthu.edu.tw

Abstract

This paper describes an approximate approach for
combinational equivalence checking. We propose an
architecture such that a virtually-zero aliasing rate is
obtained in a single-pass probability calculation. Fur-
thermore, the aliasing rate can be easily configured in
various precision by designers. We conduct experiments
on a set of ISCAS’85 benchmarks. Experimental results
show that with virtually-zero aliasing rate, for example,
10−74, our approach is more efficient than those exact
approaches.

1.Introduction

Traditionally, logic verification is carried out by pat-
tern simulation. However, to exhaustively simulate all
possible patterns is infeasible for practical designs with
numerous inputs. Thus, formal combinational equiva-
lence checking (CEC) methods are getting popular. It
is possible to guarantee the equivalence of two networks
by using these formal methods.

Existing exact approaches to formally verify the
equivalence of two networks can be classified into four
categories [10]: (1) ATPG based [3] [20], (2) BDD based
[4] [7] [14], (3) SAT based [6] [16], (4) probability based
[9] [21]. ATPG based methods identify some internal
gates of two networks and use them to construct a miter
structure [3] as shown in Fig.1. It examines if the out-
put of the miter stuck-at-0 fault is untestable by Auto-
matic Test Pattern Generation (ATPG) [8]. If the fault
is untestable, there does not exist a pattern to distin-
guish the two logic cones. Hence, these internal gates
are equivalent. Then, one internal gate can be replaced
by its equivalent gate and the overall network is sim-
plified. The efficiency of this approach relies on the ca-
pability of ATPG. If the fault test at the miter output
is time-consuming or intractable, the approach becomes
inefficient.

Reduced Ordered Binary Decision Diagrams (ROB-
DDs) [4] is a canonic representation to represent net-
works. Thus, two networks are equivalent if and only if
the ROBDDs are isomorphic [1] [5]. The possible diffi-

∗This work was supported in part by the National Science

Council of R.O.C. under Grant NSC94-2220-E-007-041

Figure 1: A miter.

culty BDD based approach encounters is ROBDDs con-
struction. Certain circuits such as the multiplier with
numerous inputs cannot be represented by ROBDDs in
any variable ordering [4].

Recently, Boolean Satisfiability (SAT) has been suc-
cessfully used as an efficient and complete method for
solving CEC problems [16] [18]. It transforms a com-
binational network to the Conjunctive Normal Form
(CNF) formula, which can be viewed as a set of clauses.
The objective of the SAT based approach is to prove
propositional properties of the network [13]. However,
the problem is that the SAT based approach sometimes
requires large amount of time and backtracks to prove
the network[16].

The signal probability at the output of a network
was considered as a signature function [2] [9] for CEC
problem. Signature function is used to characterize net-
works’ properties, e.g., the number of minterms in the
on-set of a network is a signature function. The prob-
ability signature, however, can be exact as well if the
input probability is an aliasing-free assignment. The ex-
act probability based approach assigns aliasing-free as-
signments [21] at all primary inputs (PIs) of networks,
then the output probability is derived by a probability
calculation process from PIs towards primary outputs
(POs). Two networks are equivalent if and only if their
output probabilities are equal under the aliasing-free as-
signments.

These exact approaches have an obvious feature in
common, i.e., if two networks are too complex to be
handled by these approaches, designers have no answer
about the equivalence of them. However, for those com-
plex circuits, designers would still like to know the equiv-
alence of them, even reports an answer with a tolerance.
To the best of our knowledge, approximate probability
based approach, named probabilistic approach [10], is
a suitable way to give such an answer for those large
circuits. The ideal goal of probabilistic CEC is to effi-

3-901882-19-7 2006 IFIP 104

Figure 2: Probability formulae for primitive gates.

Figure 3: A demonstration of exponent suppression.

ciently obtain a virtually-zero aliasing rate.

In this paper, we propose an approximate method
based on the exact probability based approach [21]
for CEC problem. Our approach constructs a Proba-
bilistic EquivAlence CHecking (PEACH) architecture
such that a virtually-zero aliasing rate is obtained in
a single-pass probability calculation. Furthermore,
the aliasing rate can be easily configured in various
precision by designers.

2. Background

This section first reviews the background of signal
probability in a network. The exact probability based
approach is also introduced in Section 2.2. It is the core
technique of our probabilistic approach as presented in
more detail in Section 3. Here we assume networks only
consist of AND, OR, and NOT gates for simplicity.
Complex gates can be decomposed into these gates.

2.1 Probability Expression of a Network

We denote a gate in the network by an upper case let-
ter and its probability of signal 1 by the corresponding
lower case letter in this paper. The known probability
formulae for 2-input AND, OR, and NOT gates with
independent signals are summarized in Fig. 2. The
formulae for AND, OR gates with more than 2 inputs
can be extended from these formulae.

Definition 1: Given gates s and d in the network, if
there are more than one disjoint path from s to d, d is
a reconvergent gate in the network [12].

The probability expression of a network can be
straightforwardly derived from the PIs to the POs by
using these probability formulae with an exponent sup-
pression operation. The exponent suppression replaces
the term xm with x for every gate X in the expression
[11] [15] due to a gate X is fully correlated with itself in
the reconvergent gate.

For example as shown in Fig. 3, the probability ex-
pression at the output is originally a×b+b×c−a×b2×c.

Figure 4: Output probability evaluation process.

After the exponent suppression, the probability expres-
sion becomes a × b + b × c − a × b × c (b2 is replaced
by b). It is proven that the probability expression after
the exponent suppression is unique for a network [11]
[15]. Namely, the probability expression is a canonic
representation.

Although probability expression is a canonic repre-
sentation, deriving it for a large circuit is intractable.
This is because O(n × 2n) operations [11] are required
to get the probability expression of an n-input network.
Also, the number of terms in a probability expression
is 2n in the worst case [11].

2.2 Exact Probability based Approach

The exact probability based approach assigns nu-
meral probability to PIs and evaluates the probability
at POs for comparison where the assigned probability is
aliasing-free [19] [21]. Thus, it produces a unique output
probability for each function.

Equation (1) is a recursive formula reported in [21]
that produces aliasing-free probability assignments for
an n-input network where 1

θi

is the 1’s probability of
input variable Xi, i = 1 ∼ n − 1.

θi+1 = (θi − 1)2 + 1 = θi
2 − 2θi + 2; (1)

i = 1 ∼ n − 1;

θ1 ≥ 3 & θ1 ∈ Z+;

To minimize the memory usage in representing the
probability of a gate, the assignment of θ1 = 3 is prefer-
able. Thus, the aliasing-free assignment uses θ1 = 3 as
the first assignment throughout the paper. The follow-
ing example demonstrates why Equation (1) results in
a unique output probability for each function.

Wu et al. [21] apply these aliasing-free assignments
to the DUVs, and calculate the output probability. Fur-
thermore, the signal correlation issue at reconvergent
gates is also considered. As a result, correct output
probability of a network is efficiently obtained for fur-
ther comparison.

Take Fig.4 as an example, we can derive the proba-
bility expression of network ori and network opt, both
are a × b + b × c − a × b × c. Thus, they are equiv-
alent networks. Following, instead of deriving proba-

105

Figure 5: Alternative operations for primitive gates.

bility expression, we introduce how to verify these two
networks by using aliasing-free assignments and get the
output probability in a single-pass calculation. First,
we assign the aliasing-free assignments, a = 1

3
, b = 1

5
,

and c = 1

17
, to PIs A, B, and C in network ori and

network opt, respectively. Different from original prob-
ability formulae, aliasing-free assignments use efficient
alternative operations to calculate output probability,
i.e., bitwise-AND (∩) in an AND gate and bitwise-OR
(∪) in an OR gate. The probability evaluation process of
primitive gates are shown in Fig.5. After finding a lowest
common multiple denominator of two input probabili-
ties in an AND/OR gate, we transform these two input
probabilities to their equivalent probabilities with the
same denominator. Then, the two new numerators con-
duct bitwise-AND/bitwise-OR operation to obtain the
numerator of output probability in an AND/OR gate.
For example, to get the output probability of the AND
gate in Fig.5, we first transform 1

3
to 5

3×5
and 1

5
to 3

3×5
.

Then, the two new numerators conduct bitwise-AND
operation, 5∩3 = 1012∩0112 = 0012 = 1, to obtain the
output probability, 1

3×5
. The calculation for the other

gates can also be seen in Fig.5. Applying these rules
in Fig.5 to gates in the networks, we can obtain correct
output probabilities even though reconvergent gates ex-
ist in the networks. For example, Fig.4 shows two net-
works having the same output probability, 19

3×5×17
, thus

we can know they are equivalent as earlier mentioned.
An inherent disadvantage of aliasing-free assignments

is that the assignments exponentially grow. The
numerator of output probability may become too large
to be represented. Wu et al. [21] report that the 24th

assignment, θ24, 22
24−1

+ 1 ≈ 22
23

≈ 102525222, within a
single fanin cone is the maximal value it can support.
Thus, this paper proposes an approximate approach for
those large circuits.

3. Probabilistic CEC and Its Analysis

This section first presents a verification architecture,
Probabilistic EquivAlence CHecking (PEACH), that is
used for CEC and provides a configurable aliasing rate.
Next, the detailed analysis on the aliasing rate with
PEACH is presented.

3.1 PEACH Architecture

The PEACH architecture is shown in Fig.6. It
contains three components, a random probability

Figure 6: The PEACH architecture.

Figure 7: The illustration of Example 3.1.

generator (RPG), a golden network (S) and a DUV
(S′), and a comparator. S and S′ are both N-input
M-output networks. The RPG is an R-input N-output
circuit. The comparator has 2M inputs and one output.
To verify the equivalence of networks S and S′, we
first apply R aliasing-free assignments to RPG’s PIs.
Next, we randomly select N output probabilities among

0

22R−1
∼ 2

2
R

−1

22R−1
and assign them to the PIs of S and S′.

Using the probability evaluation process as mentioned
in Section 2.2, we can get the output probabilities of
S and S′. Then, the comparator pairwisely compares
the output probabilities and reports if S and S′ are
equivalent or not. We use Example 3.1 to explain
the process of equivalence checking using the PEACH
architecture.

Example 3.1: Two networks S and S′ as shown in
Fig.7 are going to be verified for equivalence. As-
sume the RPG has two PIs, note that this number is
determined by designers. We apply two aliasing-free
assignments, 1

3
and 1

5
, to RPG’s PIs. Hence, there

are 22
2

= 16 (0

15
∼ 15

15
) possible output probabilities

out from RPG. Since S and S′ only have three inputs,
we randomly select three of them, e.g., 1

15
, 7

15
, and

10

15
. As earlier mentioned, the aliasing-free assignments

have a property of uniqueness, therefore, one output
probability can represent one function. For example,
output probability 1

15
represents the 2-input AND

function, output probability 7

15
represents the 2-input

OR function, and so on. These functions are also shown
inside the RPG in Fig.7. Next, we assign these selected
probabilities, 1

15
, 7

15
, and 10

15
to the PIs A, B, and C

106

Figure 8: An example of L-transformation.

of S and S′, respectively. That is, a= 1

15
, b= 7

15
, and

c= 10

15
. After the probability calculation, the output

probability of S is 3

15
and that of S′ is 8

15
. Thus, the

comparator reports that S and S′ are non-equivalent
networks.

The PEACH architecture successfully verifies that
networks S and S′ are different in Example 3.1. How-
ever, if the randomly selected output probabilities are
0

15
, 6

15
, and 0

15
(repeated probability is possible), an

identical output probability of S and S′, 0

15
, is obtained.

This indicates that aliasing may occur in the PEACH
architecture.

Definition 2: Aliasing is the situation that two
non-equivalent networks S and S′ having an identical
output probability under the same input assignment.

As we mentioned, a major disadvantage of aliasing-
free assignments is that the assignments exponentially
grow. Thus, the number of aliasing-free assignments
is very limited in the exact approach in practice.
Approximate approach using PEACH, however, the

number of assignments can be up to 22
R

at least, where
R is the number of PIs in RPG. If the RPG has 10 PIs,
there are 22

10

≈ 10308 output probabilities that can be
chosen as input probabilities of S and S′. Thus, this
architecture makes the verification on very large circuits
possible. Although PEACH architecture could cause
aliasing, we observe that if R≥10, the probability that
aliasing occurs is virtually-zero. Its detailed analysis
will be presented in Section 3.2.

3.2 Aliasing Rate Analysis

To analyze the probability that aliasing occurs, we
define an L-transformation for the PEACH architec-
ture. The L-transformation can transform an N-input
M-output function (S) into an R-input M-output func-
tion. For example, network S in Fig.7 is a 3-input 1-
output network. Its function is A·B+B ·C. The 2-input
RPG in Fig.7 performs L-transformation on S. Thus, S
is transformed into a new network L as shown in Fig.8.
The function of L is (X ·Y) · (X +Y)+ (X +Y) ·X due
to A = X · Y , B = X + Y , and C = X. As a result, S
and S′ within the PEACH architecture are transformed
into new networks L and L′ by L-transformation, respec-
tively. Note that the original objective is to determine

C B A c b a prob. of minterm

0 0 0 (1 −

3

15
) (1 −

2

15
) (1 −

1

15
) 12∩13∩14

15
= 12

15

0 0 1 (1 −

3

15
) (1 −

2

15
) 1

15

12∩13∩ 1

15
= 0

15

0 1 0 (1 −

3

15
) 2

15
(1 −

1

15
) 12∩ 2∩14

15
= 0

15

0 1 1 (1 −

3

15
) 2

15

1

15

12∩ 2∩ 1

15
= 0

15

1 0 0 3

15
(1 −

2

15
) (1 −

1

15
) 3∩13∩14

15
= 0

15

1 0 1 3

15
(1 −

2

15
) 1

15

3∩13∩ 1

15
= 1

15

1 1 0 3

15

2

15
(1 −

1

15
) 3∩ 2∩14

15
= 2

15

1 1 1 3

15

2

15

1

15

3∩ 2∩ 1

15
= 0

15

Figure 9: The probability of each minterm for 3-input func-

tions assuming a = 1

15
, b = 2

15
, c = 3

15
.

the equivalence of S and S′. But using PEACH, we can
only determine the equivalence of L and L′. Next we
clarify the effect of this transformation on our original
objective.

From Definition 2 of aliasing, the aliasing rate can be
formally defined as follows.

Definition 3: Given two networks S and S′. S and
S′ are transformed into L and L′ by L-transformation.
The aliasing rate (ǫ) is defined as the probability of
S6=S′ and L=L′, and represented as pr(S6=S′ ∩ L=L′).

Both S and S′ are N-input M-output networks. Since

an N-input network has 22
N

distinct functions, and S
and S′ can be any one of them, we have Equation (2).

pr(S = S′) =
1

22N
(2)

Both L and L′ are R-input M-output networks. Since
L and L′ are transformed from S and S′, the number of

distinct functions of L and L′ are not always 22
R

. This
number is determined by the selection of RPG’s output
probabilities. We use Example 3.2 to explain this point.

Example 3.2: Assume the RPG is a 2-input 3-output
circuit, and aliasing-free assignments 1

3
and 1

5
are

assigned to RPG. We randomly select three output
probabilities among 0

15
∼ 15

15
, e.g., 1

15
, 2

15
, and 3

15
.

Then, the probability of each minterm in S is as shown
in Fig.9. According to Fig.9, we observe that only 4
probability values are appeared, 0

15
, 1

15
, 2

15
, and 12

15

in the last column. Thus, the networks’ probabilities
are only these values or the summation of subset of
them. Consequently, some output probabilities of this
3-input network would not happen, such as 4

15
, 5

15
,

6

15
, 7

15
, 8

15
, 9

15
, 10

15
, and 11

15
. This implies that these

2-input networks L and L′ can only have 8 distinct
functions rather than 16 (22

2

= 16) functions under
this probability selection, 1

15
, 2

15
, and 3

15
.

We denote the number of non-zero probability
minterms as |C|. For example, the probability 1

15
,

2

15
, and 12

15
in Fig.9 are non-zero probabilities, and

|C| = 3. Therefore, there are 2|C| distinct functions

of L and L′ rather than 22
R

. This is stated in Theorem 1.

Theorem 1: Given two N-input networks S and S′.
S and S′ are transformed into R-input networks L
and L′ by L-transformation. If there are |C| non-zero

107

Figure 10: Aliasing rate analysis.

probability minterms, the number of distinct functions
of networks L and L′ is 2|C|.

According to Theorem 1, there are 2|C| distinct
functions and L and L′ can be any one of them, thus,
we have Equation (3).

pr(L = L′) =
1

2|C|
(3)

If network S is equivalent to network S′, then net-
work L is definitely equivalent to network L′. This
equivalence is asserted by observing the same output
probability with the aliasing-free assignments at RPG’s
PIs and correct input/output correspondences between
S and S′. This statement can be rewritten as the
following one by the contrapositive law. If network L
is not equivalent to network L′, then network S is not
equivalent to network S′. Thus, we obtain Equation (4).

pr(S = S′ ∩ L 6= L′) = 0 (4)

Equation (4) means that the sample space of S=S′ is
within that of L=L′. Their relation is illustrated in
Fig.10. The inner circle represents S=S′. The outer cir-
cle represents L=L′, and L=L′ completely covers S=S′.

According to Fig.10, the shadow part represents the
events that aliasing occurs. Thus, the aliasing rate (ǫ)
defined in Definition 3, pr(S6=S′ ∩ L=L′), is obtained
in Equation (5).

ǫ = pr(S 6= S′ ∩ L = L′) (5)

= pr(L = L′) − pr(S = S′)

=
1

2|C|
−

1

22N

Suppose that the value of N ≥ 25, the term 1

22N is very
close to zero and can be ignored. Thus, the ǫ is only
related to |C|. If |C| = 2R, the ǫ is the least. We call

this is the best case. If |C| = 2
R

2
, we call this is the

average case. Since R is configurable by designers, we
show the ǫ of these two cases for some R in Fig.11. For
example, if R=10, |C| = 210 in the best case. The ǫ is

equal to 1

2210
= 2−2

10

≈ 10−308. Note that Fig.11 is a
sample result of theoretical analysis on ǫ. The actual ǫ

in the experiments will be reported in the next section.
Since networks S and S′ have M outputs, each

output would have its own aliasing rate. Assume ǫi

is the aliasing rate of the ith PO. The probability
that aliasing does not occur in the whole network is
(1 − ǫ1) × (1 − ǫ2) × · · · × (1 − ǫM). Thus, we can
obtain the overall aliasing rate as shown in Equation (6).

ǫ = 1 − (1 − ǫ1) × (1 − ǫ2) × · · · × (1 − ǫM) (6)

When R ≥ 10, ǫi will approach to zero, and Π(ǫi) is

Aliasing rate (ǫ)

R Best case Average case

10 10−308 10−154

11 10−616 10−308

12 10−1233 10−616

13 10−2466 10−1233

Figure 11: The best case and average case of ǫ.

even smaller. Thus, Equation (6) can be approximately
rewritten as Equation (7).

ǫ = Σ(ǫi), i = 1 ∼ M (7)

Equation (7) takes the summation of ǫi as the aliasing
rate, and this value will be reported in our experimental
results.

4. Experimental Results and Analysis

The experiments are conducted over a set of ISCAS’85
benchmarks within SIS [17] environment based on a
preliminary implementation. These benchmarks are in
BLIF format. Since we assume DUVs only consist of
AND, OR, and NOT gates, we decompose complex gates
in the benchmark into these primitive gates by map-
ping to the SIS library (22-1.genlib). To compare two
networks with the same functionality but different struc-
tures, we restructure one network by using script.rugged
script in SIS. Also, a free library GMP [22] is used to
deal with the operation of large numbers.

The experiment compares our approach against a
BDD based approach on a 1280 MHz Sun Blade 2500
workstation with 4 Gbytes memory. The number
of inputs in the PEACH architecture is set to 10,
i.e., R=10, and the RPG’s outputs are randomly se-
lected to connect to the inputs of S and S’. The BDD
based approach is conducted by using SIS function
(ntbdd verify network) with arguments DFS ORDER
and ALL TOGETHER. Table 1 summarizes the exper-
imental results of our approach and the BDD based ap-
proach. Column 1 lists the benchmarks, the last one
(M32x32) is a 32×32 multiplier designed by us. Col-
umn 2 shows the number of gates in a benchmark. Col-
umn 3 and 4 show the CPU time and aliasing rate (ǫ) of
our approach. The ǫ is off-line calculated using Equa-
tion (7) described in Section 3.2. Column 5 shows the
CPU time of the BDD based approach. For example,
C6288 benchmark has 3540 gates. Our approach spends
0.025771 seconds for verifying them with ǫ about 10−76.
However, the BDD based approach cannot verify them
within one hour due to BDD explosion. We abort the
BDD experiment when the CPU time exceeds one hour.

Next, we analyze the aliasing rate. The aliasing rate
reported in the experimental results is virtually-zero.
Refer to Fig.12, the aliasing rate represents the propor-
tion of the shadow part to the whole rectangle. The
rectangle is the sample space, and the shadow part
is the events that aliasing occurs. The virtually-zero
aliasing rate in Table 1 indicates that the shadow part

108

Table 1: The comparison between our approach and a BDD

based approach on a 1280 MHz machine.

Ours BDD

Circuits Size Aliasing rate Time (s) Time(s)

C432 286 10−307 0.002285 0.751328

C499 567 10−308 0.004418 0.281865

C880 423 10−194 0.003830 0.150609

C1355 682 10−308 0.004730 0.438446

C1908 770 10−307 0.005023 0.379906

C2670 1076 10−75 0.013780 > 1 hr

C3540 1530 10−75 0.010087 25.351015

C5315 2447 10−134 0.020017 0.655514

C6288 3540 10
−76

0.025771 > 1 hr

C7552 3281 10−75 0.026013 > 1 hr

M32x32 11648 10−75 0.08765 > 1 hr

Figure 12: An illustration that an induced bug in S′ very

often escapes from S=S′ to the outside of L=L′.

relative to the rectangle is very tiny. As a result, if a
bug is induced to S′ (S6=S′), then it is very possible
that this event S6=S′ will fall into the outside of L=L′

and can be easily detected. In addition, we can get a
lower aliasing rate by increasing the number of inputs
in PEACH architecture. Since this work focuses on
the achievement of virtually-zero aliasing rate rather
than error diagnosis, we do not report the results on
verifying two circuits with different functionalities in
this paper.

5. Conclusions

Non-zero aliasing rate is a major concern in proba-
bilistic combinational equivalence checking, and causes
its limited application in the last decade. In this paper,
we present a novel verification architecture, PEACH,
such that a virtually-zero aliasing rate is efficiently
obtained. For those complex circuits which cannot be
solved by formal verification methods, our approach
using PEACH architecture still gives an answer with
a very high confidence level. Thus, the probabilistic
approach could be considered as a good alternative to
combinational equivalence checking problem for larger
circuits.

References

[1] J. Hu Alan, ”Formal Hardware Verification with BDDs:
An Introduction,” in Proc. of PACRIM, pp. 677-682,
1997.

[2] V. D. Agrawal, et al., ”Characteristic Polynomial
Method for Verification and Test of Combinational Cir-

cuits,” in Proc. of Int. Conf. on VLSI Design, pp. 341-
342, 1996.

[3] D. Brand, ”Verification of Large Synthesized Designs,”
in Proc. of ICCAD, pp. 534-539, 1993.

[4] R. E. Bryant, ”Graph-based Algorithms for Boolean
Function Manipulation,” IEEE Trans. on Computers,
pp. 677-691, Aug. 1986.

[5] R. E. Bryant, ”Binary Decision Diagrams and Be-
yond: Enabling Technologies for Formal Verification,”
in Proc. of ICCAD, pp. 236-243, 1995.

[6] E. I. Goldberg, et al., ”Using SAT for Combinational
Equivalence Checking,” in Proc. of DATE, pp. 114-121,
2001.

[7] A. Hett, et al., ”Fast and Efficient Construction of
BDDs,” in Proc. of the ED & TC, pp. 677-691, 1997.

[8] I. Hamzaoglu, et al., ”New Techniques for Deterministic
Test Pattern Generation,” in Proc. of VTS, pp. 446-452,
1998.

[9] J. Jain, et al., ”Probabilistic Design Verification,” in
Proc. of ICCAD, pp. 468-471, 1991.

[10] J. Jain, et al., ”Formal Verification of Combinational
Circuits,” in Proc. of Int. Conf. on VLSI Design,
pp. 218-225, 1997.

[11] S. K. Kumar, et al., ”Probabilistic Apects of Boolean
Switching Functions via a New Transform,” Journal of
the ACM, pp. 502-520, July 1981.

[12] T. Kutzschebauch, et al., ”Congestion Aware Layout
Driven Logic Synthesis,” in Proc. of ICCAD, pp. 216-
223, 2001.

[13] T. Larrabee, ”Test Pattern Generation Using Boolean
Satisfiability,” IEEE Trans. on Computer Aided-
Design, pp. 4-15, Jan. 1992.

[14] S. Malik, et al., ”Logic Verification Using Binary De-
cision Diagrams in a Logic Synthesis Environment,” in
Proc. of ICCAD, pp. 6-9, 1988.

[15] K. P. Parker, et al., ”Probabilistic Treatment of General
Combinational Networks,” IEEE Trans. on Computer,
pp. 668-670, June 1975.

[16] S. Reda, et al., ”Combinational equivalence checking
using Boolean satisfiability and binary decision dia-
grams,” in Proc. of DATE, pp. 122-126, 2001.

[17] E. M. Sentovich, et al., ”SIS: A System for Sequen-
tial Circuit Synthesis,” ERL Memo. No.UCB/ERL
M92/41, EECS, UC Berkeley, CA 94720.

[18] P. Stephan, et al., ”Combinational Test Generation Us-
ing Boolean Satisfiability,” IEEE Trans. on Computer
Aided-Design of Integrated Circuits and Systems, Vol.
15, No. 9, Sept. 1996.

[19] M. Teslenko, et al., ”Computing a Perfect Input Assign-
ment for Probabilistic Verification,” in Proc. of SPIE,
pp. 929-936, 2005.

[20] A. Veneris, et al., ”Logic Verification Based on Diag-
nosis Technique,” in Proc. of ASPDAC, pp. 538-543,
2003.

[21] S.-C. Wu, et al., ”Formal Combinational Equivalence
Checking Using Probability,” in Proc. of SASIMI, 2006.

[22] http://www.swox.com/gmp/

109

	MAIN MENU
	Front Matter
	Table of Contents
	Author Index
	Keyword Index

	Search CD-ROM
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

