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Abstract
This paper presents a probability based approach to logic
equivalence checking. First, a general probability assign-
ment procedure is proposed to uniquely characterize output
probability of a network. Thus, the equivalence of two net-
works can be asserted by the equality of output probabili-
ties. To improve the efficiency of probability calculation, a
new encoding scheme and operations are proposed. These
encoding scheme and operations also solve the signal cor-
relation issue during the output probability evaluation. As
a result, an exact output probability of a network is suc-
cessfully derived in one pass. Finally, the equivalence of
internal gates between two networks are exploited to reduce
the number of required input assignments and improve the
efficiency of our approach. In the experiments, our ap-
proach is compared with a BDD based approach in terms
of CPU time and memory usage. The results disclose the
potential and limitation of the probabilistic approach to
logic equivalence checking.

1. Introduction
Traditionally, logic verification is carried out by pattern

simulation. However, to exhaustively simulate all possible
patterns is infeasible for practical designs with numerous
inputs. Thus, formal logic verification methods are get-
ting popular. It is possible to guarantee the correctness
of a design by using these formal methods.

Existing approaches to formally verify the equivalence
of two networks can be classified into two categories [13]:
(1) structural [4] [22], (2) functional [10] [16]. Structural
methods identify some internal gates of two networks and
use them to construct a miter structure [4] as shown in
Fig.1. It examines if the output of the miter stuck-at-0
fault is untestable by Automatic Test Pattern Generation
(ATPG) [11]. If the fault is untestable, there does not
exist a pattern to distinguish the two logic cones. Hence,
these internal gates are equivalent. Then, one internal
gate can be replaced by the other equivalent gate and
the overall network is simplified. The efficiency of this
approach relies on the capability of ATPG. If the fault
test at the miter output is time-consuming or intractable,
the approach becomes inefficient.

On the other hand, functional methods use canonic rep-
resentations to represent networks. Thus, two networks
are equivalent if and only if the representations are iden-
tical. Reduced Ordered Binary Decision Diagrams (ROB-

∗This work was supported in part by the National Science Coun-
cil of R.O.C. under Grant NSC95-2220-E-007-020

Figure 1: A miter.

DDs) [6] is one of canonic representations to represent net-
works. One can use ROBDDs to verify the equivalence of
two networks directly [1] [7]. The possible difficulty this
approach encounters is ROBDDs construction. Certain
circuits such as the multiplier with numerous inputs can-
not be represented by ROBDDs in any variable ordering
[6].

The signal probability of a gate within a network
has applications to power estimation [18] and testability
analysis [3] [5] [8] [9]. Also, the signal probability at the
output of a network was considered as a signature function
[2] [12] for logic equivalence checking. Signature function
is used to characterize networks’ properties. If the signa-
ture values of two networks are different, the two networks
are not equivalent. Otherwise, however, they are only
possibly equivalent. The case that two different networks
with the same signature value is called aliasing. When
the output probabilities are not equal under the same set
of input probability, the two networks are not equivalent.
But the inverse is not true. That is, the aliasing could
occur. Although the aliasing rate of this approach would
be reduced with multiple runs of input probability as-
signments [12], the equality of two output probabilities
still does not guarantee the equivalence of two networks.
The occurrence of aliasing relies on the input probability
assignments. Thus, in this paper, we propose a general
probability assignment procedure to uniquely character-
ize the output probabilities of networks. Consequently,
the aliasing will not occur. Thus, the equivalence of two
networks is asserted by the equality of the output proba-
bilities.

The calculation of signal probability at the gates within
a network involves arithmetic operations, such as multi-
plication, addition, and subtraction. The more efficient
operations, such as bitwise-AND (∩), bitwise-OR (∪), and
shift-add operations are exploited in this paper to substi-
tute the original arithmetic operations without sacrificing
the correctness. We also propose a new encoding scheme
with the bitwise operations that successfully deals with
the signal correlation issue.
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Figure 2: Probability formulae for primitive gates.

Figure 3: Probability calculation on a tree-structure network.

2. Background
This section reviews the background of signal probabil-

ity in a network. Here we assume networks only consist
of AND, OR, and NOT gates for simplicity. Complex
gates can be decomposed into these gates. We will
denote a gate in the network by an upper case letter and
its probability of signal one by the corresponding lower
case letter. The known probability formulae for 2-input
AND, OR, and NOT gates with independent signals are
summarized in Fig. 2. The formulae for AND, OR gates
with more than 2 inputs can be extended from these
formulae.

Definition 1: Given gates s and d in the network, if
there are more than one disjoint path from s to d, d is a
reconvergent gate in the network [15].

The probability expression of a network can be derived
from the primary inputs to the primary outputs by using
these probability formulae. However, this expression is
correct only if the network is a tree-structure. For exam-
ple, a tree-structure network is as shown in Fig. 3. Its
probability expression can be obtained straightforward. If
a network contains reconvergent gates, the process of de-
riving probability expression has to be modified due to
correlated inputs. This modification is named exponent
suppression, which replaces the term xm with x for every
gate X in the expression [14] [19]. This is because a gate
X is fully correlated with itself in the reconvergent gate.
After the exponent suppression, the modified probability
expression is correct. For example as shown in Fig. 4, the
probability expression at the output is a×b+b×c−a×b2×c
originally. After the exponent suppression modification,
the probability expression becomes a× b+ b× c−a× b× c
(b2 is replaced by b). It is proven that the probability
expression after the exponent suppression modification is
unique for a network [14] [19]. Namely, if two networks
(regardless of having reconvergent gates or not) have the
same probability expression after the exponent suppres-
sion modification, they are equivalent; otherwise, they

Figure 4: Probability calculation with exponent suppression.

Figure 5: An example to explain the aliasing.

Figure 6: Probability calculation in numeral assignments (a)

without signal correlation, (b) with signal correlation.

are nonequivalent. Thus, the probability expression is a
canonic representation.

Although probability expression is a canonic represen-
tation, deriving it for a large circuit is intractable. This is
because O(n× 2n) operations [14] are required to get the
probability expression of an n-input network. Also, the
number of terms in a probability expression is 2n in the
worst case [14].

When applying the same set of numeral assignments to
the primary inputs of two networks for equivalence check-
ing, the situation that the two different networks get the
same output probability is called aliasing. For example
in Fig. 5, the two networks are distinct but have the
same output probability 1

6 given input probability 1
2 and

1
3 . Thus, 1

2 , 1
3 is not an aliasing-free assignment.

When applying numeral assignments to the primary in-
puts of a network, the output probability could be erro-
neous if the signal correlation issue is not considered. For
example, the output probability of Fig. 6(a) is 1

2 × 1
3 = 1

6
by using the AND formula. This value is correct due to
the inputs are independent. However, the output proba-
bility 1

18 in Fig. 6(b) is erroneous if using the same for-
mula without considering the correlation of inputs at gate
G2. The correct output probability in Fig. 6(b) is still
1
6 . Since the exponent suppression modification cannot
be applied directly under numeral assignments, how to
correctly calculate the signal probabilities of a network
containing reconvergent gates is a challenge.

3. Probabilistic Logic Equivalence Checking
This section presents our probabilistic approach to logic

equivalence checking. It consists of three parts. First
of all, an aliasing-free assignment procedure is presented.
Then, the probability evaluation process with aliasing-
free assignment is presented. Finally, an internal tree-
structure replacement method is introduced.

3.1 Aliasing-Free Probability Assignments
To ensure the equivalence of two networks after prob-

abilities assignment, the aliasing-free probabilities assign-
ments are crucial. Random probabilities assignments can-
not guarantee uniqueness [2][11].

Given an n-input network, the number of distinct func-
tions is 22n

. This implies that if aliasing is not permitted,
the output probabilities of these functions have to be dif-
ferent under the same set of input probabilities.
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Figure 7: The probability of each minterm for 3-input func-

tions assuming x1 = 1
3
, x2 = 1

5
, x3 = 1

17
.

To better describe the procedure of input probability as-
signment and explain why it results in uniqueness, we rep-
resent a logic function with its truth table. We assume 1’s
probability of an input variable Xi is xi. The correspond-
ing 0’s probability of Xi is (1 − xi). Thus, for a minterm
Xn ·Xn−1·· · · ·Xt ·X ′

t−1·· · · ·X ′
1 in an n-input function, its

probability is xn×xn−1×· · ·×xt×(1−xt−1)×· · ·×(1−x1).
The probability of a function is the summation of the
probability of its minterms.

For an n-bit positive binary numeral system, it can rep-
resent the integers in the range of 0 ∼ 2n − 1. Inspired by
the binary numeral system, the probability value of each
minterm acts as the weight of output probability of a func-
tion. If the assigned weight of each minterm is similar to
that of binary numeral system, the output probability of
each function is unique.

We propose a recursive function for probability assign-
ments in an n-input network in Equation (1), which leads
to aliasing-free output probabilities. The 1’s probability
of input variable Xi is xi and xi is assigned as 1

ai
, where

ai+1 = (ai − 1)2 + 1 = ai
2 − 2ai + 2; (1)

i = 1 ∼ n − 1;
a1 ≥ 3 & a1 ∈ Z+;

For example, for a 3-input function, there are 223
= 256

distinct functions. If we set a1 = 3, x1 = 1
3 ; a2 = 5,

x2 = 1
5 ; and a3 = 17, x3 = 1

17 according to Equation (1),
the probability of each minterm is shown in Fig. 7. The
probability of each minterm acts as the weight which
is similar to the weight of binary numeral system. The
probability of each function is the summation of subset
of these weights. Thus, the probability is unique for
each function and they are distributed from 0

255 ∼ 255
255

uniformly. The uniqueness of output probability obtained
by Equation (1) for a1 = 3 is stated in Theorem 1.

Theorem 1: The probability assignment in an n-input
function by Equation (1) for a1 = 3 results in unique
output probability.
Proof: Omitted.

Equation (1) works well for a1 > 3 & a1 ∈ Z+ as well.
Fig. 8 shows the probability values for a1 = 4. The
numerator of probability of each minterm in Fig 8 is anal-
ogous to the ternary numeral system, hence the output
probability is unique as well for each function. But this
assignment causes some output probabilities not to occur,
e.g., 2

3280 is not a possible output probability.
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Figure 8: The probability of each minterm for 3-input func-

tions assuming x1 = 1
4
, x2 = 1

10
, x3 = 1

82
.

Note that a1 = 2 is an infeasible assignment. This is
because the 1’s probability of X1 equals its 0’s probability,
x1 = 1

2 = (1 − x1). It will cause the probabilities of two
minterms to be equal.

To minimize the memory usage in representing the
probability of a gate, the assignment of a1 = 3 is prefer-
able. Thus, the aliasing-free assignment uses a1 = 3 as
the first assignment throughout the paper.

The similar idea of aliasing-free assignments is pre-
sented in [21], but its formulation is different from Equa-
tion (1). Furthermore, a1 in our formulation is generalized
to all positive integers greater than 2.

3.2 Probability Evaluation

3.2.1 Encoding Scheme and Alternative Opera-
tions

The probability formulae for AND, OR gates involve
multiplication operation as shown in Fig. 2. The cost
of multiplication operation is expensive in general. Thus,
we propose two alternative operations, bitwise-AND (∩)
and bitwise-OR (∪), to substitute the original probability
formulae of AND and OR gate. As a result, the process
of probability calculation will be more efficient.

We first introduce a new encoding scheme of the
aliasing-free assignment used in our work. The assigned
input probability in this work is expressed as a fractional
number. Typically, both the numerator and denominator
of a fractional number are encoded in binary, e.g., 2

5 is
expressed as 0010

0101 . But our encoding scheme here for de-
nominators is different. The weight of bit bi in the denom-
inator is ai (a1=3, a2=5, a3=17, ..., ai = 22i−1

+ 1). For
example, 1

0001 represents 1
3 , 1

0010 represents 1
5 , and 1

0100
represents 1

17 . Furthermore, since denominators in all pos-
sible signal probabilities are either 3, 5, 17, ..., 22i−1

+ 1,
or the multiplication of these numbers, we encode 1

15 as
1

0011 (3× 5 = 15), 1
255 as 1

0111 (3× 5× 17 = 255) and so on.
This encoding scheme for denominators can significantly
reduce the memory usage.

Next, we introduce how to use our encoding scheme
and alternative operations in calculating the signal
probability in the network. Two steps are conducted in
this process. (I) Two input probabilities are transformed
to its equivalent probability. The denominator of the
equivalent probability is the lowest common multiple of
the original denominators. (II) The two new numerators
conduct bitwise-AND/bitwise-OR operation to obtain
the numerator of output probability if it is an AND/OR

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00  © 2006



Figure 9: A demonstration of Example 3.1.

X2 X1 prob. of minterm

0 0 (1 − x1) × (1 − x2) = (1 − 1
3 ) × (1 − 1

5 ) = 8
15 = 8

0011

0 1 x1 × (1 − x2) = 1
3 × (1 − 1

5 ) = 4
15 = 4

0011

1 0 (1 − x1) × x2 = (1 − 1
3 ) × 1

5 = 2
15 = 2

0011

1 1 x1 × x2 = 1
3 × 1

5 = 1
15 = 1

0011

Figure 10: The probability of each minterm for 2-input func-

tions assuming x1 = 1
3
, x2 = 1

5
.

gate. Examples 3.1 and 3.2 will demonstrate that these
alternative operations work well for the probability
calculation.

Example 3.1: Assume two input probabilities 1
3 and 1

5
are assigned to an AND gate as shown in Fig.9. The cor-
rect output probability is 1

15 ( 1
0011 ) from 1

3 × 1
5 . The same

result can be obtained from our alternative operations.
First, 1

3 is encoded as 1
0001 , and 1

5 is encoded as 1
0010 . We

convert these two probabilities to their equivalent prob-
abilities with the lowest common denominator, e.g., 1

3 is
converted to 5

15 and 1
5 is converted to 3

15 with the lowest
common denominator 15. Thus, 5

15 and 3
15 are encoded

as 5
0011 ( 5

15 ) and 3
0011 ( 3

15 ), respectively. To obtain the
numerator of the equivalent probability, a multiplication
operation is required, e.g., 1 × 5 = 5 and 1 × 3 = 3.
However, we observe that the new numerator can be
obtained by shift-add operations instead of multiplication
operations, i.e., numerator 5 = (1 � 2) + 1 = 4 + 1,
numerator 3 = (1 � 1) + 1 = 2 + 1, where � represents
the shift left operator. Note that this shift-add operation
is always applicable to our process due to the denom-
inator is 22i−1

+ 1 in our assignments. Shift left the
numerator 2i−1 bits and add the numerator once can get
the new numerator. Next, the two new numerators 5, 3
conduct bitwise-AND operation to get the numerator of
the output probability, i.e., 5 ∩ 3 = 1. As a result, the
correct output probability 1

15 ( 1
0011 ) is obtained.

Next, we explain why the alternative operations with
the new encoding scheme can also result in correct output
probability. Suppose X1 and X2 are two independent
signals in the AND function F = X1 · X2. The proba-
bility of X1 = 1, X2 = 1, and F = 1 are x1, x2, and f ,
respectively. The function F = X1 · X2 can be expressed
as (X1 ·X2 + X1 ·X2) · (X1 ·X2 + X1 ·X2). Accordingly,
from the probability point of view, f = x1 × x2 =
(x1 × (1 − x2) + x1 × x2) × ((1 − x1) × x2 + x1 × x2).
Since the aliasing-free assignments result in a unique
probability for each function, and the unique probability
of each function comes from the summation of probabil-

Figure 11: A demonstration of Example 3.2.

ity of minterms as shown in Fig. 10, the multiplication
operation in probability calculation can be replaced
by bitwise-AND operation. In Fig. 10, x1 = 1

3 =
(x1 × (1− x2) + x1 × x2) = 4

15 + 1
15 = 4

0011 + 1
0011 = 5

0011 ,
x2 = 1

5 = ((1 − x1) × x2 + x1 × x2) = 2
15 + 1

15 =
2

0011 + 1
0011 = 3

0011 . Thus, the operation x1 × x2 = 1
3 × 1

5
can be replaced by 5∩3

0011 = 1
0011 = 1

15 .

Example 3.2: Assume two input probabilities 1
5 and 1

17
are assigned to an OR gate. The correct output probabil-
ity is 21

85 ( 21
0110 ) from 1

5 + 1
17 − 1

5 × 1
17 . Similarly, the same

result can be obtained from our alternative operations.
Fig.11 shows the detail of alternative operation.

The explanation for OR gate is similar to that for AND
gate, and is omitted here.

3.2.2 Dealing with Signal Correlation
For the gates whose inputs are correlated, i.e., not

independent, the probability formulae shown in Fig. 2
cannot be applied directly in the calculation of output
probability given numeral input probability. This sub-
section describes our method to deal with this problem.
However, this method is only feasible when the assign-
ments are aliasing-free described in Section 3.1. This
method exploits the same encoding scheme and bitwise
operations mentioned in Section 3.2.1. We use Example
3.3 to demonstrate our method when dealing with the
signal correlation issue.

Example 3.3: Given a 3-input network as shown in
Fig.12. Its function is (A · B) · (B + C) = A · B. Given
aliasing-free assignments, e.g., a = 1

3 , b = 1
5 , and c = 1

17 ,
the correct output probability is 1

3 × 1
5 = 1

15 = 17
255

from the function A · B. On the other hand, from the
network point of view, we have to derive the output
probability from the primary inputs toward the primary
outputs. First, the probability of gate G1 is 1

15 ( 1
0011 ).

The probability of gate G2 is 21
85 ( 21

0110 ). These results
are obtained from Example 3.1 and 3.2. For gate G3,
we transform the two input probabilities 1

0011 and 21
0110

to their equivalent probability, i.e., 1
0011 ( 1

15 ) becomes
17

0111 ( 17
255 ), 21

0110 ( 21
85 ) becomes 63

0111 ( 63
255 ). The new

denominator 255 is the lowest common multiple of the
original denominators 15 and 85, and it can be easily
obtained by 0011 ∪ 0110=0111. Then, the numerators of
these two probabilities conduct bitwise-AND operation,
17 ∩ 63 = 17, to get the numerator of probability of gate
G3. As a result, the probability of gate G3 is 17

0111 = 17
255 .

This is the same as the correct output probability.

When transforming the input probability to its equiv-
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Figure 12: A demonstration of Example 3.3.

alent probability, the lowest common multiple of original
denominators is always used. This is easily achieved by
the bitwise-OR of the two original denominators. The
lowest common multiple denominator suppresses the cor-
relation of two input probabilities if the denominators of
these two input probabilities have the same factor. The
same factor implies the two inputs of the reconvergent gate
are originated from the same input source. Thus, our ap-
proach can deal with the signal correlation issue well when
applying the aliasing-free assignments.

3.3 Internal Tree-Structure Replacement
An n-input network has 22n

distinct functions. It
needs at least 2n bits to represent each function uniquely.
It is an inherent limitation for the unique representation.
However, since we only consider two, instead of 22n

,
networks for verification at one time, the representation
complexity can be reduced by the internal tree-structure
replacement. Although this idea results in the output
probability of these two networks changed, it dose not
affect the judgement on the equivalence of these two net-
works. We use a simple example to demonstrate this idea.

Example 3.4: To verify the equivalence of two net-
works N1 and N2 as shown in Fig. 13, we do not
apply probabilities to all inputs directly. We perform
depth-first traversal on N1 and N2, and then assign
input probabilities sequentially. First, we assign 1

3 and 1
5

to input A and B in N1 and N2, the output probability
of gate G1 in N1 and N2 can be calculated, both are
1
15 . Gate G1 in N1 and N2 are tree-structures and the
output probabilities are equivalent (1

3 , 1
5 are aliasing-free

assignments), thus, the output probability of gate G1 in
N1 and N2 can be replaced as 1

3 . Then, 1
5 is re-assigned

to input C in N1 and N2. The probability of gate G2 in
N1 and N2 are calculated and compared for equivalence
checking. In this example, we use two input assignments,
instead of three, to verify the equivalence of N1 and
N2. The equivalent tree-structure replacement implicitly
reduces the size of designs under verification. Thus,we
can verify the equivalence of two networks more efficiently.

Although supergates [17] are also suitable for the re-
placement if they are equivalent, its identification in a
network is a computation-intensive process. Here we do
not consider the supergate replacement.

4. Experimental Results
The experiments are conducted over a set of MCNC

benchmarks within SIS [20] environment on a Sun Blade
2500 workstation. These benchmarks are in BLIF format.
Since the designs under verification only consist of AND,

Figure 13: A demonstration of Example 3.4.

OR, and NOT gates, we decompose complex gates into
these primitive gates by mapping to the SIS library (22-
1.genlib). To compare two circuits that have the same
functionality but different structures, we use SIS com-
mand (map −m0) to restructure one of the circuits for
area optimization. Also, we separate a multiple output
network into many single output subnetworks and derive
the output probability of each subnetwork for compari-
son. To compare with BDD based approach, we use the
SIS function (ntbdd verify network) to verify the equiv-
alence of two networks with the arguments DFS ORDER
and ONE AT A TIME.

Table 1 summarizes the experimental results of our ap-
proach against that of BDD based approach. Column 1
lists the benchmarks. Column 2 and 3 show the num-
ber of primary inputs and primary outputs of the circuit.
Max ai in Column 4 is the maximum assignments we
used after the internal tree-structure replacement. Max
TFI|PI| in Column 4 is the maximum number of primary
inputs in the transitive fanin (TFI) cone among all output
functions. Column 5 shows if the internal tree-structure
replacement can be applied in this benchmark. Y means
yes, N means no. Column 6 and 7 show the CPU time and
memory usage of our approach and BDD based approach
on these benchmarks measured in second and mega bytes,
respectively.

For example, i3 benchmark has 132 primary inputs and
6 primary outputs. The maximum number of primary in-
puts in the transitive fanin cone among 6 output functions
is 32, and the internal tree-structure replacement can be
used in this circuit. After the replacement, the maximum
assignment is reduce from 32 to 7. Our approach spends
0.05 seconds and 3.41 mega bytes memory for calculating
and comparing the output probabilities. BDD based ap-
proach spends 0.05 seconds and 4.8 mega bytes memory.

We know that the denominator of the aliasing-free input
probability exponentially grows. It affects the scalability
of our approach. In our experiments, the denominator of
the maximal assignment is a24, i.e., 2224−1

+ 1 ≈ 2223 ≈
102525222, which is the largest value we can support. The
benchmarks having more than 24 inputs in the transi-
tive fanin cone of an output function may be verified by
the internal tree-structure replacement. For example, i3
benchmark use this technique to reduce the number of
assignments from 32 to 7. According to Table 1, 34 out
of 48 cases have internal equivalent tree-structures. How-
ever, Table 1 excludes the benchmarks in MCNC whose
Max ai exceeds the limit 24. These benchmarks cannot
be verified currently by our approach.

Although our results are not better than that of BDD
based approach for most benchmarks, they are very close
in terms of time or memory usage. Since BDD based
equivalence checking within SIS is a well developed ap-
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Table 1: Experimental results of MCNC benchmarks.

Max ai Tree Time (s) Mem. (MB) Max ai Tree Time (s) Mem. (MB)

Circuits |PI| |PO| Max TFI|P I| (Y/N) Ours/BDD Ours/BDD Circuits |PI| |PO| Max TFI|P I| (Y/N) Ours/BDD Ours/BDD

9symml 9 1 9 / 9 N 0.08 / 0.06 5.16 / 4.69 i1 25 16 5 / 11 Y 0.02 / 0.02 4.55 / 4.56

alu2 10 6 10 / 10 Y 0.23 / 0.13 5.59 / 5.21 lal 26 19 12 / 13 Y 0.05 / 0.05 4.77 / 4.78

x2 10 7 9 / 10 Y 0.03 / 0.03 4.38 / 4.57 pcler8 27 17 13 / 13 Y 0.05 / 0.05 4.66 / 4.64

cm152a 11 1 11 / 11 N 0.02 / 0.02 4.48 / 4.27 c8 28 18 13 / 13 Y 0.06 / 0.06 4.11 / 4.80

cm85a 11 3 9 / 10 Y 0.02 / 0.02 4.34 / 4.40 frg1 28 3 24 / 25 Y 1.67 / 0.04 15.00 / 4.42

cm151a 12 2 12 / 12 N 0.02 / 0.02 4.45 / 4.34 term1 34 10 20 / 20 Y 0.17 / 0.13 6.30 / 5.30

alu4 14 8 14 / 14 Y 0.83 / 0.30 6.67 / 6.10 count 35 16 19 / 20 Y 0.06 / 0.06 4.41 / 4.77

cm162a 14 5 10 / 11 Y 0.02 / 0.02 4.36 / 4.54 unreg 36 16 6 / 6 N 0.04 / 0.04 4.68 / 4.70

cu 14 11 13 / 13 Y 0.03 / 0.03 4.38 / 4.45 b9 41 21 14 / 14 Y 0.05 / 0.05 4.75 / 4.74

cm163a 16 5 8 / 9 Y 0.03 / 0.03 4.35 / 4.41 cht 47 36 6 / 6 N 0.07 / 0.07 4.83 / 4.86

cmb 16 4 12 / 12 Y 0.03 / 0.03 4.54 / 4.37 apex7 49 37 17 / 24 Y 0.13 / 0.13 5.20 / 5.02

go 16 13 9 / 9 Y 0.04 / 0.04 4.59 / 4.59 x1 51 35 24 / 25 Y 0.84 / 0.13 18.00 / 5.22

parity 16 1 16 / 16 N 0.03 / 0.03 4.39 / 4.43 ex2. 85 66 16 / 17 Y 0.18 / 0.18 5.26 / 5.15

pm1 16 13 8 / 9 Y 0.02 / 0.02 4.55 / 4.37 i9 88 63 13 / 13 N 0.76 / 0.66 6.66 / 6.45

t481 16 1 16 / 16 N 24.77 / 0.02 19.00 / 4.33 x4 94 71 15 / 15 Y 0.22 / 0.22 5.48 / 5.57

tcon 17 16 3 / 3 N 0.03 / 0.03 4.50 / 4.34 i3 132 6 7 / 32 Y 0.05 / 0.05 3.41 / 4.80

vda 17 39 17 / 17 Y 1.45 / 0.62 7.33 / 6.65 i5 133 66 19 / 19 Y 0.17 / 0.23 5.62 / 5.30

pcle 19 9 9 / 12 Y 0.03 / 0.03 4.49 / 4.59 i8 133 81 17 / 17 Y 1.71 / 1.44 11.00 / 10.00

sct 19 15 14 / 14 Y 0.05 / 0.05 4.11 / 4.70 apex6 135 99 22 / 24 Y 0.51 / 0.42 9.50 / 6.23

cc 21 20 6 / 7 Y 0.04 / 0.04 4.34 / 4.61 x3 135 99 23 / 24 Y 1.41 / 0.45 15.00 / 6.52

cm150a 21 1 21 / 21 N 0.11 / 0.02 6.52 / 4.57 i6 138 67 5 / 5 N 0.21 / 0.32 5.87 / 5.94

mux 21 1 21 / 21 N 0.06 / 0.04 5.74 / 4.61 frg2 143 139 23 / 25 Y 2.35 / 0.87 15.00 / 7.63

cordic 23 2 23 / 23 N 1.98 / 0.04 13.00 / 4.66 i7 199 67 6 / 6 N 0.25 / 0.46 6.25 / 6.33

ttt2 24 21 14 / 14 Y 0.08 / 0.08 5.01 / 4.95 des 256 245 18 / 19 Y 5.23 / 4.42 15.00 / 15.00

proach, our competitive results disclose the potential of
the probabilistic approach.

5. Conclusions
This paper presents a continued work on the logic

equivalence checking from the probabilistic aspect.
First, an aliasing-free assignment procedure is proposed
such that a unique output probability of a network is
obtained. Next, more efficient operations are exploited
to substitute the original probability formulae in the
probability calculation process. A method that suc-
cessfully deals with the signal correlation issue when
applying the aliasing-free probabilities is also introduced.
Finally, the internal tree-structure replacement is used
to reduce the number of required input assignments.
Although the work currently cannot handle those circuits
which require more than 24 input assignments in the
transitive fanin cone of a subnetwork, it deal with the
other circuits well. This paper discloses the potential
and current limitation of the probabilistic approach to
logic equivalence checking. We believe the probabilistic
approach would be more efficiently and effectively if fur-
ther improvement is offered and the limitation is loosened.
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