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ABSTRACT

This paper presents a statistic-based approach for evaluating
the testability of nodes in combinational circuits. This testability
measurement is obtained via Monte Carlo simulation governed by
the formulated Monte Carlo model. The Monte Carlo simulation is
terminated when the predefined error with respect to the Monte Carlo
model, under a specified confidence level, is achieved. We conduct
the experiments on a set of ISCAS’85 and MCNC benchmarks. As
compared with previous work, our approach more efficiently evaluates
the testability with less error rate.

I. INTRODUCTION

Testability analysis in logic circuits usually contains three mea-
surements, controllability, observability, and fault detection proba-
bility. Controllability of a node in a circuit is a measurement to
show the difficulty to set a value to this node from the primary
inputs (PIs). Observability of a node in a circuit is a measurement to
show the difficulty to observe the value of a node from the primary
outputs (POs). Fault detection probability of a node in a circuit is a
measurement to show the difficulty to simultaneously set a value to a
node from the PIs (fault activation) and observe the node in the POs
(fault effect propagation). Fault detection probability tells designers
which nodes in the circuit are hard to test, and therefore design-
for-testability (DFT) hardware is mandatory at these locations for
achieving higher fault coverage [18]. Furthermore, this measurement
could provide guidance for test pattern generation. It reduces the
number of backtracking in the process of logic implication in ATPG.

Many efforts have been made in the testability analysis [2], [3],
[5]-[9], [11]-[13], [15], [16]. Some work are for controllability
and observability [8], [11]-[13], [15], but some work are for fault
detection probability [3], [6]. The SCOAP [8] is the first algorithm
for computing controllability and observability. It rates each node a
number ranging from 0 to infinity, which represents the difficulty in
controlling and observing the value of the node. Although SCOAP is
efficient in general, it is inaccurate due to neglecting signal correlation
between the inputs of a node.

The PREDICT [15], the first exact controllability measurement,
tries to split the circuit into many partitions. A partition is known
as a supergate, which completely covers the reconvergent fanouts
and their reconvergent nodes. However, the algorithm has exponential
computation cost with the number of fanouts in each supergate. As to
the worst case, the original whole circuit may be a single supergate.
Therefore, the PREDICT can compute the exact controllability only
for certain circuits.

To deal with the issue of large supergate in the exact approach,
cutting algorithms are proposed in [12], [13]. In [12], Savir et al.
estimate the controllability lower bound and upper bound of nodes by
cutting all multiple fanout branches and initializing each cut line to a
controllability value ranging between 0 and 1. Later, Savir proposes
an improved cutting algorithm [13] combining the original cutting
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algorithm [12] and Park-McCluskey technique [11]. The improved
algorithm cuts only partial fanout branches, and the remainders are
manipulated by the symbolic expression [11]. Although these two
cutting algorithms can deal with larger circuits, the computation
efforts are still large as well.

The state of the art work more related to ours is the TAIR algorithm
[6]. It uses logic reasoning techniques used in ATPG to derive
formulae for correcting the fault detection probability obtained by
the COP [3]. The algorithm is efficient and improves the accuracy,
but it still has 20∼30 percent of error rate on average.

Previous approaches to testability analysis are vectorless. They ob-
tain the results by the symbolic expression and arithmetic operations.
The symbolic expression usually has a limitation on scalability, and
the arithmetic operations usually do not consider the signal corre-
lation issue. Therefore, previous approaches are either computation
intensive or inaccurate.

From the application point of view, exact testability analysis is not
a must, approximate values with a small error would be acceptable.
Furthermore, the algorithm has to be efficient, especially for large
circuits. Therefore, this paper proposes a simulation-based statistic
approach based on the Monte Carlo method for testability analysis.
Our approach randomizes a large amount of patterns for parallel
simulation. Then the backtracing is performed to evaluate the fault
detection probability of each nodes according to the simulation
results. We introduce a statistical model for error estimation to
formulate our stopping condition. As a result, the iterative simulation
would continue until the desired accuracy, at a specified confidence
level, is achieved.

The rest of this paper is structured as follows. Section II gives
the background of our approach. Section III describes the proposed
approach for analyzing the testability. Section IV shows the experi-
mental results. Section V concludes this paper.

II. BACKGROUND

In this section, we review the background of the Monte Carlo
method. The parallel pattern simulation [17] and critical path tracing
[1] technique are also introduced. The Monte Carlo method is used
to ensure that the testability value has a desired accuracy within a
confidence level. The latter techniques assist us in evaluating the
testability.

A. Monte Carlo Method

We first briefly describe the major components of the Monte Carlo
simulation approach. They comprise the foundation of most Monte
Carlo applications. These components are as follows:

i. Random number generator: a source of random numbers such
that the generated numbers are uniformly distributed on the
unit interval.

ii. Sampling rules: some defined rules that evaluate the result of
each sampling.

iii. Scoring: accumulate each outcome into overall scores for the
quantities of interest.

iv. Error estimation: an estimation of the statistical error as a
function of the number of trials.
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B. Parallel Pattern Simulation and Critical Path Tracing

Parallel pattern simulation is a mechanism that can simultaneously
simulate x patterns, where x could be up to 16,777,216 (224) by using
a large number package, e.g., GMP library [20]. This simulation is
very efficient but spends a large memory space to record the data
as compared to the traditional logic simulation. There is a trade-off
between the computation time and memory space. Thus, we should
determine a proper value of x to ensure that simulation would end
up in a reasonable time with acceptable memory consumption.

The critical path tracing technique is based on the concept of
critical values, first defined in [19]. A wire w has a critical value
v in the test vector t if and only if t detects w the s-a-v fault.
According to the definition of criticality, we can derive critical value
of each line from the POs to the PIs by one pass of backtracing.
Although the backtracing is efficient, it could merely provide an
approximate result due to not considering the self-masking and
multiple path sensitization effects. But in general, the error caused
by the backtracing is very small and can be ignored. This is because
the self-masking and multiple path sensitization infrequently occur
in the circuits.

III. OUR APPROACH

In this paper, we assume that the networks only consist of AND,
OR, and NOT gates for simplicity. Complex gates can be decomposed
into these three types of gates. The four components of Monte Carlo
method associated with our work are described in the following four
subsections in detail.

A. Random Pattern Generator (RPG)

The architecture of our approach is shown in Fig. 1. Two elements
are included, one is a random pattern generator (RPG) and the other
is the circuit under test (CUT) S with M outputs. If the CUT S
is an N -input circuit, then the RPG also produces N outputs. The
RPG is with a parameter r which indicates that the RPG can generate
patterns with 2r bits by using the GMP library [20]. These parallel
random patterns are used as the simulation patterns for the CUT S.

Fig. 1. The architecture of our approach.

B. Sampling Rules

After a trial of parallel pattern simulation, each node of network is
also associated with a vector of 2r bits. We denote this vector and its
inverse on the wire w as V (w) and V (w). The 1’s controllability and
0’s controllability of the wire w are denoted as C1(w) and C0(w),
respectively. |V (w)| represents the number of 1 in the vector V (w).
Thus, the 1’s controllability and 0’s controllability of the wire w
can be approximated as Equation (1) and Equation (2) based on this
simulation.

C1(w) =
|V (w)|

2r
(1)

C0(w) = 1 − C1(w) (2)

Then the critical path tracing technique is performed to determine
the criticality vector of each wire from the POs to the PIs. The
criticality vectors of POs are all initialized to 1. This is because the
change of all these bits definitely causes POs change. The criticality
vector of the wire w is denoted as Cr(w) and it can be obtained by

using the rules as shown in Equation (3), Equation (4), and Equation
(5). Equation (3) is for AND gate shown in Fig. 2(a), Equation (4)
is for OR gate shown in Fig. 2(b), and Equation (5) is for NOT gate
shown in Fig. 2(c).

Fig. 2. (a)Backtracing rule for AND gate. (b)Backtracing rule for OR gate.
(c)Backtracing rule for NOT gate.

∀j ∈ {1, 2, · · · , n} : Cr(wj) =

�
�

n�
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V (wi)

�
� ∩ Cr(wk) (3)

∀j ∈ {1, 2, · · · , n} : Cr(wj) =

�
�

n�
i=1,i�=j

V (wi)

�
� ∩ Cr(wk) (4)

Cr(w1) = Cr(wk) (5)

Fig. 3. An example to explain the backtracing rule for AND gate.

We use an AND gate example shown in Fig. 3 to explain why
the backtracing rules for deriving the criticality vector is valid. The
arrows drawn in the figure indicate the critical bits, which are 1 in
the criticality vector. Suppose the criticality vector of the wire wk

is 1101, then three arrows are drawn above the 1st, 3rd, and 4th

bits. This means that the change of these critical bits will cause at
least one PO change. Then we can use a chaining effect to show
how to evaluate the criticality vector of the wire w1. The change of
the bits in the wire w1, that causes the change of the wire wk and
these bits of the criticality vector in the wire wk are also critical,
will cause the change of the POs as well. The effect of one fanin can
be propagated to gate output only when the other fanins of the gate
are 1 (non-controlling value of AND gate). Therefore, the criticality
vector of the wire w1 can be obtained by the following operation.

Cr(w1) = V (w2) ∩ V (w3) ∩ Cr(wk) = 0101 ∩ 1111 ∩ 1101 = 0101

Next we give an example shown in Fig. 4 to demonstrate how
backtracing rules proceed. Firstly, the vectors of the PIs are generated
by the RPG. In this example, the parameter r of RPG is set to 2, thus
22-bit vectors are generated. Afterward, parallel pattern simulation is
performed to evaluate the vector of each wire. Secondly, the bits in the
criticality vector of the PO are all initialized to 1. Then backtracing
rules are used to determinate the criticality vectors of each wire from
the POs to the PIs. For instance,

Cr(g → h) = V (a → h) ∩ V (f → h) ∩ Cr(h)

= 0101 ∩ 1111 ∩ 1111 = 0101

Cr(e → g) = V (c → g) ∩ V (d → g) ∩ Cr(g → h)

= 0011 ∩ 0101 ∩ 0101 = 0001

When encountering fanout nodes, OR operation is performed to
collect the critical bits of fanout wires.

Cr(c) = Cr(c → f) ∪ Cr(c → g) = 0100 ∪ 0101 = 0101

After obtaining the criticality vector of each wire, the fault detec-
tion probability of a wire could be also evaluated. The probability of
detecting s-a-0 fault of a wire is the probability that the wire is 1 and
it can simultaneously propagate the fault effect to at least one PO.
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Fig. 4. An example of demonstrating backtracing rules.

We denote the s-a-0 and s-a-1 fault detection probability of wire w
as S0(w) and S1(w). Hence the fault detection probability of wire
w could be expressed as Equation (6) and Equation (7). Finally, the
fault detection probability according to this set of parallel random
patterns could be obtained. For instance in Fig. 4.

S0(w) =
|V (w) ∩ Cr(w)|

2r
(6)

S1(w) =

���V (w) ∩ Cr(w)
���

2r
(7)

C. Scoring

With the sampling rules, lots of sampling data could be collected to
approximate the exact result. The probability density function (pdf) of
100,000 sample data about the fault detection probability of a certain
wire in the benchmark C432 is shown in Fig. 5.

Fig. 5. The distribution of fault detection probability of a wire.

In Fig. 5, the x axis represents the fault detection probability of
a wire in each sampling and the y axis represents the number of
samplings that have this value. For example, (0.36, 750) represents
that 750 out of 100,000 samplings are with the fault detection
probability of 0.36. According to Fig. 5, the distribution of the
samplings obviously shapes as a bell which indicates the distribution
is a normal distribution. Therefore, an approximated result could be
derived from averaging the sampling data. Note that the accuracy of
our approach is strongly related to the amount of sampling data.

D. Error Estimation

We exploit the Confidence Interval to estimate the error of the fault
detection probability of a wire as comparing with the true mean of
the normal distribution. Suppose that we have N sampling data of
the fault detection probability of a wire w, then we could compute
the sample standard deviation of this wire labeled as sd(w). And
the parameter of the predefined confidence level is α as shown in
Fig. 6. Then we can look up t α

2
from the t distribution table [10]

with (N − 1) degrees of freedom. Hence, we have (1− α)× 100%
confidence that the estimated error of the fault detection probability
of w, e(w), could be expressed as Equation (8) [10].

e(w) =
t α

2
× sd(w)
√

N
(8)

Fig. 6. Confidence level.

Fig. 7. The flow chart of our approach.

Consequently, for a desired error ε in the fault detection probability
estimation, and for a given confidence level (1−α)×100%, we have
to repeat the the simulation until

t α
2
× sd(w)
√

N
< ε (9)

Equation (9) is called the stopping condition of the Monte Carlo
method. However, it is too time-consuming to check whether every
wire stuck-at fault meets the stopping condition defined in Equation
(9). As a result, a proper check point should be determined such that
nearly all of the other wires would meet the stopping condition as
well while the error of the checked wire satisfies the stop condition.
We observe the error estimation formula in Equation (9) and realize
that only the sample standard deviation sd(w) of each wire differs
from each other. Thus, we think that the wire with the largest standard
deviation sd(w) is the most inaccurate. Accordingly, several initial
samplings are needed to find the wire with the largest standard
deviation. This wire will be regarded as the check point. If the error
of the check point satisfies Equation (9), the simulation is terminated.

E. Overall flow

The flow chart of our approach is shown in Fig. 7. At first, the
parameter r of RPG, confidence level α, error ε, and the number of
initial samplings n are specified. Then n samplings are applied to
calculate the fault detection probability of each wire. These results
are used to locate the wire with the largest standard deviation, and
therefore this wire is selected as the check point. After n samplings,
we can estimate the error by using Equation (9) and then terminate
the simulation if the error is smaller than ε. If the error is still larger
than or equal to ε, the simulation continues. This iterative process is
ceased when the error of the check point is smaller than ε. In the end,
we average all the sampling data on each wire to get the estimation
of the fault detection probability of each wire.

IV. EXPERIMENTAL RESULTS

The experiments use a set of ISCAS’85 and MCNC benchmarks
to evaluate the performance of our algorithm within SIS [14] en-
vironment. These benchmarks are in BLIF format. Each circuit is
first optimized by using script.boolean script, then decomposed into
AND and OR gates by using the command tech decomp -a 1000 -o
1000 in SIS. In the experiments, only single stuck-at fault detection
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TABLE I
CPU TIME COMPARISON AMONG THE EXACT, TAIR, AND OUR APPROACH.

Circuits # of gates Total faults
CPU time (Sec.)

Exact TAIR Ours
C432 286 618 255 0.10 0.18
C499 567 1548 1115 0.32 0.42
C880 423 1222 713 0.18 0.33

C1355 682 1548 1100 0.31 0.44
C1908 770 1462 283 0.32 0.45
*C2670 1076 2232 780 0.40 0.86
C3540 1530 3760 7754 2.27 0.93
C5315 2447 5324 1249 0.84 1.62
*C6288 3540 9796 15623 1.60 2.78
*C7552 3281 7012 4894 1.70 3.20
*des 2260 10812 11886 7.30 3.98

example2 212 954 14.03 0.22 0.37
i6 276 1314 23.15 0.50 0.55
i7 344 1710 39.34 0.87 0.71
*i8 637 3106 1053 1.90 0.95
*i9 332 1696 333 0.90 0.60

*i10 1450 6730 5612 2.90 2.11
pair 1022 4796 853 0.95 1.48
rot 444 2004 136.45 0.29 0.72

t481 414 2144 66.9 2.34 0.32
average CPU time ratio 2338.39 1.14 1

probability is considered. The fault detection probability for each
stuck-at fault is obtained by three different methods for comparison.
The exact method uses the Binary Decision Diagram (BDD) [4]
to obtain the exact result. The TAIR result is derived by the TAIR
algorithm [6] provided by Chang et al. For our approach, we conduct
some preliminary experiments to find the parameters needed in our
method. It is suggested to set r = 13, α = 0.001, ε = 0.005
and n = 10. This means that our result has only 0.005 error with
99.9% confidence level. These three methods are implemented on
a 1350 MHz Sun Fire V490 workstation with 8 GB memory. The
experimental results are summarized in Table I and Table II.

In Table I, the first column shows the name of each circuit. The
circuits marked with “*” mean that they cannot be represented by
BDD. Therefore, the results of these circuits are approximated by the
simulation of a large amount of patterns, specifically, 220 patterns in
our experiments. The second column shows the number of gates in
each circuit, and the third column shows the number of total faults in
each circuit. We compare the CPU time among the Exact, TAIR, and
our approach. For example, des benchmark has 2260 gates and 10812
faults. The Exact and TAIR methods cost 11886 and 7.30 seconds,
while ours spends 3.98 seconds. The last row shows the ratio of the
average CPU time of these methods. According to Table I, we can
know that the CPU time of the Exact method grows rapidly with the
circuit size, but that of TAIR and our methods almost grow linearly
to the circuit size.

Table II shows the detailed error rate distribution of TAIR and our
approach. We divide the error rate into six levels, and they are 0%,
0∼5%, 5∼10%, 10∼20%, 20∼30%, and over 30%, respectively.
The 0% column shows the percentage of fault detection probability
of TAIR and our approach that are the same as the exact results. The
0∼5% column shows the percentage of TAIR and our results that are
within 0∼5% error rate as being compared to the exact results, and
so forth. The last row summarizes the distribution of average error
rate of TAIR and ours. We observe that on avergae the error rate of
our estimation is within 5% for (2+82)% of faults as comparing to
the exact results. But the TAIR method has only (14+15)% of faults
that are within 5% error rate. Furthermore, 41% of faults have more
than 30% error rate by the TAIR.

V. CONCLUSIONS

From the application point of view, rapid testability analysis with
small error is desired. In this paper, we propose a simulation-based
statistic approach based on the Monte Carlo method for testability

TABLE II
ERROR RATE DISTRIBUTION OF TAIR AND OUR APPROACH.

Circuits
0% 0∼5% 5∼10% 10∼20% 20∼30% 30%↑

TAIR (%) / Ours (%)

C432 14 / 10 5 / 80 3 / 1 17 / 2 9 / 1 52 / 6
C499 0 / 0 14 / 43 0 / 35 2 / 3 24 / 0 60 / 19
C880 8 / 0 17 / 86 11 / 6 23 / 6 11 / 0 30 / 2

C1355 0 / 1 15 / 41 0 / 36 2 / 4 24 / 0 59 / 19
C1908 0 / 1 13 / 83 5 / 7 15 / 3 13 / 4 54 / 2

*C2670 0 / 5 16 / 65 3 / 2 12 / 2 7 / 2 62 / 24
C3540 16 / 4 9 / 66 10 / 8 16 / 6 12 / 2 37 / 14
C5315 10 / 1 7 / 95 6 / 1 17 / 1 15 / 1 46 / 1

*C6288 1 / 1 2 / 99 1 / 0 2 / 0 5 / 0 88 / 0
*C7552 1 / 2 5 / 85 3 / 2 7 / 3 10 / 3 74 / 7

*des 0 / 0 30 / 97 8 / 3 15 / 0 6 / 0 41 / 0
example2 44 / 5 17 / 92 3 / 2 22 / 1 4 / 0 10 / 0

i6 62 / 0 13 / 100 20 / 0 5 / 0 0 / 0 0 / 0
i7 63 / 0 13 / 100 6 / 0 11 / 0 2 / 0 5 / 0

*i8 2 / 2 25 / 96 10 / 2 19 / 1 6 / 0 38 / 1
*i9 0 / 0 16 / 100 28 / 0 9 / 0 18 / 0 30 / 0

*i10 1 / 3 31 / 75 9 / 9 10 / 5 9 / 1 41 / 8
pair 15 / 0 17 / 96 14 / 2 20 / 1 8 / 0 26 / 1
rot 20 / 2 23 / 88 10 / 4 16 / 2 9 / 2 22 / 2

t481 17 / 5 2 / 41 3 / 5 4 / 4 15 / 4 58 / 41
average 14 / 2 15 / 82 8 / 6 12 / 2 10 / 1 41 / 7

analysis. Experimental results show that our method efficiently ac-
quires much more accurate results than TAIR on the fault detection
probability. Also, our method provides accurate controllability and
observability at the same time. As a result, our method could be
used in the applications of DFT and ATPG.
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