Multiple Error Diagnosis in Large Combinational Circuits Using an Efficient Parallel Vector
Simulation

Yu-Lin Hsiao

Chun-Yao Wang Yung-Chih Chen

Department of Computer Science
National Tsing Hua University, HsinChu, Taiwan
{mr944351, wcyao, ycchen} @cs.nthu.edu.tw

Abstract—This paper presents a parallel vector simulation-based
approach to locating multiple errors in large combinational circuits.
Two heuristics are proposed to avoid the explosion of the error space.
Experimental results on a set of ISCAS’85 and two large benchmarks
show that our approach efficiently identifies a small set of correctable
nodes that contains the actual error sources. Thus, further error
correction can be conducted on the erroneous implementation.

I. INTRODUCTION

Design errors possibly occur during the synthesis procedure, or
can be injected occasionally by designers who manually rectify the
implementation to meet the specification. Logic verification tools
confirm the existence of design errors in the incorrect implementation
by identifying functional mismatches between the implementation
and the specification. Then, the design errors have to be located
and further corrected. Since the error space is usually very large,
it is inefficient to manually identify the error locations. Thus, error
diagnosis algorithms are proposed to efficiently report some possible
error candidates such that the subsequent correction procedure can
be performed.

Previous work on error diagnosis can be classified into three
groups: BDD-based approaches [4], [7], [8], simulation-based ap-
proaches [5], [6], [9], [12]-[15], and SAT-based approaches [2],
[3], [11]. The BDD-based approaches rely on manipulation of
Boolean function. Their idea is to identify a set of gates that can
fix all incorrect output functions. These approaches pin-point the
error sources exactly and can be easily extended to multiple error
diagnosis. However, they use Ordered Binary Decision Diagram
(OBDD) to represent the circuits. Therefore, they are not adequate
for the large circuits which have no efficient OBDD representations.

On the other hand, simulation-based approaches are more applica-
ble to large circuits. They simulate a large number of vectors to dis-
tinguish the erroneous implementation from the correct specification,
and gradually prune the error space. In general, they are less accurate
than BDD-based approaches due to the incomplete vector set. Two
kinds of heuristics were found in the different simulation-based
approaches: one is error simulation [5], [9], [12], [14], the other
is logic reasoning [6], [13]. In comparison, the error simulation is
more accurate and more extendable for multiple errors than the logic
reasoning. However, the logic reasoning heuristics are more efficient
in general. The SAT-based approaches first generate a SAT-instance
to present the relation between the erroneous implementation and
the correct specification. Then they use a SAT solver to solve the
instance.

In our approach, we generate parallel random vectors (up to 2'%)
and simulate them at a time. Then the mismatches in the outputs
between the implementation and specification can be identified
simultaneously. We derive two kinds of erroneous vectors to guide
single error diagnosis and multiple error diagnosis, respectively. The
details will be discussed in Section 3.

Compared with the previous work, our approach has the following
three advantages: (1) Efficiency. Since we apply parallel vector
simulation, the performance is improved by using efficient bit-wise
operations. Moreover, some heuristics are also proposed to speedup
the diagnosis process. (2) Accuracy. The experimental results show
that we can prune error space such that the number of error
candidates is small enough. Therefore, the accuracy of our approach

978-1-4244-1617-2/08/$25.00 ©2008 IEEE

can keep pace with that of BDD-based approaches. (3) Applicability
and Scalability. Like BDD-based approaches, our approach does not
rely on any error models and is suitable for multiple error diagnosis.
Furthermore, it is applicable to large circuits that do not have efficient
BDD representations.

Since the number of error sources in an erroneous implementation
is unknown, we treat this problem as locating the set of minimal
correctable sites rather than obtaining the actual error sources. In
other words, this set of minimal correctable sites is considered as
the equivalent error sources. In this paper, the term design error is
referred to the actual or equivalent error.

The remainder of this paper is organized as follows. Section 2
gives our problem formulation, assumptions, and basic definitions.
Section 3 describes the details of our approach. Section 4 provides
the experimental results. Section 5 concludes this paper.

II. PRELIMINARIES

In this work, we are given an erroneous implementation denoted
as Cy, and the correct specification denoted as C's. Both are
combinational netlist but with different structures. n primary inputs
are denoted as {X1, Xo, ..., Xn}, and m primary outputs are
denoted as {51, Sz, ..., Sm} for Cs and {Fy, F>, ..., Fin} for Cr
respectively. We assume both C's and C are composed of primitive
gates (AND, OR, NOT) for simplicity.

Both C; and Cs are simulated by the same set of input vectors,
denoted as VEC (the number of vectors is 27, p = 0 ~ 14), which are
simultaneously generated from a parallel random vector generator
(PRVG) [17]. The simulation results of each node are stored in a
corresponding bit list. The bit list is also known as signature. The "
index of the bit list contains the logic value obtained by simulating
the #*" random vector. The bit list at a node [is denoted as [-blist.
The i*" index in the [-blist is denoted as I-blist(i), i = 1 ~ 2P. In this
paper, the index of the bit list always starts with 1 and is counted
from the right-most bit to the left-most bit. The bit string of the /-
blist is denoted as [-blistval. The value in the position of [-blist(i) is
denoted as I-blistval(i). The it" input vector of VEC is denoted as
vec(i), and vec(i) = (X1-blistval(i), Xo-blistval(i), ..., X, -blistval(i)).

For example in Fig. 1, The bit string of X-blist is X1-blistval =
(01010101) and the value of X-blist(3) is X1-blistval(3) = 1. vec(2)
= (X -blistval(2), Xs-blistval(2), Xs-blistval(2)) = (0, 1, 1).

(Ss, F3) is called an output pair. For an output pair (S;, F}), if
Si-blistval(j) and F;-blistval(j) are different, F;-blist(j) is called an
erroneous bit; otherwise, Fj-blist(j) is called a correct bit, for j = 1
~ 2P_1If vec(j) can create an erroneous bit in any Fj, vec(j) is called
an erroneous vector and Fj is called an erroneous output; otherwise,
F; is called a correct output. The set of all the erroneous outputs
caused by vec(j) is denoted as EPO(vec(j)), and the set of all the
correct outputs caused by vec(j) is denoted as CPO(vec(j)).

To detect whether Fj-blist(j) is an erroneous bit or not, we
can perform bit-wise EXOR operation between F;-blistval and S;-
blistval. Therefore, all erroneous bits at an erroneous output can
be identified simultaneously. For example in Fig. 1, Si-blistval &
Fy-blistval = (00011101) & (11011111) = (11000010). Thus, we
can identify F-blist(2), F1-blist(7), and Fi-blist(8) are erroneous
bits, the others are correct bits. Similarly, F>-blist(1), F»-blist(2),
F5-blist(7), and F»-blist(8) are also erroneous bits. vec(1), vec(2),
vec(7), and vec(8) are erroneous vectors. Therefore, EPO(vec(2)) =
EPO(vec(7)) = EPO(vec(8)) = { F1, F2}, EPO(vec(1)) = {F2}, and

109

S-bilistval = (00011101)

01010101
x{) A (00010001} .

X
100110011 = .
Emroneous bits: {8,7,2}

F, (11011111

Wrong gate
1 (11001111
o D
X, — 2 Do

3 Fingesnod M
©ooo11iny B - ¢
(11110000) (00110000

Erroneous bits: {8,7,2,1}
F, (11001111
{B4}

S-blistval = (00001100)

Fig. 1. A circuit with a single error. The primary inputs are X1, X2, and
X3. The primary outputs are F; and F». The internal wires (nodes) are A,
B, C,and D. B1 ~ B4 are branch wires. The gate marked as “wrong gate”
is the error source.

CPO(vec(2)) = CPO(vec(7)) = CPO(vec(8)) = {0}, CPO(vec(1))=
{1}

If the inverse of [-blistval(j) at a node [can cause F;-blistval(j)
to change, [-blist(j) is called a sensitized bit. The maximal set of
sensitized bits at [for an F; is called a sensitization set of F;, and
is denoted as SEN(I, F;).

In Fig. 1, A-blistval(5) is 1, when A-blistval(5) changes to 0, i.e.,
inverse, the affected F-blistval(5) is also inverted after simulation.
So does A-blistval(6). Therefore, SEN(A, F1) = {5, 6}.

If C; can be corrected by re-synthesizing a single node /, this
node is called a single correctable node; otherwise, C has to be
corrected by re-synthesizing a set of N nodes, where N > 1, these
nodes are called N-correctable nodes = {l1, l, ..., In}.

III. DIAGNOSIS APPROACH

In this section, we describe our diagnosis approach. After iden-
tifying all erroneous bits and erroneous vectors on all erroneous
outputs, we derive the sensitization sets for nodes in C';. Then we
use the sensitization sets to prune the nodes that are not likely to
be responsible for correcting Cr. Next, the remaining nodes are
examined for single error and multiple errors. Finally, the sets of
correctable nodes are returned.

A. Sensitization Set Derivation

The sensitization sets of nodes can be derived based on two
techniques. The first one is the critical path tracing technique [1],
which performs the backward propagation. The second one is the
parallel pattern single fault propagation (PPSFP) technique [16],
which performs the forward simulation. The process of sensitization
set derivation starts from the erroneous outputs toward to primary
inputs in C7. If it encounters non-fanout nodes, it performs backward
propagations. For stems, it performs forward simulations. These two
techniques are alternatively applied on C so that the sensitization
sets of nodes are accurately derived.

B. Single Error

As we mentioned, the objective of this work is to identify the set
of minimal correctable nodes for C;. Therefore, in this paper, the
single error case is referred as attaining a single correctable node.
To identify a single correctable node, we construct an observable
erroneous vector to guide the diagnosis process on single error.

Theorem 1: An erroneous vector vec(j) can be corrected by re-
synthesizing a node [if and only if it both satisfies the following
two conditions:
1) F;-blist(j) is an erroneous bit, and [-blist(j) € SEN(L F;), for
every F; in EPO(vec(j)).
2) F;-blist(j) is a correct bit, and [-blist(j) € SEN(I, F;), for every
F; in CPO(vec(j)).
This erroneous vector vec(j) is called an Observable Erroneous
Vector (OEV) for 1.

Therefore, if an erroneous vector vec(j) is an OEV for a node [,
every erroneous bit F;-blist(j) for F; in EPO(vec(j)), can be corrected

after performing the correction on /. Moreover, vec(j) will not create
any additional erroneous bit for any F; in CPO(vec(j)).

For example in Fig. 1, vec(1), vec(2), vec(7), and vec(8) are the
erroneous vectors. Here we want to know if they are OEVs for Xo.
First, we derive the sensitization sets of X2, SEN(X5,F1) = {8, 6},
and SEN(X2,F>) = {8 ~ 5}. The erroneous bits of F; are {8, 7, 2}
and those of F» are {8, 7, 2, 1}. Both F}-blist(8) and F>-blist(8) are
the erroneous bits, and 8 is in both SEN(X2, F1) and SEN(X2, F3).
Therefore, according to Theorem 1, vec(8) is an OEV for X». On
the other hand, F5-blist(1) is an erroneous bit, and F-blist(1) is a
correct bit. Although X»-blist(1) is indeed not in SEN(X2, F1), it is
not in SEN(X5, F>), either. Therefore, vec(1) is not an OEV for Xs.
Similarly, we can determine vec(2) and vec(7) are not OEVs for Xa,
either.

Theorem 2: A node / is a single correctable node if all erroneous
vectors are OEVs for [.

Based on Theorem 2, we can determine the single correctable
nodes in C;. However, due to large error space in C';, we propose
an effective heuristic to reduce the error space.

Heuristic 1: If C'; has a single correctable node, this node can be
tracked by tracing from the fanin cone of any erroneous Fj.

Therefore, in the process of deriving the sensitization sets, we only
choose an erroneous output £, and derive the sensitization sets of
the nodes in the fanin cone of F;. These nodes will be examined
subsequently by using Theorem 2. In our approach, we always
choose the first erroneous output for the sake of easily extending our
approach to multiple error diagnosis process. Next, we use Example
1 to demonstrate our single error diagnosis process.

Example 1: In Fig. 1, the erroneous bits of F; and F> are in the
braces. We derive the sensitization sets of the nodes in the fanin cone
of F1. Next, we examine these nodes according to Theorem 2. For
example, the sensitization sets of node A are SEN(A, F)={6, 5} and
SEN(A,F>)={0}. It is clear that the erroneous vector vec() is not an
OEV for A. This is because F-blist(1) is a correct bit, and F>-blist(1)
is an erroneous bit, but A-blist(1) is not in SEN(A,F>). Similarly,
vec(2), vec(7), and vec(8) are not OEVs for A, either. Therefore, A
is not a single correctable node. On the other hand, we can detect
all the erroneous vectors are OEVs for C and D. Consequently, the
actual error C and the equivalent error D are both identified as the
single correctable nodes.

C. Multiple Errors

In this subsection, we extend our approach to identify N-
correctable nodes in Cy. For simplicity, we introduce two errors
into C7 to describe our idea.

5,:1

7 —F3:0

I.:0

Fig. 2. A pseudo circuit with two error sources.

In Fig. 2, we suppose there are two error sources which cause /1 =
0, I = 0 and an erroneous output F; =0 in C;. Assume C7 has been
identified as containing no single correctable node. It is obvious that
the set (11, I2) has four possible combinations of logic values, (0, 0),
0, 1), (1, 0), and (1, 1). Since (11, I2) = (0, 0) has been simulated
at the beginning to determine whether F; can be correctable, we
perform the error simulations [14] under (1, I2) = (0, 1), ({1, I2) =
(1, 0), and (11, I2) = (1, 1). We have to restore the original values
of (I1, I2) and that of its fanout cones after completing one error
simulation for the next error simulation. If at least one of the three
error simulation results can produce the same response as S1 = 1,
F can be corrected. However, the first two error simulations, (I3,
I2) = (0, 1), (1, 0) are the same as identifying OEVs in single error
diagnosis process. Thus, we propose the co-observable erroneous
vector for the last simulation (/1, I2) = (1, 1).

110

S,-blistval = (00011101)

00010001) (11101110
x{01010101) (1o) (L)

F, (11101111)

S

Erroneous bits: {8,7,6,5,2}

v
Extra inverter

Wrong gate Erroneous bits: {8,7,2,1}

(11001111
3 D
X, : [o—e— B2+
(oooo11{1y B - c F, (11001111)
(11110000) (00110000}

Sy-blistval = (00001100)

Fig. 3. A circuit with two error sources: Wrong gate and Extra inverter.
Theorem 3: An erroneous vector vec(j) can be corrected by re-
synthesizing multiple nodes if and only if it both satisfies the
following two conditions:

1) F;-blist(j) is an erroneous bit, but after performing the error
simulation with inversing multiple bit strings at nodes, Fj-
blist(j) is not an erroneous bit, for every F; in EPO(vec(j)).

2) F;-blist(j) is a correct bit, but after performing the error
simulation with inversing multiple bit strings at nodes, Fj-
blist(j) is still a correct bit, for every F; in CPO(vec(j)).

This erroneous vector vec(j) is called a Co-Observable Erroneous
Vector (C-OEV) for the set of N nodes.

For example in Fig. 3, vec(1) is an erroneous vector. Assume that
we choose the set (A, D) to examine. We simultaneously inverse A-
blistval and D-blistval and perform the error simulation, the results
are (00110001) for F; and (00110000) for F5. Therefore, vec(1) is
a C-OEV for (A, D) because the simulation results at the 1° bit of
Fy and F5 are {1 ,0}, which are the same with Sy-blistval(1) and
Sa-blistval(1), respectively.

In general, N-correctable nodes in C7 are identified after perform-
ing 2V-1 error simulations. Therefore, every erroneous vector vec(j)
can be examined to determine if it can rectify all the erroneous
bits F;-blist(j) for F; in EPO(vec(j)), and will not create any
new erroneous bits for F; in CPO(vec(j)) via any of these error
simulations.

Theorem 4: A set of N nodes is the N-correctable nodes if all
erroneous vectors are OEVs or C-OEVs for this set.

To identify N-correctable nodes, we derive the sensitization set
for every node in the fanin cones of every erroneous F;. However,
the error simulation process is very time consuming if we examine
every set of N nodes in C. Thus, we propose a heuristic to screen
out a large number of sets in C; before performing the OEV and
C-OEV detections.
Before introducing our heuristic, we first discuss the results
produced from the sensitization set derivation process. For every
erroneous bit F;-blist(j) in an erroneous output Fj, the sensitization
set of a node I, SEN(I, F;), falls into one of the following categories:
o Every corresponding [-blist(j) is in SEN(I,F;). Hence we say
that the erroneous bits of F; are fully covered by 1.

o Part of the corresponding [-blist(j) are in SEN(l,F;). Hence we
say that the erroneous bits of F; are partially covered by I.

« Every corresponding [-blist(j) is not in SEN(L, F;), Hence we say
that the erroneous bits of F; are emptily covered by 1.

Heuristic 2: Only the set of N nodes that simultaneously satisfies
the following two conditions will be further examined by the OEV
and C-OEV detections:
1) For every erroneous output [, there exists at least one node
[in the set such that all the erroneous bits of F; are fully
covered by [or, there exists at least two nodes [; in the set
such that all the erroneous bits of F; are partially covered by
each ;.
2) For every node [; in the set, there exists at least one erroneous
output F; such that all the erroneous bits of F; are fully
covered or partially covered by ;.

Node SENQ,, F)) SEN(,, F))
X, {6.5} &
Xa {7, 5} {8~5}
X, 5.1} .5 2,1}
A 16.5) %]
B 5.1} 65 21}
G 5.1} B~ 1)
D 5,1} B~1}
E 16,5} %]
B1 {5} %]
B2 {5} {8~ 5}
B3 5,1} 7]
B4 %] 8~1}
F, B~ 1} %]
F, [%] &~ 1}

Fig. 4. The sensitization sets of every node in the circuit of Fig. 3.

Since we use a large number of vectors to simulate C at a time,
the probability that all the erroneous vectors are identified as the
C-OEVs for N-correctable nodes is very low. In other words, for
N-correctable nodes, some of the erroneous vectors also can be
identified as the OEVs. Therefore, we approximate the correction
ability of a set of N nodes by observing the sensitization sets of them.
For an erroneous F;, F; can be corrected by only re-synthesizing a
node among the N-correctable nodes; otherwise, F; may need to
be corrected by re-synthesizing at least two nodes among the N-
correctable nodes. Thus, as long as the erroneous bits of F; are fully
covered by a node or partially covered by at least two nodes, F; has
a higher probability to be corrected. For the same reason, we also
set the constraint for a node / that must have at least one [-blist(j) is
a sensitized bit with respect to the erroneous bit F;-blist(j) in Fj.

For example, again, in Fig. 3 and Fig. 4, we will not choose the set
(D, F3) to perform the OEV and C-OEV detections because all the
erroneous bits of Fi are only partially covered by D. It is obvious
that F' cannot be corrected by only re-synthesizing D. Moreover,
all the erroneous bits of F; are emptily covered by F5. Therefore,
(D, F») is pruned. However, all the erroneous bits of F; are fully
covered by F, and all the erroneous bits of F5 are also fully covered
by D. It indicates that F; and F» are possibily to be corrected by
re-synthesizing F and D, respectively. Therefore, the set (D, F})
can be further examined by the OEV and C-OEV detections.

We further apply two-stage technique [5] to speed up the diagnosis
process. In the first stage, we only consider the sets of N nodes that
are all not dominated by any other node. These sets are called key
node sets, and they are examined by Heuristic 2 and the OEV, C-OEV
detections sequentially. In the second stage, only the subordinate sets
of the survived key node sets in the first stage are examined. The
nodes in the subordinate sets are all dominated by the nodes in the
survived key node sets respectively.

Example 2 illustrates the multiple error diagnosis process.

Example 2: In Fig. 3, there are two error sources in the circuit. The
nodes that are not dominated by any other node are marked with the
black dots. We generate the key node sets from these nodes. These
key node sets are examined in the first stage. Based on Heuristic
2, the key node sets, (D, F1), (F1, F2), and (D, X2) are examined
by the OEV and C-OEV detections. Only (D, F1) and (F}, Fb) are
survived. Therefore, in the second stage, the subordinate sets are
generated from (D, F) and (F1, F3). For example, the nodes, {C,
B, B, X3}, are dominated by D, and the nodes, {E, Bs, A, Bj,
X1}, are dominated by Fi. Therefore, the subordinate sets of (D,
F1) are (D, E), (D, B3), ..., (C, F1), (C, E), ..., (X3, B1), (X3,
X1), 29 sets in total. Again, the previous examined procedures are
performed on these subordinate sets. Finally, the diagnosis process
returns the sets that pass the OEV and C-OEV detections in the first
and second stages. Those sets are the error candidates.

11

TABLE 1 TABLE II

EXPERIMENTAL RESULTS ON SINGLE ERROR DIAGNOSIS. EXPERIMENTAL RESULTS ON TWO-ERROR DIAGNOSIS.
Circuits | Error |# of vectors # of single Suspect ratio| CPU time Circuits | Error | # of N1 [Pass| N2 [Pass| N3] Suspect| T1 T2

space correctable nodes (%) (Sec.) space | vectors ratio(%)
ggg 15;464 gigg ;-i é'i;‘ %188 C432 | 1.77E5| 8192 | 1396.6 | 1.6 | 131.6| 14.1|15.7| 8.87E3 | 3.25 | 3.65
T o5 <103 = e T C499 |7.73E5| 8192 | 3417.5 | 1 |343.1|30.1|31.1|4.02E-3[19.92| 22.45
355 362 8192 N 045 138 C880 |4.56E5| 8192 | 1135 | 1.2 | 416 |18.6]19.8[434E3| 033 | 0.89
Ci908 165 8193 63 039 079 CI1355 |1.22E6| 8192 | 29742 | 1.2 |460.5|45.9|47.1| 3.86E-3 | 21.83| 26.32
2670 12390 | 16384 =6 031 029 CI1908 |1.37E6| 8192 | 1505 | 1.8 | 80 |46.9]48.7|3.55E-3| 9.64 | 11.86
C3540 | 3237 | 16384 53 0.16 .81 C2670 | 3.1E6 | 16384 | 80.9 | 1.5 |5282] 41 [42.5|1.37E-3| 5.06 | 6.77
C5315 | 5317 | 16384 3.9 0.17 1 C3540 |5.24E6| 16384 | 958.1 | 1.4 | 42.5 | 345|359 6.85E-4 | 17.21| 24.71
C6288 | 7639 | 1024 29 0.04 4.28 C5315 |141E7| 16384 | 1439 | 1.1 | 130 |66.3|67.4|478E-4 | 228 | 11.52
C7552 | 7005 | 16384 11.6 0.17 3.22 C6288 |2.92E7| 1024 [10786.3| 1.3 | 184 | 6.9 | 8.2 [2.81E-5|85.07| 117.59
des [12457] 16384 6.1 0.05 249 C7552 |245E7| 16384 | 103 | 2.9 | 84.7 |84.4|873| 3.56E4| 5.82 | 15.49
m32x32|24012] 1024 3.3 0.01 7894 des | 7.76E7| 16384 | 36.1 | 1.7 | 29.1 |29.1|30.8| 3.96E-5 | 3.52 | 14.79
m32x32[2.88E8| 1024 | 74723 | 1.1 | 186 | 13.4]14.5|5.03E-6 |299.6| 587.72

IV. EXPERIMENTAL RESULTS

We implemented our algorithm in C language within SIS [10]
environment. The experiments are conducted over the ISCAS’85 and
two large benchmarks, des, a 3232 multiplier circuit on a 1280MHz
Sun Blade 2500 machine with 4GB memory. These benchmarks are
in BLIF format. Each circuit is optimized by using “script.rugged”
script, and then decomposed into 2-input AND, OR, and NOT
gates by mapping to the SIS library (22-1.genlib). To obtain an
erroneous implementation, we randomly inject errors to the circuit.
The error models we used are missing inverter, extra inverter, gate
replacement, and incorrectly placed wire. Note that these four error
models introduced are just for the convenience of our experiments.
Our approach is error model-free.

We show the results of single and two-error diagnosis in Table I
and Table II, respectively. We run each circuit 10 times and measure
the average results. Note that when the number of injected errors N >
2, our approach can work as well. However, due to large error space,
it requires more computation time. Here we omit these diagnosis
results.

In both Table I and Table II, the first column contains the circuit
names, the last one m32x32 is a 32 x 32 multiplier designed by
us. The second column shows the error space of each circuit which
can be calculated by the following equation.

n
Error Space = Z cy 1)
i=1
Where m is the number of nodes in the erroneous implementation,
n is the number of nodes chosen from m nodes. The number of
random vectors we used is shown in the third column.

In Table I, the column 4 shows the average number of single
correctable nodes returned by our approach in 10 experiments. In
the column 5, the suspect ratio obtained by (# of single correctable
nodes) / (error space) indicates our approach prunes most of nodes
in a circuit. The final column shows the average CPU time for this
diagnosis process.

In Table II, each of the erroneous implementation is run single
error diagnosis process first and proven containing no single cor-
rectable node. Since we apply the two-stage technique, the column
4 shows the average number of key node sets examined by the OEV
and C-OEV detections in the first stage. The next column shows
the average number of the survived key node sets. We can see that
only a few sets are passed to the second stage. Similarly, the next
two columns show the average number of subordinary sets of the
survived key node sets examined and passed. The column 8 shows
the average number of two-correctable nodes in each circuit. The
suspect ratio in the column 9 indicates our approach returns a small
set of the candidates as compared to the error space. The last two
columns show the average CPU time used for the error simulation
and the total CPU time respectively. The total CPU time also includes
the execution time on the examination of single error.

In our experiments, the actual error nodes are always included in
the set of single or two-correctable nodes returned by our approach.
In practice, the locations of actual error sources are unknown. We
identify the actual error nodes for the sake of demonstrating the

N1: # of sets examined in the first stage. N2: # of sets examined in the second stage.
N 3: # of two-correctable nodes.
T'1: Error simulation time (Sec). T'2: Total CPU time (Sec).

accuracy of our approach. The memory usage in our experiments
does not exceed 200MBytes.

V. CONCLUSIONS

We presented a parallel random vector simulation-based approach
for locating multiple errors in an erroneous implementation. We
determine a set of N nodes which is the most responsible for
correcting the erroneous implementation by examining whether all
erroneous vectors are observable or co-observable erroneous vectors.
Two heuristics are also proposed to speedup our approach without
sacrificing the accuracy. Experimental results show the efficiency and
the effectiveness of our approach. In addition, the experiments on des
and m32x32 benchmarks show that our approach is also applicable
to large circuits without efficient BDD representations.

REFERENCES

[1] M. Abramovici, P. R. Menon, and D. T. Miller, “Critical path tracing - an alternative
to fault simulation,” in Proc. 20th Conf. on Design Automation, pp. 214-220, 1983.

[2] M. Ali, S. Safarpour, A. Veneris, M. Abadir, and R. Drechsler, “Post-verification
debugging of hierarchical designs,” in Proc. Int. Conf. on Computer-Aided Design,
pp. 871-876, 2005.

[3] M. Ali, A. Veneris, S. Safarpour, R. Drechsler, A. Smith, and M. Abadir,

“Debugging sequential circuits using Boolean satisfiability,” in Proc. Int. Conf. on

Computer-Aided Design, pp. 204-209, 2004.

P. - Y. Chung, Y. - M. Wang, and 1. N. Hajj, “Diagnosis and correction of logic

design errors in digital circuits,” in Proc. Design Automation Conf., pp. 503-508,

June. 1993.

[5] S. - Y. Huang, K. - T. Cheng, K. - C. Chen, and D. - I. Cheng “ErrorTracer: A
fault simulation-based approach to design error diagnosis,” in Proc. Int. Test Conf.,
pp. 974-981, Feb. 1997.

[6] A. Kuehlmann, D. I. Cheng, A. Srinivasan, and D. P. LaPotin, “Error diagnosis
for transistor-level verification,” in Proc. Design Automation Conf., pp. 218-224,
June. 1994.

[7]1 C. - C. Lin, K. - C. Chen, S. - C. Chang, M. Marek - Sadowska, and K. -
T. Cheng, “Logic synthesis for engineering change,” in Proc. Design Automation
Conf., pp. 647-652, June. 1995.

[8] C. - C. Lin, K. - C. Chen, D. - I. Cheng, and M. Marek - Sadowska, “Logic
rectification and synthesis for engineering change,” in Proc. Asian and South Pacific
Design Automation Conf., pp. 301-309, 1995.

[9] 1. Pomeranz and S. M. Reddy, “On correction of multiple design errors,” IEEE
Trans. CAD., vol. 14, pp. 255-264, Feb. 1995.

[10] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni - Vincentelli, “SIS:
A system for sequential circuit synthesis,” Technical Report UCB/ERL M92/41,
Electronics Research Lab, Univ. of California, Berkeley, CA 94720, May. 1992.

[11] A. Smith, A. Veneris, and A. Viglas, “Design diagnosis using Boolean satisfia-
bility,” in Proc. Asian and South Pacific Design Automation Conf., pp. 218-223,
2004.

[12] M. Tomita, T. Yamamoto, F. Sumikawa, and K. Hirano “Rectification of Multiple
Logic Design Errors in Multiple Output Circuits,” in Proc. Design Automation
Conf., pp. 212-217, June. 1994.

[13] A. Veneris and I. N. Hajj, “A fast algorithm for locating and correcting simple
design errors in VLSI digital circuits,” in Proc. Great Lake Symp. on VLSI Design,
pp. 45-50, Mar. 1997.

[14] A. Veneris and 1. N. Hajj, “Design error diagnosis and correction via test vector
simulation,” IEEE Trans. CAD., vol. 18, no. 12, pp. 1803-1816, Dec. 1999.

[15] A. Veneris, J. - B. Liu, M. Amiri, and M. S. Abadir, “Incremental Diagnosis and
Correction of Multiple Faults and Errors,” Proc. Design, Automation and Test in
Europe Conference and Exhibition, pp. 716-721, 2002.

[16] J. A. Waicukauski, E. B. Eichelberger, D. O. Forlenza, E. Lindbloom, and
T. McGarthy, “Fault simulation for structured VLSL,” in VLSI Syst. Design, pp. 20-
32, Dec. 1985.

[17] S. - C. Wu and C. - Y. Wang, “PEACH: A Novel Architecture for Probabilistic
Combinational Equivalence Checking,” in VLSI-SoC, pp.104-109, Oct. 2006.

[4

112

	Main
	Copyright
	Message
	Foreword
	Table of Content
	Plenary Session
	K1_Efficient Analog Signal processing in nm CMOS Technologies
	K2_Reasoning about Data: Bits, Bit Vectors, or Words
	K3_Logic Diagnosis, Yield Learning and Quality of Test

	Industry Session_Solutions for advanced SoC/IP – design, testing, and power estimation
	IS1_Temperature Aware SoC Design for Reduced Leakage Power and Enhanced Reliability (Invited)
	IS2_A Transceiver 10GBase-T in 90nm CMOS
	IS3_A 1.6-880MHz Synthesizable ADPLL in 0.13um CMOS
	IS4_Increasing the On-Die Nodal Observability and Controllability Use of Advanced Design for Debug Circuit Features
	IS5_An Area-Efficient Design for Programmable Memory Built-In Self Test
	IS6_Estimation of Energy Consumed by Software in Processor Caches
	IS7_On-chip Interconnection Design and SoC Integration with OCP

	Session W1A_Physical Design Optimization
	W1A1_A Scalable and Accurate Rectilinear Steiner Minimal Tree Algorithm (Invited)
	W1A2_Obstacle-Avoiding Rectilinear Steiner Minimal Tree Construction
	W1A3_On Minimizing Topography Variation in Multi-Layer Oxide CMP Manufacturability

	Session W2A_LNA and Receiver
	W2A1_A 400-MHz Super-Regenerative Receiver with Digital Calibration for Capsule Endoscope Systems in 0.18-μm CMOS
	W2A2_A 460MHz~870MHz CMOS Wideband Low Noise Amplifier for DVB-T
	W2A3_A CMOS Low-Noise Amplifier with Impedance Feedback for Ultra-Wideband Wireless Receiver System

	Session T1A_Video System IC Design
	T1A1_Exploiting capacitance in high-performance computer systems (Invited)
	T1A2_An 8.69 Mvertices/s 278 Mpixels/s Tile-based 3D Graphics Full Pipeline with Embedded Performance Counting Module, Real-Time Bus Tracer and Protocol Checker for Consumer Electronics
	T1A3_A Power-Efficient SRAM Core Architecture with Segmentation-Free and Rectangular Accessibility for Super-Parallel Video Processing

	Session T1B_Tesint/DFT (I)
	T1B1_Built-in Jitter Measurement Methodology for Spread-Spectrum Clock Generators (Invited)
	T1B2_DfT for Full Accessibility of Multi-Step Analog to Digital Converters
	T1B3_Debugging Clock-Data Race Failures Caused by Vulnerable Design

	Session T2A_Digital Circuit
	T2A1_Ultra-Low Leakage MTCMOS Circuits with Regular-Vt Long Channel Stacked Footers for Deep sub-100 nm Technologies
	T2A2_A Well-structured Modified Booth Multiplier Design
	T2A3_Transistor Sizing and Layout Merging of Basic Cells in Pass Transisg Logic Cell Library
	T2A4_1.8 V to 5.0 V Mixed-Voltage-Tolerant I/O Buffer With 54.59% Output Duty Cycle

	Session T2B_Testing/DFT (II)
	T2B1_Testing the Hold Time Fault for Large Industrial Design
	T2B2_An Improved Feature Ranking Method for Diagnosis of Systematic Timing Uncertainty
	T2B3_A Systematic Methodology to Employ Error-Tolerance for Yield Improvement
	T2B4_Multiple Error Diagnosis in Large Combinational Circuits Using an Efficient Parallel Vector Simulation

	Session T3A_PLL & CDR
	T3A1_A 62-66.1GHz Phase-Locked Loop in 0.13um CMOS Technology
	T3A2_A 1.1-V CMOS Frequency Synthesizer with Pass-Transistor-Logic Prescaler for U-NII Band System
	T3A3 A Clock and Data Recovery Circuit Withwide Linear Range Frequency Detector
	T3A4 A Complementary Colpitts VCO Implemented with Ring Inductor

	Session T3B_SoC Design & Methodology
	T3B1_A Hardware/Software Co-solution to Achieving High Throughput Required by Motion Estimation Part in H.264/AVC HDTV Real-time Application
	T3B2_Design of a Distributed JPEG Encoder on a Scalable NoC Platform
	T3B3_Multilevel Communication Modeling for Multiprocessor System-on-Chip
	T3B4_Networks-In-Package: Performances Management and Design Methodology

	Session T4A_Analog Tech. & Front-end
	T4A1_A 330MHz 11Bit 26.4mW CMOS Low-Hold-Pedestal Fully Differential Track-and-Hold Circuit
	T4A2_A 10-bit 300MHz 0.1mm2 Triple-Channel Current-Steering DAC 75.98dB SFDR in 65nm
	T4A3_A 300MHz, 48mW Analog Front-end Design for IEEE 802.3an 10GBase-T Ethernet
	T4A4_A 93dB-ohm 2.5Gb/s CMOS Burst-Mode Optical Receiver With Internal Reset Creation

	Session T4B_High Level Synthesis and Logic Synthesis for Power & Area Optimization
	T4B1_Synthesis of a Timing-Error Detection Architecture
	T4B2_High-Level Synthesis Algorithms with Floorplaning for Distributed/Shared-Register Architectures
	T4B3_Sensitivity-Based Multiple-Vt Cell Swapping for Leakage Power Reduction
	T4B4_A Code Generation Algorithm of Crosstalk-Avoidance Code with Memory for
Low-Power On-Chip Bus

	Session F1A_ADC and Analog Design
	F1A1_Technology direction of ADCs (Invited)
	F1A2_New Transient Detection Circuit for System-Level ESD Protection
	F1A3_Adaptive Digital Techniques for Efficiency and Linearity Enhancement of CMOS RF Power Amplifiers

	Session F1B_ Communication IC Designs
	F1B1_Overview of ITRI PAC Project–from VLIW DSP Processor to Multicore Computing Platform (Invited)
	F1B2_An OFDMA-Based Wireless Body Area Network using Frequency Pre-Calibration
	F1B3_Design of An OFDMA Baseband Receiver for 3GPP Long-Term Evolution

	Session F2A_Filter & Power Divider
	F2A1_A 4-PAM Adaptive Analog Equalizer for Backplane Interconnections
	F2A2_Fully Integrated Super-Regenerative Bandpass Filters For 3.1-to-7GHz Multiband UWB System
	F2A3_A 120-MHz Active-RC Filter with an Agile Frequency Tuning Scheme in 0.18-μm CMOS
	F2A4_A Novel Miniaturized Wide-band Wilkinson Power Divider Employing Two-dimensional Transmission Line

	Session F2B_Error Correction IP Design
	F2B1_High-Throughput 12-Mode CTC Decoder for WiMAX Standard
	F2B2_High Throughput Partially-Parallel Irregular LDPC Decoder Based on Delta-Value Message-Passing Schedule
	F2B3_A Radix-4 Soft-Output Viterbi Architecture
	F2B4_Power Efficient Low Latency Survivor Memory Architecture for Viterbi Decoder

	Poster Session
	P1_A 1-GS/s CMOS 6-bit Flash ADC with an Offset Calibrating Method
	P2_A Precise Delay Generator Circuit Using the Average Delay Technique
	P3_A 0.35-um CMOS Switched-Inductor Dual-Band LC-Tank Frequency Divider
	P4_Adaptive Biasing Circuit Overcoming Process Variation for High-Speed Circuits in Scaled CMOS Technology
	P5_A 2.4-GHz 0.18-μm CMOS Doubly Balanced Mixer with High Linearity
	P6_CMOS 0.18um Low-Noise Amplifier with Shunt-Peaking Load for Group 1~3 MB-OFDM Ultra-Wideband Wireless Receiver
	P7_A 90nm 10-Bit 1GS/s Current-Steering DAC with 1-V Supply Voltage
	P8_A Universal Look-Ahead Algorithm for Pipelining IIR Filters
	P9_A Novel Low-power Processor with Variable Pipeline Control
	P10_A High-Resolution All-Digital Phase-Locked Loop with its Application to Built-In Speed Grading for Memory
	P11_Algorithmic Factorisation for Low Power FPGA Implementations through Increased Data Locality
	P12_Hardware Realization of a Medical Diagnostic System based on Probabilistic CMOS (PCMOS) Technology
	P13_Design of a DVB-T/H Compliant Baseband Receiver
	P14_Topology Generation and Floorplanning for Low Power Application-Specific Network-on-Chips
	P15_Power and Density-aware Buffer Insertion
	P16_Impact Quantification of the Dummy Metal Fills on Nanometer VLSI Designs for DFM
	P17_A Self-Testing and Calibration Technique for Current-Steering DACs
	P18_A Feasibility Study of On wafer Wireless Testing
	P19_Phase Noise Testing of Single Chip TV Tuners

	Organization

