
On Generation of The Minimum Pattern Set for Data Path Elements in SoC
Design Verification Based on Port Order Fault Model

Chun-Yao Wang, Shing-Wu Tung, and Jing-Yang Jou
�Department of Electronics Engineering

National Chiao Tung University
Hsinchu, Taiwan, R.O.C.

fwcyao,swtung,jyjoug@eda.ee.nctu.edu.tw

Abstract

Embedded cores are being increasingly used in the de-
sign of large System-on-a-Chip (SoC). Because of the high
complexity of SoC, the design verification is a challenge for
system integrator. To reduce the verification complexity, the
port order fault (POF) model proposed in [1] has been used
for verifying core-based designs and the corresponding ver-
ification pattern generation have been developed [2] [3].
Adders and multipliers are the most often used data path
elements in core-based designs. Due to their regularity, the
development of the verification pattern sets can be achieved
in a systematic method. In this paper, we present the algo-
rithms of generating the minimum verification pattern sets
for adders and multipliers and these pattern sets are much
smaller than that obtained from the automatic verification
pattern generation (AVPG) proposed in [3].

1. Introduction

Spurred by process technology leading to the availabil-
ity of more than 1 million gates per chip, and more strin-
gent requirements upon time-to-market and performance
constraints, system level integration and platform-based de-
sign [4] are evolving as a new paradigm in system designs.
A multitude of components that are needed to implement
the required functionality make it hard for a company to de-
sign and manufacture an entire system in time and within
reasonable cost. Hence, design reuse and reusable building
blocks (cores) trading are becoming popular in the SoC era.
However, present design methodologies are not enough to
deal with cores which come from different design groups
and are mixed and matched to create a new system design.

�This work was supported in part by ROC National Science Council
under Grant NSC90-2218-E-009-039

In particular, verifying whether a design satisfies all require-
ments is one of the most difficult tasks.

Verification is a process used to demonstrate the func-
tional correctness of a design. Testing is a process that ver-
ifies whether the design was manufactured correctly. Fig. 1
shows the reconvergent paths model for both verification
and testing [5]. The purpose of the verification is to ensure
that a design meets its functional intent. But during testing,
the finished silicon is reconciled with the netlist that was
submitted for manufacturing. Therefore, when a design is
claimed to be fully tested, i.e., 100% fault coverage, un-
der a fault model, such as stuck at fault (SAF) model, that
means it is manufactured correctly. However, designers still
cannot guarantee that the chip satisfies the design specifica-
tion if they do not verify it properly before manufacturing.
The chip may be a manufactured correctly but designed in-
correctly chip. Thus, designers spend about 70% of their
efforts to the verification. But design verification is still on
the critical path of the design flow [5].

Usage of cores divides the IC design community into two
groups: core providers and system integrators. In tradi-
tional System-on-Board (SoB) design, the components that
go from providers to system integrators are ICs, which are
designed, verified, manufactured and tested. The system in-
tegrator verifies the design by using these components as
fault free building blocks. SoB verification is limited to
detecting faults in the interconnection among the compo-
nents. Similarly, in System-on-a-Chip (SoC) design, the
components are cores. The system integrator verifies the
design by using the cores as design error free building
blocks. Based on this assumption, SoC verification could
be focused on detecting the misplacements of the inter-
connection among the cores as the first step. This higher
level of abstraction decreases the complexity of design ver-
ification on a system chip and reduce the time on design
verification of the entire system.

The focus of core-based design verification should be on

Figure 1. Reconvergent paths model for both
verification and testing

how the cores communicate with each other [6]. By creat-
ing the testbenches at a higher level, a connectivity-based
design fault model, port order fault (POF), proposed in [1]
is used for reducing the time on core-based design verifica-
tion [2] [3].

In [2], Tung et al. proposed a verification pattern gen-
eration algorithm based on the POF model. However, the
algorithm generates the verification pattern set only for de-
tecting the simple POF (SPOF) (two ports misplaced at a
time). This simplified model is not enough to deal with
all possible misplacements occurred in a real design during
core integration phase.

In [3], Wang et al. proposed the AVPG algorithm to gen-
erate the verification pattern set for detecting all possible
misplacements among the ports of the cores. However, this
AVPG algorithm is developed for targeting general random
logic functions, therefore, the generated verification pattern
sets for adders and multipliers are not minimized.

In this paper, we present the algorithms of generating the
minimum verification pattern sets for adders and multipliers
and these pattern sets are much smaller than that obtained
from the AVPG proposed in [3].

The remainder of this paper is organized as follows. The
POF model is introduced in Section 2. Section 3 describes
the mechanism of conducting POF verification. The verifi-
cation pattern sets for adders and multipliers are presented
in Section 4. Section 5 concludes the paper.

2. Preliminary

The POF model assumes that a faulty cell has at least two
I/O ports misplaced. It also assumes that the components
are fault free and only the interconnection among the com-
ponents could be faulty. There are three types of POFs [1].
Definition 1: The type I POF is at least one output mis-
placed with an input. The type II POF is at least two inputs
misplaced. The type III POF is at least two outputs mis-
placed.
Example 2.1: A fault free 4-bit adder is shown in Fig. 2(a).
The function of the adder is fCout; S(3 : 0)g = A(3 :
0)+B(3 : 0)+Cin. An example of the type I POF is shown
in Fig. 2(b). InputB0 is misplaced with outputS0. Fig. 2(c)

S0S1S2S3

Cout

B0B1B2B3A0A1A2A3

Cin4-bit Adder

S1S2S3

Cout

B1B2B3A0A1A2A3

Cin4-bit Adder

S0S1S2S3

Cout

B0B1B2B3

Cin4-bit Adder Cout

B0B1B2B3A0A1A2A3

Cin4-bit Adder

B0

S0

A3A2A1A0

S0 S1 S2 S3

(a)

(c)

(b)

(d)

Figure 2. POF model

shows an example of the type II POF. Input A(3 : 0) are
misplaced. Fig. 2(d) shows an example of the type III POF.
Output S(3 : 0) are misplaced.

It has been proven that the type II POF dominates the
type I and III POFs [1]. Therefore, in this paper, we con-
sider the type II POF only.
Definition 2: A port sequence is an input port numbers
permutation which indicates the relative positions among
these input ports. The fault free port sequence is a port se-
quence that none of the input ports is misplaced. An equiv-
alent POF is a port sequence which evaluates to the same
outputs as fault free port sequence after applying any pat-
terns.

The input ports of an n-bit adder/multiplier are numbered
from 1 � 2n, where 1 � n for augend/multiplicand, and
n+1 � 2n for addend/multiplicator.

3. Integration Verification

In this section, we introduce IEEE P1500 [7], which is a
standard under development and is used for embedded core
testing, to reduce the complexity of design verification.

Figure 3. Generic verification scheme

Fig. 3 depicts a generic verification scheme for the core-
based system chip. Since these cores, BLK1 � BLK5,
are pre-verified, the verification efforts during the integra-
tion phase should be focused on the interconnection among
the cores. To verify the interconnection among the BLK1
� BLK5, designers apply the patterns T to primary inputs
(PIs) of the integrated design, then compare the responses
R to the expected results in primary outputs (POs). If the
responses R are inconsistent with the expected ones, some
interconnection are misplaced. The generation of the pat-
terns T depends on the functionalities of BLK1 � BLK5.

As the complexity of cores increase or more cores are in-
volved in the SoC integration, the patterns T become harder
to generate.

To conquer this problem, we exploit the technique of de-
sign for testability (DFT) to conduct verification. The so-
lution is IEEE P1500 standard for embedded core test
(SECT). IEEE P1500 SECT is a standard under develop-
ment that aims at improving ease of reuse and facilitating
interoperability with respect to the test of core-based chips.
The most important component in this standard is the P1500
wrapper. It is a thin shell around the core that provides the
switching capability between the core and its various access
mechanisms. A straight forward core integration methodol-
ogy is proposed in the following paragraphs. For the cores
to be integrated into a system, we first sort them in topolog-
ical order from PIs to POs. The entire system is integrated
block-wise and follows the topological order. As a block is
added into the system, the verification patterns for the added
block are generated and applied to the integrated system for
verification.

The P1500 wrapper was proposed with a few pre-defined
operations , such as core-internal test, core-external test, by-
pass, isolation and normal modes. To verify the intercon-
nection among the circuit under verification (CUV) and its
predecessors, the CUV is set in normal mode which allows
the CUV to function in its normal system operation. The
predecessors connected to the CUV directly are set in ex-
ternal test mode which allow verifying the interconnected
wiring between cores via the ordinary input/output ports in
the core wrappers. The other predecessors of the CUV are
all set in bypass mode which allow the stimuli being by-
passed through cores to the CUV.

For example, assume the topological order of the em-
bedded cores are BLK1 � BLK5 as shown in Fig. 3. In
the beginning, the BLK1 � BLK3 are added into the sys-
tem. Since these blocks do not have any predecessors, it
is not necessary to conduct the POF verification. As the
BLK4 is added into the system, the BLK1 and BLK2 are
the predecessors that directly connected to it. In order to
verify the interconnection A among these blocks, the BLK4
is set in normal mode, and the BLK1 and BLK2 are set in
external test mode to propagate the POF stimuli from PIs
through the wrappers (of BLK1 and BLK2) to the inputs
of the BLK4 as shown in Fig. 4. Hence, the verification
patterns can easily go through the system from PIs to POs
and verify the interconnection A. If there are any misplace-
ments in the interconnection A, the inconsistent results will
be observed in the output analyzer. The integration of the
other blocks follows the same procedure to verify the inter-
connection. This verification mechanism allows us solely
focusing on the functionality of the added block when
generating the verification pattern set and reduce the
complexity of POF verification.

By using the P1500 test structure for POF verification,
we do not introduce any more hardware overhead in the chip
implementation. In fact, we reuse the hardware overhead
incurred in the testing phase.

Figure 4. POF verification when integrating
the BLK4

4. The Minimum Verification Pattern Sets for
Data Path Elements

4.1. Undetected Port Sequence (UPS) Representa-
tion

The total number of POFs in an N -input core is N !-1.
This number grows rapidly when N increases, for instance,
as N=69, N !-1�1.7�1098. Therefore, an implicit repre-
sentation is used to indicate the undetected port sequences
(UPSs).

Example 4.1 is used to demonstrate the implicit repre-
sentation for the UPSs.
Example 4.1: Given an 8-input core, the input ports are
numbered from 1 to 8. The UPSs representation (12345678)
represents the UPSs that caused by all possible misplace-
ments among the port numbers in the same group, i.e.,
port 1 to port 8. The number of undetected POFs is 8!-
1, and the 1 in the 8!-1 accounts for the fault free port se-
quence. The UPSs representation (125)(4)(3678) indicates
the UPSs that caused by all possible misplacements among
the port numbers 1, 2 and 5 and/or all possible misplace-
ments among the port numbers 3, 6, 7 and 8. The number
of the undetected POFs is 3!�1!�4!-1. The UPS represen-
tation (1)(2)(3)(4)(5)(6)(7)(8) represents 8!-1 POFs are all
detected.

4.2. The Minimum Verification Pattern Set for
Adders: TA2n

We propose an algorithm to generate a pattern set which
detects all nonequivalent POFs in an adder. The pseudo-
code of this algorithm, Generation A, is shown in Fig. 5.

Before the explanation of the Generation A algorithm, we
state two definitions used in this algorithm first.
Definition 3: Ai

2n is the pattern with length 2n generated
by the ith iteration of the Generation A algorithm.
Definition 4: TA2n is the pattern set generated by the
Generation A algorithm. It consists of Ai

2n, where i=1 �
dlog2ne. The size of TA2n is the number of patterns in
TA2n and is denoted as jTA2nj. jTA2nj= dlog2ne.

Algorithm: Generation A
Input: n(n + n adder)
Output: TA2n

f
TA2n ;;
t dlog2ne;
FOR (i=1 to t)
f

a1
2
t

2i
consecutive 1s;

a2
2
t

2i
consecutive 0s;

a12 a1 concatenates a2;
Ai

2n
 a12 replicates 2i times;

if(n 6= 2t) /* if n is not equal to power of 2 */
Ai

2n
 (1 � n; 2t + 1 � 2t + n)th bits of Ai

2n
;

TA2n TA2n [Ai

2n
;

g
return(TA2n);

g

Figure 5. The pseudo-code of Generation A
algorithm.

In this algorithm, the input is n and the output is the ver-
ification pattern set TA2n. For each iteration i, it generates
a pattern Ai

2n and then puts it into the verification pattern
set TA2n. We illustrate this algorithm with Example 4.2.
Example 4.2: Given a 4-bit adder where n=4 and
t=dlog24e=2, there are two iterations. In the 1st iteration,
i=1, 2t

2i = 22

21 = 2, a1=11, a2=00, a12=1100, 2i=2, replicates
a12 two times to form A1

8, A1
8=11001100. In the 2nd itera-

tion, i=2, 2t

2i = 22

22 = 1, a1=1, a2=0, a12=10, 2i=4, replicates
a12 four times to form A2

8=10101010. TA8 = f11001100,
10101010g.

Lemma 1. To activate a POF caused by the port misplace-
ment of the port x and the port y denoted as POF(x, y),
the assignments of x and y have to be different, either
x=0 and y=1 or vice versa.

Lemma 2. The minimum number of patterns for activat-
ing all port sequences in an n-bit adder/multiplier is
dlog22ne.

Lemma 3. For a 2n-input core, assume the POF(x, y) can
be detected by a pattern with m bits 1s and (2n-m) bits

A8
1

A8
2

TA 8

11001100 (1256)(3478)

10101010

Remaining UPSs

(15)(26)(37)(48)

Figure 6. TA8 and the remaining UPSs

0s, then this pattern can actually detect m! � (2n-
m)! POFs in total. This characteristic is called the
domination property of a POF pattern.

Example 4.3: For a 5-input core, assume the verifica-
tion pattern 11000 detects the POF(2,3) and the output of
the pattern 11000 is A. Because the verification pattern
11000 detects POF(2,3), the output of the verification pat-
tern 10100 must not be A (assume it is B). The additional
misplacements among the 0 ports or between the 1 ports
in 10100 make the pattern 10100 intact and the output is
still B. Therefore, these additional misplacements combined
with POF(2,3) are all detected by 11000, and the amount of
them are 2! � 3!.

Lemma 4. The equivalent POFs of an n-bit adder occurred
only at the misplacements of the same weight bits.

Definition 5: APm
2n is a pattern with length 2n, these bits

are numbered from 1 � 2n, bit 1 � m and bit n+1 � n+m
are 1s, the others are 0s where 1 � m < n.

Lemma 5. When applying APm
2n into an adder, after any

misplacements of 0 ports with 1 ports in APm
2n, the

output of the adder will be different with the original
one.

Example 4.4: Given a 4-bit adder, AP 1
8 =10001000,

AP 2
8 =11001100, and AP 3

8 =11101110. When applying
each AP i

8 into the adder, if any misplacements of 0 ports
with 1 ports are occurred in theAP i

8 , the output of the adder
will be different with that of the fault free port sequence.
Theorem 1: TA2n is the minimum pattern set that can de-
tect all nonequivalent POFs in an n-bit adder.
Example 4.5: Given a 4-bit adder and the verification pat-
tern set TA8 shown in the 1st column of Fig. 6. We want
to illustrate that TA8 can detect all nonequivalent POFs in
a 4-bit adder and it is the minimum pattern set. First, we
apply the pattern A1

8, 11001100, into the adder. Assume the
adder is fault free, the port sequence is 12345678 and the
outputs is 11000 as shown in Fig. 7(a). This means ”1100
+ 1100 = 11000”. However, if the port 2 and port 3 are
misplaced with each other, the port sequence of the adder
becomes 13245678. When we apply the same pattern A1

8

into it, the real pattern assigned into it is 10101100, this
makes the output become 10110 (1010 + 1100 = 10110)

1

8

7

6

4

3

2

adder

real pattern

1

0

0

0

input pattern

1

8

7

6

4

2

adder

real pattern

1

0

0

0

1

1

0

1

0

1

Input Ports Output Ports

input pattern

(a)

(b)

4-bit

4-bit

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

5

5

Input Ports Output Ports

3
0
1

1

1

Figure 7. The fault free and faulty port se-
quences

as shown in Fig. 7(b). Because the fault free output 11000
and the faulty output 10110 are different, this pattern A1

8

(11001100) can detect the port sequence 13245678. Ac-
cording to Lemma 3, the additional port misplacements
among the 0 ports and/or among the 1 ports in the 10101100
make the pattern 10101100 intact and all of them are de-
tected by A1

8. Similarly, if the port 2 and port 4 are mis-
placed with each other, the port sequence of the adder be-
comes 14325678. When the A1

8 is applied into the adder
again, the real pattern assigned into it is 10011100 and the
output is different with the fault free output, too. Actually,
according to Lemma 5, the port misplacements of 0 ports
with 1 ports in theA1

8 will cause the output different. There-
fore, these port misplacements will be detected. As a result,
the undetected port sequences (UPSs) are the port misplace-
ments that cannot be distinguished from the outputs and
they are the misplacements of the same assignment ports.
They can be written as (1256)(3478) in the implicit UPSs
representation, which is shown in the Fig. 6. For apply-
ing the pattern A2

8, 10101010, since the updated remaining
UPSs are (1256)(3478), we only focus on the possible mis-
placements in each group of the remaining UPSs. The port
assignments of each group in the A2

8 are AP 1
4 . Therefore,

according to Lemma 5, the misplacements of 0 ports with
1 ports in each group can cause the output different. As a
result, the remaining UPSs after applying A1

8 and A2
8 are

(15)(26)(37)(48) and are listed in the Fig. 6. Furthermore,
according to Lemma 4, these remaining UPSs are exactly
the equivalent POFs. Thus, TA8 can detect all nonequiv-
alent POFs in a 4-bit adder. TA8 is the minimum pat-
tern set as well. To detect all port sequences in an adder,
these port sequences have to be activated first. According
to Lemma 1, 2, the minimum number of patterns for acti-
vating all port sequences is dlog22ne=dlog28e=3. However,
according to Lemma 4, the misplacements of same weight
bits are equivalent POFs, therefore, the pattern that only ac-

tivates the equivalent POFs is removed and the minimum
number of patterns is reduced to dlog22ne� 1 =dlog2ne=2.
This number is equal to jTA8j.

4.3. The Minimum Verification Pattern Set for Mul-
tipliers: TM2n

Definition 6: M i
2n is the pattern with length 2n generated

by the ith iteration of the Generation M algorithm.
Definition 7: TM2n is the pattern set generated by the
Generation M algorithm. It consists of M i

2n, where i=1 �
dlog22ne. The size of TM2n is the number of patterns in
TM2n and is denoted as jTM2nj. jTM2nj= dlog22ne.

Algorithm: Generation M
Input: n(n � n multiplier)
Output: TM2n

f
TM2n ;;
t dlog22ne;
FOR (i=1 to t)
f

m1
2
t

2i
consecutive 1s;

m2
2
t

2i
consecutive 0s;

m12 m1 concatenates m2;
M i

2n
 m12 replicates 2i�1 times;

if(n 6= 2t�1) /* if n is not equal to power of 2 */
M i

2n
 (1 � n; 2t�1 + 1 � 2t�1 + n)th bits of M i

2n
;

TM2n TM2n [M i

2n
;

g
return(TM2n);

g

Figure 8. The pseudo-code of Generation M
algorithm.

Example 4.6: Given a 4-bit multiplier where n=4 and
t=dlog28e=3, there are three iterations. In the 1st itera-
tion, i=1, 2t

2i = 23

21 = 4,m1=1111,m2=0000,m12=11110000,

2i�1=1, M1
8 =11110000. In the 2nd iteration, i=2, 2t

2i = 23

22

= 2, m1=11, m2=00, m12=1100, 2i�1=2, replicates m12

two times to form M2
8 =11001100. In the 3nd iteration,

i=3, 2t

2i = 23

23 = 1, m1=1, m2=0, m12=10, 2i�1=4, replicates
m12 four times to form M3

8 =10101010. TM8=f11110000,
11001100, 10101010g.

Lemma 6. The equivalent POFs of an n-bit multiplier oc-
curred only at the interchange of the multiplicand and
multiplicator.

Lemma 7. Given four positive integers, A, B, C, and D. The
output of A � B is different with that of C � D if A >

C and B > D or if A = C and B > D or if A > C and B
= D.

Table 1. The comparisons between our approach and AVPG in verification pattern set size
adder multiplier

n bits # of POFs # of exhaustive patterns jTA2nj AVPG jTM2nj AVPG
n (2n)!� 1 2(2n) dlog2ne 2n� 2 dlog22ne 2n� 2
2 23 16 1 2 2 2
4 40319 256 2 6 3 6
8 � 2.1 � 1013 65536 3 14 4 14
16 � 2.6 � 1035 � 4.3 � 109 4 30 5 30
32 � 1.3 � 1089 � 1.8 � 1019 5 62 6 62

Theorem 2: TM2n is the minimum pattern set that can
detect all nonequivalent POFs in an n-bit multiplier.

Example 4.7: Given a 4-bit multiplier and the verification
pattern set TM8 shown in the 1st column of Fig. 9. We ex-
plain Theorem 2 by using the same procedure as we did in
Example 4.6. According to Lemma 6, the equivalent POF
of this 4-bit multiplier is 56781234. After applying M1

8 ,
11110000, except the equivalent POF, the misplacements
of 0 ports with 1 ports in the 11110000 will cause the out-
puts different and will be detected. Therefore, the remaining
UPSs are (1234)(5678) and 56781234. Since the updated
remaining UPSs are (1234)(5678) and 56781234, we only
focus on the possible misplacements in each group of the re-
maining UPSs. When we applying M2

8 , 11001100, into the
multiplier, the port misplacements of 0 ports with 1 ports in
the (1234) and (5678) will cause the multiplicand and mul-
tiplicator smaller, and the results of multiplication will be
different according to Lemma 7. As a result, the updated
remaining UPSs are (12)(34)(56)(78) and 56781234. Sim-
ilarly, after applying M3

8 , 10101010, the remaining UPSs
are (1)(2)(3)(4)(5)(6)(7)(8) and 56781234 as shown in the
Fig. 9. The (1)(2)(3)(4)(5)(6)(7)(8) is the fault free port
sequence and the 56781234 is the equivalent POF. Thus,
TM8 can detect all nonequivalent POFs in a 4-bit multi-
plier. TM8 is also the minimum pattern set. The reason
is as same as stated in Example 4.6. The minimum num-
ber of patterns for activating all port sequences is dlog22ne
and these activated port sequences in a multiplier are also
detected. Thus, TM8 is the minimum pattern set that can
detect all nonequivalent POFs in an n-bit multiplier.

M 8
1

M 8
2

M 8
3

TM 8

11110000

56781234
11001100

10101010

(1234)(5678)

56781234

Remaining UPSs

(1)(2)(3)(4)(5)(6)(7)(8)

56781234

(12)(34)(56)(78)

Figure 9. TM8 and the remaining UPSs

4.4. Summary

We have proposed two algorithms to generate the min-
imum verification pattern sets TA2n, TM2n to detect all
nonequivalent POFs in adders and multipliers, respectively.
Table 1 lists the number of POFs and the corresponding
verification pattern set size in an n-bit adder/multiplier. We
find that the growth of the number of POFs is much faster
than that of required verification pattern set size. For exam-
ple, as n=32, the number of POFs approximately reaches
1.3 �1089, but jTA64j is only 5 and jTM64j is only 6. Fur-
thermore, the jTA2nj and jTM2nj are much smaller than
the results obtained by AVPG [3]. It minimizes the pattern
set size from linearity to logarithm. Therefore, TA2n and
TM2n are very efficient in detecting all possible misplace-
ments occurred among adders/multipliers and other blocks.

5. Conclusions

Taking advantages of the regularity of adders and multi-
pliers and using the domination property of a POF pattern,
we present the minimum verification pattern sets of adders
and multipliers for detecting all nonequivalent POFs, and
these pattern sets are much smaller than that obtained by [3].

References

[1] S.-W. Tung, and J.-Y. Jou, ”A logic fault model for library coherence check-
ing,” Journal of Information Science and Engineering, pp.567-586, Sep.
1998.

[2] S.-W. Tung, and J.-Y. Jou, ”Verification pattern generation for core-based de-
sign using port order fault model,” in Proc. Asian Test Symposium, pp.402-
407, Dec. 1998.

[3] C.-Y. Wang, S.-W. Tung, and J.-Y. Jou, ”An AVPG for SoC design verifica-
tion with port order fault model,” in Proc. IEEE International Symposium on
Circuits And System, pp.V259-V262, May. 2001.

[4] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L. Todd, ”Sur-
viving the SOC revolution - a guide to platform-based design,” Norwell,
Massachusetts, Kluwer Academic Publishers, 1999.

[5] J. Bergeron, ”Writing testbenches-functional verification of HDL model,”
Norwell, Massachusetts, Kluwer Academic Publishers, 2000.

[6] J. A. Rowson, and A. Sangiovanni-Vincentelli, ”Interface-based design,” in
Proc. Design Automation Conference, pp.178-183, Jun. 1997.

[7] E. J. Marinissen, Y. Zorian, R. Kapur, T. Taylor, and L. Whetsel, ”Towards a
standard for embedded core test:An example,” in Proc. IEEE International
Test Conference, pp.616-627, Sep. 1999.

