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Abstract— This paper presents an automatic interconnection
rectification (AIR) technique to correct the misplaced intercon-
nection occurred in the integration of a SoC design automatically.
The experimental results show that the AIR can correct the mis-
placed interconnection and therefore accelerates the integration
verification of a SoC design.

I. INTRODUCTION

In the SoC era, system level integration and platform-based
design [1] are evolving as a new paradigm in system designs,
hence, design reuse and reusable building blocks (cores) trad-
ing are becoming popular. However, present design method-
ologies are not enough to deal with cores which come from
different design groups and are mixed and matched to create a
new system design. In particular, design verification is one of
the most difficult task.

The focus of core-based design verification should be on
how the cores communicate with each other [2]. However,
prior to the interface verification, the interconnection between
the cores in a SoC have to be verified first. This is because the
SoC integrator has to connect a large number of ports in a SoC
design. The likelihood of interconnection misplacements be-
tween the cores is high. Thus, the interconnection verification
can be conducted as the first step to the interface verification
between the cores in a SoC design.

By creating the testbenches at a high level, a connectivity-
based design fault model, port order fault (POF), is proposed
in [3]. This fault model is similar to the Type H design er-
ror ”incorrectly placed wire” in the logic level [4] [5]. The
POF-based automatic verification pattern generation (AVPG)
are also developed in [6] [7]. The AVPG are effective in
generating the verification pattern set for detecting the mis-
placements of interconnection in a SoC design. However, the
diagnosis and correction issues on the misplaced interconnec-
tion are even more important for SoC verification. Thus, to
accelerate the SoC integration process, this paper presents an
automatic interconnection rectification (AIR), which not only
detects the erroneous interconnection among the cores, but also
diagnoses and corrects them automatically.

Traditional diagnosis and correction algorithms in the logic
level can be divided into two categories with respect to the un-
derlying techniques: those based on symbolic techniques [8]
[9] and those based on simulation techniques [5] [10] [11].
The approaches based on symbolic techniques can return valid
correction and handle circuits with multiple errors well, how-
ever, they are not applicable to circuits that have no efficient
Ordered Binary Decision Diagram (OBDD) [12] representa-
tion. Thus, to verify the interconnection among the IP cores
with all description levels (soft, firm, and hard cores) embed-
ded into a system, the AIR algorithm has to deal with IP cores
that are described in different levels, for example, logic level,
register transfer (RT) level, or even behavioral level. Conse-
quently, the symbolic approach is inadequate to this applica-
tion and the simulation based AIR algorithm is presented.

II. PRELIMINARY

Definition 1: The type I POF is at least an output misplaced
with an input. The type II POF is at least two inputs misplaced.
The type III POF is at least two outputs misplaced [3].

It has been proven that the type II POFs dominate the other
two types of POFs [6]. Thus, the AIR focuses on the type II
POFs.
Definition 2:A port sequence is an input port numbers permu-
tation. The fault free port sequence (FFPS) is a port sequence
that none of the input ports is misplaced. For an N -input core,
the N ! permutations represent the N ! port sequences. Ex-
cept the FFPS, the remaining (N !-1) port sequences are called
faulty port sequences (FPSs).
Example 1: The schematic representation of the FFPS 1234
and the FPS 1423 of BLK2 are shown in Fig. 1(a) and Fig. 1(b),
respectively.

The undetected port sequences (UPSs) representation used
in the AVPG [6] [7] is to implicitly represent the undetected
port sequences remained in the fault set. Since it is also used
in the AIR algorithm, we introduce it here briefly.
Example 2: Given an 8-input core, the input ports are num-
bered from 1 to 8. The (12345678) represents the UPSs that
caused by all possible misplacements among the port numbers
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Fig. 1. The schematic representation of the FPS

in the same group, i.e., port 1 to port 8. The (125)(4)(3678)
indicates the UPSs that caused by all possible misplacements
among the port numbers 1, 2 and 5 and/or all possible mis-
placements among the port numbers 3, 6, 7 and 8. The
(1)(2)(3)(4)(5)(6)(7)(8) represents 8!-1 POFs are all detected.
If the UPSs representation is induced from (12345678) to
(1)(2)(3)(4)(5)(6)(7)(8), all POFs are detected.

The environment and mechanism of POF verification, which
exploits IEEE P1500 SECT, can be found in [6]. Thus, we
omit describing them here due to the page limit.

III. THE AIR ALGORITHM

A. AIR Overview

The input to the AIR is the simulation model of an IP core.
The four stages of AIR are pattern generation, fault detection,
fault diagnosis, and fault correction as shown in Fig. 2. In addi-
tion to these four stages, an instantaneous UPSs representation
is associated with the AIR. This UPSs representation can in-
dicate the remaining UPSs currently and guides the generation
of further verification patterns. If the UPS is empty, the AIR is
terminated and the interconnection in the integrated design are
correct.

When a pattern set Pi is selected as the verification pattern
set, some FPSs will be detected by Pi and the UPSs will be re-
duced from �i�1 to �i where �i denotes the remaining UPSs
after the verification by Pi. Then the pattern generation stage
generates further verification pattern sets in the next iteration
according to�i. EachPi corresponds to a set of FPSs and is re-
sponsible for detecting them. The FPSs which are detected by
Pi are denoted as FPSs(Pi). The relationship of Pi, FPSs(Pi),
and UPSs �i is shown in Fig. 3. In Fig. 3, the initial UPSs are
denoted as �0 and we assume the pattern set Pi�1 is generated
before Pi. When the last pattern set Pt is generated, the UPS
is �t and it is the FFPS.
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B. Pattern Generation

Definition 3: The set consists of all patterns with m 1s and
(N -m) 0s is denoted as �N

m
, where m 2 [0, 1, 2, � � �, N � 1,

N ]. The size of �N

m
is the number of patterns in �N

m
and is

denoted as j�N

m
j.

Example 3: For a 4-input core, �
4
0=f0000g, j�4

0j =1.
�
4
1=f1000, 0100, 0010, 0001g, j�4

1j =4.
Theorem 1: �N

m
can activate all (N!-1) POFs where m 2 [1,

2, � � �, N-2, N-1]. [6]

According to Theorem 1, we arbitrarily apply one �N

m
to

the inputs of core for m 2 [1, 2, � � �, N -2, N -1]. Since j�N
mj is

smaller whenm is closer to the end points of interval [1, 2, � � �,
N -1], we select m from 1 up to bN=2c or from N -1 down to
bN=2c.

Given an 8-input combinational core, the initial UPSs �0

are (12345678). The simulation results of �8
1 are shown in

Fig. 4 and are represented in symbolic output representation.
The patterns with the same output are grouped into one set.
�
8
1 patterns can be grouped into two sets, S1 and S2. When we

select the smaller set S1 as the verification pattern set P1, �1

have to be derived as well. The following paragraphs describe
how to calculate the UPSs �i when Pi is generated.
Definition 4: Given a set of patterns S with the same length,
we count the number of digits 1 in the same bit position to
form a vector with the same length. This vector is called the
characteristic vector (CV) of S and is denoted as CV S.
Theorem 2: A pattern set S’, which consists of all same output
patterns 2 �

N
m

, turns to S after a FPS �. If CV S’ 6= CV S,
then the FPS � will be detected by S’.

In Fig. 4, we selected S1 as P1, and according to Theorem
2, any port sequence which changes CV S1 will be detected
by S1. Thus, the port misplacement that cannot change
CV S1 are regarded as the UPSs �1.
Corollary 1: If a pattern set S is selected as the verification
pattern set Pi, the UPSs �i can be obtained by applying the
same grouping result of CV S over the UPSs �i�1.
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Fig. 4. The simulation outputs of �8
1



When S1 is selected as P1. The grouping result of CV S1
is <1><0000000>. Therefore, according to Corollary 1, �1

is obtained by the same grouping of CV S1 over the UPSs
�0=(12345678) directly and �1 become (1)(2345678). These
results are also shown in Fig. 4. If the port sequence � of the
real interconnection in the integrated design2 FPSs(P1), when
applying P1 into the integrated design, � will be detected.

To demonstrate the interconnection detection, diagnosis,
and correction procedures, we assume the FPS � of this ex-
ample is given and is 83762451.

C. Fault Detection

We apply P1 f10000000ginto the design with the FPS �

83762451, and find that the corresponding output of P1 is B0
as shown in the first row of Fig. 5(a). Since the fault free output
is A0, thus the fault effect appears and � is detected by P1.

D. Fault Diagnosis

We apply P1 into the integrated design, and realize that the
real applied input is not P1 by observing the unexpected out-
put B0. Since there are seven patterns that produce the B0
output, we do not know exactly what the actual applied pat-
tern is. Nevertheless, we know the actual applied pattern
which produces the A0 output instead. We simulate �

8
1

patterns with the FPS 83762451 and observe the outputs un-
til the output is A0. These results are shown in Fig. 5(a). From
Fig. 5(a), we find that when the last pattern f00000001g is the
output becomes A0. This result implies that the FPS � turns
the pattern f00000001g to f10000000g. We put the pattern
f00000001g into S1’ and assume S1 is f10000000g. Then
we calculate CV S1’=00000001 and CV S1=10000000. Af-
terward, the misplaced ports can be identified by comparing
CV S1’ and CV S1.

E. Fault Correction

Comparing CV S1’ and CV S1, we observe that the 1
st

digit and the 8
th digit of CV S1’ and CV S1 are different.

Thus, we switch the port 1 with the port 8 to let CV S1 be
the same as CV S1’. The corrected FPS becomes 13762458
and is shown in Fig. 5(b).
Definition 5: The exchange of two ports is defined as a
2 switch. The exchange of port x and port y is denoted as
2 switch(x, y).
Definition 6: Given a set of n-bit patterns S’, when a 2-switch
is applied on S’ and CV S’ is invariant, the 2-switch is called
a CV invariant fault of S’ (CVIF(S’)). Otherwise, it is called a
CV variant fault of S’ (CVVF(S’)).
Theorem 3: Given a set of n-bit patterns S’ and a FPS �.
There exists a finite sequence of 2 switches, 2 switch1 �

2 switchl, to convert the FFPS into �, and this sequence of
2 switches must be in one of the following three categories:
(I): 2 switch1 � 2 switchl are all CVIFs(S’)
(II): 2 switch1 � 2 switchi are CVIFs(S’) and 2 switchi+1
� 2 switchl are CVVFs(S’) where 1 � i � l-1
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Fig. 5. Rectification processes of �8
1

(III): 2 switch1 � 2 switchl are all CVVFs(S’)
In this example, the 2 switch(1,8) is a CVVF(S1’). There-

fore, according to Theorem 3, the corrected FPS �’ is a
sequence of CVIFs(S1’). Theorem 3 guarantees that the
CVIF(S1’) are the only possible faults which we have to deal
with in the succeeding iteration.

Since each Pi corresponds to a set of FPSs, FPSs(Pi), and
is responsible for detecting them. If the corrected FPS �’ =2
FPSs(Pi), Pi is not able to detect and correct any other faulty
ports in �’. At this time, further verification pattern set Pk ,
where k > i, are generated to detect and correct the other
faulty ports in �’. However, how can we know the corrected
FPS �’ =2 FPS(Pi) and cannot be corrected by Pi anymore ?
The following corollary states the condition that has to be sat-
isfied so that the corrected FPS �’ =2 FPSs(Pi) (or 2 UPSs �i).
Corollary 2: If the actual outputs are consistent with the ex-
pected ones when applying Pi into the integrated design with
a corrected FPS �’, then the corrected FPS �’ 2 UPSs �i.

Therefore, according to Corollary 2, we apply P1 into the
integrated design again with the corrected FPS �’ 13762458 to
see whether the �’ can be further corrected by P1. In Fig. 5(c),
we find that the outputs of P1 are both A0, thus, �’ 2 UPSs �1

(1)(2345678). At this time, we move to the next iteration to
generate further pattern sets Pk (k > 1) to detect and correct
the remaining faulty ports.

F. Summary

The FPS is corrected from 83762451 to 13762458, and
the UPSs representation is reduced from (12345678) to
(1)(2345678). These results illustrate that the UPSs represen-
tation presents the corrected FPS appropriately. The succeed-
ing iterations in the AIR follow the same flow to rectify the
misplaced interconnection. However, due to the page limit, we
skip these repeated demonstration of the AIR algorithm here.

The success of the AIR depends on the pattern generation
stage strongly. Since the pattern generation stage will search
all �N

m
, for m=1, 2, � � �, N -1 if necessary, it is a complete

algorithm [6] [7]. This complete pattern generation algorithm
leads the AIR algorithm to be complete as well.



TABLE I
EXPERIMENTAL RESULTS ON COMBINATIONAL BENCHMARKS

parameters blind connection guided connection
bench jPIj gcs. a/b time a/b time
c17 5 6 5/5 0.1 3/3 0.1
c880 60 357 60/60 182 13/13 96
c1355 41 514 41/41 179 8/8 50
c1908 33 880 32/32 167 6/6 46.5
c432 36 160 36/36 43 6/6 7
c499 41 202 39/39 59 9/9 16.6
c3540 50 1667 48/48 882 12/12 268
c5315 178 2290 178/178 11505 34/34 2692
c2670 233 1161 232/232 10119 37/37 1937
c7552 207 3466 207/207 26689 39/39 6477
c6288 32 2416 32/32 773 8/8 466

G. The Sequential AIR

The development of the sequential AIR is based on the same
assumption as the combinational AIR, i.e., the CUV is pre-
verified and fault free. The fault occurs only at the intercon-
nection between the cores. For the testability concern, most
sequential cores are designed with scan chains. Thus, here we
assume that the sequential cores in the experiments are scan-
testable. These sequential cores can be set in arbitrary state
and therefore they can be seen as combinational ones. Conse-
quently, the AIR algorithm used in the combinational cores is
applicable to the sequential ones. The only difference is that
the sequential cores have to be set to a state by sequential AIR
before evaluating outputs.

IV. EXPERIMENTAL RESULTS

The heuristic AIR, which adds the iteration counter to bound
the processing time, has been integrated into the SIS [13] envi-
ronment. Experiments are conducted over a set of benchmarks,
which are in BLIF format. The simulation information of the
BLIF benchmarks imitate the simulation model of IP cores.

Table I summaries the experimental results of the heuristic
AIR. The jPIj represents the number of inputs. The gate counts
(gcs.) indicates the scale of a benchmark. The a/b presents
”number of corrected ports/number of faulty ports”.

The iteration bound in the experiment was set to 100. The
AIR algorithm will be terminated automatically if the iteration
counter is over the bound or the UPSs representation becomes
empty. At the end of AIR, the number of corrected ports, and
CPU time are returned. The number of corrected ports is ob-
tained by comparing the final FPS with the FFPS. The CPU
time is measured in second on an Ultra Sparc II workstation.

According to Table I and II, the faulty ports of each bench-
mark are all corrected except s5378 and s13207, and the pro-
cessing time of each benchmark is acceptable. These results
demonstrate that the heuristic AIR is able to correct the mis-
placed ports within reasonable efforts.

V. CONCLUSIONS

The AIR technique provides a solution to integrate the cores
with correct interconnection automatically. Therefore this

TABLE II
EXPERIMENTAL RESULTS ON SEQUENTIAL BENCHMARKS

parameters blind connection guided connection
bench jPIj gcs. FFs a/b time a/b time
s1196 14 529 18 13/13 24 5/5 14.2
s1238 14 508 18 13/13 31 3/3 8.9
s1488 8 653 6 8/8 39 4/4 30
s1494 8 647 6 6/6 62 2/2 41
s15850 14 9786 597 13/13 1382 5/5 1252
s208 11 104 8 11/11 29.1 4/4 21
s27 4 10 3 4/4 0.1 2/2 0.1

s5378 35 2779 164 29/33 3149 9/9 3083
s641 35 379 19 35/35 136 9/9 81
s713 35 393 19 33/33 137 7/7 85
s820 18 289 5 17/17 1005 5/5 979
s832 18 287 5 18/18 1014 8/8 1004
s838 35 446 32 33/33 1111 8/8 908
s9234 36 5597 211 35/35 8133 9/9 7620
s444 3 181 21 3/3 62 2/2 56
s510 19 211 6 18/18 130 6/6 105
s344 9 160 15 9/9 4.5 4/4 2.6
s349 9 161 15 9/9 7.8 3/3 2.1
s382 3 158 21 3/3 44 3/3 44
s386 7 159 6 5/5 46 3/3 40
s400 3 162 21 3/3 49.6 3/3 46

s13207 31 8027 669 23/28 19114 4/4 9352
s1423 17 657 74 17/17 1586 5/5 375
s6669 83 3080 239 83/83 12954 16/16 10223
s4863 49 2342 104 49/49 7733 11/11 4551
s1269 18 569 37 16/16 56 4/4 24.8
s1512 29 780 57 29/29 2489 6/6 1932
s3271 26 1572 116 25/25 6254 7/7 4876
s3330 40 1789 132 40/40 805 6/6 156
s3384 43 1685 183 43/43 6377 9/9 4458
b10 11 153 17 10/10 170 3/3 157
b11 7 510 31 7/7 230 4/4 185
b12 5 880 121 5/5 482 3/3 315
b13 10 255 53 8/8 226 3/3 210
b14 32 5401 245 31/31 16332 7/7 13453
b15 37 7092 449 37/37 18742 10/10 16667

technique can reduce the time on design verification in core-
based design methodology.
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