
SOC DESIGN INTEGRATION BY USING AUTOMATIC INTERCONNECTION
RECTIFICATION

Chun-Yao Wang, Shing- Wu Tung and Jing-Yang Jou

Department of Electronics Engineering
National Chiao Tung University

Hsinchu, Taiwan, R.O.C.

ABSTRACT the interconnection among the IP cores with all description levels

This paper presents an automatic interconnection rectification
(AIR) technique to correct the misplaced interconnection occurred
in the integration of a SoC design automatically. The experimental
results show that the AIR can correct the misplaced interconnec-
tion and therefore accelerates the integration verification of a SoC
design.

(soft, firm, and hard coresi embedded into a system, the AIR algo-
rithm has to deal with IP cores that are described in different lev-
els, for example, logic level, register transfer (RT) level, or even
behavioral level. Consequently, the symbolic approach is inade-
quate to this application and the simulation based AIR algorithm
is presented.

2. PRELIMINARY
1. INTRODUCTION

In the SoC era, system level integration and platform-based de-
sign [l] are evolving as a new paradigm in system designs, hence,
design reuse and reusable building blocks (cores) trading are be-
coming popular. However, present design methodologies are not
enough to deal with cores which come from different design
groups and are mixed and matched to create a new system design.
In particular, design verification is one of the most difficult task.

The focus of core-based design verification should be on how
the cores communicate with each other [2]. However, prior to the
interface verification, the interconnection between the cores in a
SoC have to be verified first. This is because the SoC integrator has
to connect a large number of ports in a SoC design. The likelihood
of interconnection misplacements between the cores is high. Thus,
the interconnection verification can be conducted as the first step
to the interface verification between the cores in a SoC design.

By creating the testbenches at a high level, a connectivity-based
design fault model, port order fault (POF), is proposed in [3].
This fault model is similar to the Type H design error ”incorrectly
placed wire” in the logic level [4] [5]. The POF-based auto-
matic verification pattern generation (AVPG) are also developed
in [6] [7]. The AVPG are effective in generating the verification
pattern set for detecting the misplacements of interconnection in a
SoC design. However, the diagnosis and correction issues on the
misplaced interconnection are even more important for SoC verifi-
cation. Thus, to accelerate the SoC integration process, this paper
presents an automatic interconnection rectification (AIR), which
not only detects the erroneous interconnection among the cores,
but also diagnoses and corrects them automatically.

Traditional diagnosis and correction algorithms in the logic
level can be divided into two categories with respect to the under-
lying techniques: those based on symbolic techniques [8] - [101
and those based on simulation techniques [5] [I l l N [12]. The
approaches based on symbolic techniques can return valid correc-
tion and handle circuits with multiple errors well, however, they
are not applicable to circuits that have no efficient Ordered Binary
Decision Diagram (OBDD) [131 representation. Thus, to verify

Definition 1: The type I POF is at least an output misplaced with
an input. The type I1 POF is at least two inputs misplaced. The
type 111 POF is at least two outputs misplaced [3].

It has been proven that the type I1 POFs dominate the other two
types of POFs [6]. Thus, the AIR focuses on the type I1 POFs.
Definition 2:A port sequence is an input port numbers permuta-
tion. The fault free port sequence (FFPS) is a port sequence that
none of the input ports is misplaced. For an N-input core, the
N! permutations represent the N! port sequences. Except the
FFFS, the remaining (N!-1) port sequences are called faulty port
sequences (FPSs).
Example 1: The schematic representation of the FFPS 1234 and
the FPS 1423 of BLK2 are shown in Fig. l(a) and Fig. l(b), re-
spectively.

BLKl BLKZ

(a)

BLKl BLKZ

Figure 1: The schematic representation of the FPS

The PUPs representation is a metric used in the AIR to indicate
the remaining possible uncorrected ports (PUPs) currently in the
integrated design. We use Example 2 to demonstrate the PUPs
representation.
Example 2: Given an 8-input core, the inputs are numbered from
1 to 8. These port numbers are all possible uncorrected ports and
are placed in a pair of parentheses. If these ports are faulty indeed,
they must be misplaced with the other ports in the same group only.
The group with only one port number represents the port is correct.
For example, the (12345678) represents that the port 1 N port 8 are
all possible uncorrected ports and they could be misplaced with
each other, the lPUPsI = 8. The (1)(234)(567)(8) represents that
the port 1 and port 8 are correct ports, the port 2 - port 4 and the

0-7803-7761-3/03/$17.00 02003 IEEE Iv-744

port 5 N port 7 are the possible uncorrected ports and they could be
misplaced with the other ports in the same group only, the lPUPsl
= 6. If the PUPs are induced to (1)(2)(3)(4)(5)(6)(7)(8), the lPUPsl
= 0, and the interconnection is correct.

Definition 3 defines the cross-group operation, which is used to
calculate the updated PUPs.
Definition 3: Given two PUPs representation P1 and P2 with the
same number of ports. The cross-group P3 of P1 and P2 is denoted
as P1 A P2 and it satisfies with the following condition: if any two
port numbers x and y are both placed in the same group of PI and
P2, they will be placed in the same group of P3; otherwise, they
are placed in the different groups of P3.
Example 3: Given two PUPs, P1 = (12)(34) and P2 = (14)(23),
the cross-group P3 of P1 and P2 = P1

We also exploit Example 3 to explain the physical meaning of
the cross-group operation. P1 represents that if the port 2 and
port 3 in a FPS are faulty, they must not be misplaced with each
other. On the contrary, P2 represent that if the port 2 and port 3 in
the same FPS are faulty, they must be misplaced with each other.
Since the port 2 and port 3 in this FPS cannot be "misplaced" with
each other and "not misplaced" with each other simultaneously,
the port 2 and port 3 have not to be faulty, and they have to be
placed in single groups in the PUPs, respectively. The proposed
cross-group operation accomplishes this object indeed.

The environment and mechanism of POF verification, which
exploits the IEEE P1500 SECT [15], can be found in [6]. Thus,
we omit describing them here.

P2 = (1)(2)(3)(4).

3. THE AIR ALGORITHM

The input to the AIR is the simulation model of an IP core. The
four stages of AIR are pattern generation, fault detection, fault di-
agnosis and correction, and PUPs calculation as shown in Fig. 2.
The pattern generation stage generates valid patterns Si to differ-
entiate the outputs of fault free interconnection and faulty inter-
connection. The fault detection stage applies Si into the integrated
design to examine whether the interconnection are misplaced or
not. If the fault effect appears after the fault detection stage, the
misplaced interconnection are identified and rectified in the fault
diagnosis and correction stage. Otherwise, the PUPs calculation
stage is performed. After the fault diagnosis and correction stage,
the same PUPs calculation stage is performed as well. The PUPs
calculation stage can figure out the possible faulty ports remained
in the integrated design. These remaining possible faulty ports will
be verified in the subsequent iterations by additional verification
patterns. Since the fault diagnosis and correction stage usually
cannot correct all misplaced ports in one iteration, the rectified
interconnection has to be verified (detection, diagnosis, and cor-
rection) by Si again until the fault effect disappears after the fault
detection stage. These iterative procedures are presented with bold
lines in the AIR flow as shown in Fig. 2.

3.1. Pattern Generation

Definition 4: The set consists of all patterns with m 1s and (N-m)
Os is denoted as OK, where m E [0,1,2, . ., N - 1, NI. The size
of 0; is the number of patterns in 0; and is denoted as IOkl.
Example 4: For a 4-input core, O~={OOOO}, =l . e;'={ 1000,

Theorem 1: OK can activate all (N!-1) POFs where m E [I , 2,
0100,0010, OOOl}, p:1=4.

' . ., N-2, N-I] . [6]

Figure 2: The AIR flow

According to Theorem 1, we arbitrarily apply one d", to the
inputs of core form E [I, 2 , . . ., N - 2 , N-11. Since is smaller
when m is closer to the end points of interval [l, 2, . . ., N-11, we
select m from 1 up to LN/2J or from N-1 down to LN/PJ.

We use an example to demonstrate the pattem generation stage.
This example will be used to demonstrate the other stages in the
AIR as well later. Given an 8-input combinational core, the initial
PUPs are (12345678). Assume the simulation results of @ are
shown in Fig. 3 and are represented in symbolic output represen-
tation. The patterns with the same output are grouped into one set.
0: patterns can be grouped into two sets SI and S2. Either SI or
S2 can be selected as the verification pattems. Here we select the
smaller set S1 as the verification pattems [6].

initial PUPs = (12345678) _ _ _ _ _ _ _ _ _ _ _ _ _
8 - 1 - Q D - Q D - Q D - Q

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

s1
10000000

s2
01 000000
00 100000
000 10000
0000 1000
00000 100
000000 10
0000000 1

Figure 3: The simulation outputs of

The system integrators do not know how the cores are connected
exactly in the actual integrated design. However, to demonstrate
the fault detection, diagnosis, and correction procedures on the in-
terconnection verification, we assume the FPS X of this example is
given and is 8376245 1.

3.2. Fault Detection

We apply SI {lOOOOOOO} into the design with the FPS X
83762451, and find that the corresponding output of {lOOOOOOO}
is BO as shown in Fig. 4(a). Since the fault free output is AO, the
fault effect appears and X is detected by S1.

3.3. Fault Diagnosis and Correction

Definition 5: Given a set of patterns S with the same length, we
count the number of digits 1 in the same bit position to form a
vector with the same length. This vector is called the characteristic
vector (CV) of S and is denoted as C V S .

We apply SI into the integrated design, and realize that the real
applied input is not { lOOOOOOO} by observing the unexpected out-
put BO. Since there are seven patterns that produce BO output, we
do not know exactly what the actual applied pattem is. Neverthe-
less, we know the actual applied pattern which produces A0
output instead. Therefore, we simulate O; pattems with the FPS
83762451 and observe the outputs until the output is AO. These
results are shown in Fig. 4(a). From Fig. 4(a), we find that when

Iv-745

(8)

S I . F’PS S I
00000001 - 10000000

cv-s 1 ’= 0000000 1 cv-s 1 = 10000000

0 “ l P “ f S

Fault Free F‘PS 1 2 7 6 2 4 S X
S 1

10000000 1 A0 I A0

PUPs - (1234567)<8> a (1)(2345678) - <1>(234567><8)

<=>

Figure 4: Rectification processes of @

the last pattern (00000001) is applied, the output becomes AO.
This result implies that the FPS X turns the pattern {OOOOOOOl}
to (l0000000). We put the pattern (0000000l) into SI’ and as-
sume S1 is { lOOOOOOO}, and we calculate CV-S1’=00000001 and
CVS1=10000000. Then, the misplaced ports can be identified by
comparing CV-SI ’ and CV-S 1.
Definition 6: The exchange of the ith port with the j t h port is
denoted as 2_switch(i, j).

Comparing CV-SI’ and CV-S1, we observe that the lst digit
and the 8th digit of CV-SI’ and CV-SI are different. We know
that if the FPS is the FFPS, CV-S and C V S ’ will be identical. The
FFPS will keep CV being intact for all patterns. Therefore,
switching the ports with different CV values to preserve CV
can move the FPS to the FFPS. Thus, we apply 2..switch(l, 8) on
C V S 1 to let C V S 1 be the same as CV-S 1’ as shown in Fig. 4(b).
Now, the corrected FPS becomes 13762458.

We exploit this property of the FFPS to rectify the misplaced
ports throughout the AIR algorithm.

The following lemmas and theorems state the convergency of
fault correction procedure,
Theorem 2: The correct ports in a FPS X will not be rectified to
faulty ones in the fault diagnosis and correction stage.
Definition 7: Given a set of n-bit patterns S’, when a 2-switch
is applied on S’ and C V S ’ is invariant, the 2-switch is called a
CV invariant fault of S’ (CVIF(S’)). Otherwise, it is called a CV
variant fault of S’ (CVVF(S’)).
Theorem 3: Given a set of n-bit patterns S’ and a FPS A. There
exists a jn i te sequence of 2-switches, Lswi tch l - 2_switchl, to
convert the FFPS into A, and this sequence of2-switches must be
in one of the following three categories:
(I): 2-switch1 - 2-switch1 are all CVIFs(S’)
(II): 2-switch1 - 2-switchi are CVIFs(S’) and 2_switchi+l -
2-switchl are CWFs(S’) where 1 5 i 5 1-1
(Ill): 2-switchl - 2-switch1 are all CWFs(S’)

In this example, the 2_switch(1,8) is a CVVF(S 1 ’). Therefore,
according to Theorem 3, the corrected FPS is a sequence of CV-
IFs(S1’). Theorem 3 guarantees that CVIF(S1’) are the only
possible faults which we have to deal with in the succeeding
iterations.

3.4. PUPs Calculation

As mentioned above, CVIF(S 1 ’) are the remaining possible faults
only and they are occurred among the port 1 - 7. Thus, the
PUPS representation is (1234567)(8). This PUPs has to be cross-
grouped with the initial PUPs (12345678) to obtain the updated
PUPS. Thus, the updated PUPs = (12345678) A (1234567)(8) =
(1234567)(8). This result is also shown in Fig. 4(b).

Thereafter, we apply SI into the integrated design again with
the corrected FPS 13762458 to examine whether the corrected FPS
13762458 can be further corrected by SI . In Fig. 4(c), we find that
the outputs of SI with the FPS 13762458 are the same as the ex-
pected outputs AO, thus, the FPS 13762458 cannot be further cor-
rected by S 1. Please note that this reexamining process also
provide the information to reduce the PUPs representation.
The corrected FPS 13762458 does not change the outputs AO,
therefore, the actual input pattern is also { 10000000) (SI) and the
corresponding CV-SI is unchanged. According to Theorem 3, the
remaining possible faults are CVIFs(S1) and they can be expressed
as (1)(2345678). Thus, the updated PUPs become (1)(234567)(8),
which are obtained from (1234567)(8) A (1)(2345678). At this
time. we move to the next iteration to generate further patterns to
detect and rectify the remaining faulty ports among port 2 - 7.

3.5. Summary

The FF‘S is corrected from 83762451 to 13762458, and the PUPs
representation is reduced from (1 2345678) to (1)(234567)(8).
These results illustrate that the PUPs representation presents the
corrected FPS appropriately. The succeeding iterations in the AIR
follow the same flow to rectify the misplaced interconnection.
However, due to the page limit, we skip these repeated demon-
stration of the AIR algorithm here.

The success of the AIR depends on the pattern generation stage
strongly. Since the pattern generation stage will search all e, for
m=l, 2, . . ., N-1 if necessary, it is a complete algorithm [6] [7].
This complete pattern generation algorithm leads the AIR algo-
rithm to be complete as well.

3.6. The Sequential AIR

The development of the sequential AIR is based on the same as-
sumption as the combinational AIR, i.e., the CUV is pre-verified
and fault free. The fault occurs only at the interconnection between
the cores. For the testability concern, most sequential cores are
designed with scan chains. Thus, here we assume that the sequen-
tial cores in the experiments are scan-testable. These sequential
cores can be set in arbitrary state and therefore they can be seen as
combinational ones. Consequently, the AIR algorithm used in the
combinational cores is applicable to the sequential ones. The only
difference is that the sequential cores have to be set to a state by
sequential AIR before evaluating outputs.

4. EXPERIMENTAL RESULTS

The heuristic AIR, which adds the iteration counter to bound the
processing time, has been integrated into the SIS [I41 environment.
Experiments are conducted over a set of ISCAS-85, 89, and ITC-
99 benchmarks. These benchmarks are in BLIF format which is
a netlist level design description. However, we only use the simu-
lation information to conduct the experiments and therefore, arbi-
trary level of design description can be used for conducting POF

IV-746

bench
c17

c880
c1355
c1908
c432
c499

c3540
c5315
c2670
c7552
c6288

-

-

parameters

4 / 4 0
1497 32/32
372 36/36
616 39/39

50 2934 49/49
178 4369 1781178
233 2043 2311231
207 6098 2071207
32 4800 32/32

Id connection

636
10270
9373
23972
425

Table 1: Experimental results of the heuristic AIR on ISCAS-85

verification. The simulation information of the BLIF benchmarks
imitate the simulation model of IP cores. The functionalities of
these benchmarks include ALU (c53 1 3 , multiplier (c6288), pro-
cessors (b14, b15), and some ASIC designs, thus, the experiments
can represent the realistic SoC design appropriately to some de-
gree.

Table 1 summaries the experimental results of the heuristic AIR
on ISCAS-85. The [PI1 represents the number of inputs. The
number of literals (lits.) indicates the scale of a benchmark. The
a/b presents "number of corrected portshumber of faulty ports".
These faulty ports in the experiments are caused by the blind con-
nection. The blind connection represents the worst case of the SoC
integration. To imitate the actual interconnection faults in the inte-
gration, the FPS is generated as follows. For each port i, i from 1
to N, we assign a random number (E [I N NI) to it. If the number
has been assigned to port j , where 1 g < i , we generate another one
to the port i until it is not repeated. This process is similar to the
real interconnection process with blindness. Since the FPSs in the
experiments are generated randomly, the generated FPSs quantify
the inject out of order permutations.

The iteration bound in the experiment was set to 100. The AIR
algorithm will be terminated automatically if the iteration counter
is over the bound or the PUPs representation becomes empty. At
the end of AIR, the number of corrected ports, IPUPsl, and CPU
time are returned. The number of corrected ports is obtained by
comparing the final FPS with the FFPS. The (PUPS(is obtained
from the final PUPs representation. The CPU time is measured in
second on an Ultra Sparc I1 workstation.

Note that since we greatly concem about how many faulty ports
are injected and corrected rather than the number of verification
patterns [6] [7] in the experiments, we do not report the number
of the verification pattems in the experimental results.

According to Table 1 and 2, the faulty ports of each benchmark
are all corrected, the lPUPsl of each benchmark is 0 as well, and
the processing time of each benchmark is acceptable. These results
demonstrate that the heuristic AIR is able to correct the misplaced
ports within reasonable efforts.

5. CONCLUSIONS

In the SoC era, the embedded cores are mixed and integrated to
create a system chip. System designers integrate those cores man-
ually and have the possibility of incorrect integration due to the
misplaced 110 ports. Furthermore, without the knowledge of the
intemal structures of the embedded cores, system designers have
,difficult time to locate the position of having erroneous intercon-
nection. The AIR technique provides an efficient solution to inte-

bench
s1196
s1238
s1488
91494

~ 1 5 8 5 0
927

95378
9641
s713
9820
9832

s9234
23444
s510
s344
9349
9382
9386
9400

~ 1 3 2 0 7
91423
96669
s4863
81269
s1512
s3271
s3330
s3384

b10
b l 1
b12
b13
b14
b15

-

F
14
8
8
14
4
35
35
19
18
18
36
3
19
9
9
3
7
3
31
17
83
49
18
29
26
40
43
11
7
5
10
32
37 -

-
rameter
lits. w
1041

1393
13659

18
4212
539
59 1
757
767
7971
352
424
269
273
306
347
320

11 I65
1164
5343
4092
1047
1264
2697

2755
33 1
1078

507
11849

1387

2816

188-1

15856 -

-
m
Ts
18
6
6

597
3

164
19
19
5
5

21 1
21
6
15
15
21
6
21
669
74
239
104
37
57
1 I6
132
183
17
31
121
53

245
449 -

blind connection
-36-
t37i3
12/12
7 n

14/14
313

34/34
35/35
17/17
17/17
16/16
34/34

313
19/19
818
919
313
7 n
313

29/29
17/17
82/82
49/49
17/17
28/28
25/25
40140
41/41
1 1 1 1 1
717
515
919

31/31
37/37

818

-

F
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 -

time0
-592

37.6
17.1
18.4
608
0.1
680
136
127
137

147.6
1961
3.4
38.5
4.9
5.5
9.2
3.8
4.2

2338
67.4
6985
1391
66.7
218.2
403

1327
8.4

52.6
19.3
15.8
2634
5062

a20

-

Table 2: Experimental results of the heuristic AIR on sequential
benchmarks

grate the cores with correct interconnection automatically. There-
fore this algorithm can reduce the time on design verification in
core-based design methodology.

6. REFERENCES

111 H. Chang. e l al., "Survwmg the SoC revolution. a guide 10 plalform-baed design:' Kluwuer Academic Puh-
Iirhers. IYYY.

121 1. A. Rawron.el a l , 'Interface-hated design," in Pmr D~srgn Aurotnor~m Con/erenrr. pp 178.183, Jun
IYY7.

131 J:Y. Jou, el d., "A logic Caul1 model for library coherence checking:' /OW" o/lnJonlormormn Scicncr m l
Enginccnng. pp.567-586. Sep. IYY8.

141 M. S. Ahadir. J. Ferguron. and T. E. Kirkland "Logs design ~cnticauon via lrst genrralion:' IEEE Tramae-
rionron Co,"ppurrr-AidrdDirign, ~01.7. "0.1, pp.138-148. Jan IY88.

151 A. Veneris. and I . N. Hajj. "Design error diagnosis and comeclion "$8 lest valor nmulauon." IEEE Truniuc-
lions on Computer-Aided Design. vol. 18. no. 12. pp. 1803-1 816. Dec. 1 YYY.

[6] L Y . IOU. el al.. "On aua,mauc-venlicainn pallnn gcncralion for S K with port-ordcr hull model,'' IEEE
Trunsocrionion Co,npufrr-AidrdDisign. pp.466-l7Y, "01 21. "0.4. Apr. 2002.

171 1.-Y, Jou. et &"An aulomorphicapproach loventicalionpatlrrngenrrauon far SoCdesignvrnfi~auan urmg
porcorder fault model," IEEE Trunsunionson Co,npurrr-AidodDnign. ~01.21. no.10. (ki. 2002.

S.-Y. Huang. K.-C. Chm. and K.-T Cheng "Incremental logic rectificalion." in Pmr: V U 1 R I .Sv~npo~~ust.
pp.143-14Y. IYY7.

iya. Y. kukimolo. and K.-C. Chm. "Application of Boolean unificauon LO comhtnauanal
r.. IEEUACM Inr. Conl Compulsr-AidrdDengn. pp.510-513.1YYI

P,-Y Chung. Y -M. Wang. and I. N. Hajj, "Layc design error diagnosis and ctmmtio8~," IEEE 7rlmrwnun
on VLSISv~r., ~01.2. pp.320.332.Sep. IYY4.

SLY Huang. K -C Chm, and K -T. Cheng "ErroiTracer: design error diagnosis hawd on laull nmulaticm
lrchntquer:' IEEE Tronsarrionron Co,npurrr.AidrdD~sign. YOI 18. no Y. pp.1341-1352. Sep IYYY.

I Pomeranz and S M. Reddy "On error ~ ~ r r a l i o n ID macro-haard circuils." IEEE Tronrnrrioni on
Co,npurcr-AidrdDrsign. ~01.16. no.10, pp.1088-I 100.(kl. IYY7.

R. E. Bryanis'0raph.basd algorilhmr for Boolean runctiiin manipulation," IEEE Trnnsurrionr on Comnpuler.

E. M. Senlovich. n al.. "Srquanltal circuil dragn using rynlheris and oplimizalim,'' in Proc. IEEE Intemo-
rionnl Conference on Compurcr Dcsign. pp.328-333. Ocl. IYW.

E. J. Mmnissen. el al.. 'Towards a standard for cmhalded core e a r An example." in P i N . IEEE Jnrrrnorioniil
l i s 1 ConJermcc. pp.616-627.Sep. IVYY.

vn~.~-3s,no.8. p p . 6 n - 6 ~ i . 1 ~ 8 6 .

Iv-747

