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ABSTRACT the interconnection among the IP cores with all description levels 

This paper presents an automatic interconnection rectification 
(AIR) technique to correct the misplaced interconnection occurred 
in the integration of a SoC design automatically. The experimental 
results show that the AIR can correct the misplaced interconnec- 
tion and therefore accelerates the integration verification of a SoC 
design. 

(soft, firm, and hard coresi embedded into a system, the AIR algo- 
rithm has to deal with IP cores that are described in different lev- 
els, for example, logic level, register transfer (RT) level, or even 
behavioral level. Consequently, the symbolic approach is inade- 
quate to this application and the simulation based AIR algorithm 
is presented. 

2. PRELIMINARY 
1. INTRODUCTION 

In the SoC era, system level integration and platform-based de- 
sign [ l ]  are evolving as a new paradigm in system designs, hence, 
design reuse and reusable building blocks (cores) trading are be- 
coming popular. However, present design methodologies are not 
enough to deal with cores which come from different design 
groups and are mixed and matched to create a new system design. 
In particular, design verification is one of the most difficult task. 

The focus of core-based design verification should be on how 
the cores communicate with each other [2]. However, prior to the 
interface verification, the interconnection between the cores in a 
SoC have to be verified first. This is because the SoC integrator has 
to connect a large number of ports in a SoC design. The likelihood 
of interconnection misplacements between the cores is high. Thus, 
the interconnection verification can be conducted as the first step 
to the interface verification between the cores in a SoC design. 

By creating the testbenches at a high level, a connectivity-based 
design fault model, port order fault (POF), is proposed in [3]. 
This fault model is similar to the Type H design error ”incorrectly 
placed wire” in the logic level [4] [5].  The POF-based auto- 
matic verification pattern generation (AVPG) are also developed 
in [6] [7]. The AVPG are effective in generating the verification 
pattern set for detecting the misplacements of interconnection in a 
SoC design. However, the diagnosis and correction issues on the 
misplaced interconnection are even more important for SoC verifi- 
cation. Thus, to accelerate the SoC integration process, this paper 
presents an automatic interconnection rectification (AIR), which 
not only detects the erroneous interconnection among the cores, 
but also diagnoses and corrects them automatically. 

Traditional diagnosis and correction algorithms in the logic 
level can be divided into two categories with respect to the under- 
lying techniques: those based on symbolic techniques [8] - [ 101 
and those based on simulation techniques [5] [ I l l  N [12]. The 
approaches based on symbolic techniques can return valid correc- 
tion and handle circuits with multiple errors well, however, they 
are not applicable to circuits that have no efficient Ordered Binary 
Decision Diagram (OBDD) [ 131 representation. Thus, to verify 

Definition 1: The type I POF is at least an output misplaced with 
an input. The type I1 POF is at least two inputs misplaced. The 
type 111 POF is at least two outputs misplaced [3]. 

It has been proven that the type I1 POFs dominate the other two 
types of POFs [6]. Thus, the AIR focuses on the type I1 POFs. 
Definition 2:A port sequence is an input port numbers permuta- 
tion. The fault free port sequence (FFPS) is a port sequence that 
none of the input ports is misplaced. For an N-input core, the 
N! permutations represent the N! port sequences. Except the 
FFFS, the remaining (N!-1) port sequences are called faulty port 
sequences (FPSs). 
Example 1: The schematic representation of the FFPS 1234 and 
the FPS 1423 of BLK2 are shown in Fig. l(a) and Fig. l(b), re- 
spectively. 

BLKl BLKZ 

(a) 

BLKl BLKZ 

Figure 1: The schematic representation of the FPS 

The PUPs representation is a metric used in the AIR to indicate 
the remaining possible uncorrected ports (PUPs) currently in the 
integrated design. We use Example 2 to demonstrate the PUPs 
representation. 
Example 2: Given an 8-input core, the inputs are numbered from 
1 to 8. These port numbers are all possible uncorrected ports and 
are placed in a pair of parentheses. If these ports are faulty indeed, 
they must be misplaced with the other ports in the same group only. 
The group with only one port number represents the port is correct. 
For example, the (12345678) represents that the port 1 N port 8 are 
all possible uncorrected ports and they could be misplaced with 
each other, the lPUPsI = 8. The (1)(234)(567)(8) represents that 
the port 1 and port 8 are correct ports, the port 2 - port 4 and the 
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port 5 N port 7 are the possible uncorrected ports and they could be 
misplaced with the other ports in the same group only, the lPUPsl 
= 6. If the PUPs are induced to (1)(2)(3)(4)(5)(6)(7)(8), the lPUPsl 
= 0, and the interconnection is correct. 

Definition 3 defines the cross-group operation, which is used to 
calculate the updated PUPs. 
Definition 3: Given two PUPs representation P1 and P2 with the 
same number of ports. The cross-group P3 of P1 and P2 is denoted 
as P1 A P2 and it satisfies with the following condition: if any two 
port numbers x and y are both placed in the same group of PI  and 
P2, they will be placed in the same group of P3; otherwise, they 
are placed in the different groups of P3. 
Example 3: Given two PUPs, P1 = (12)(34) and P2 = (14)(23), 
the cross-group P3 of P1 and P2 = P1 

We also exploit Example 3 to explain the physical meaning of 
the cross-group operation. P1 represents that if the port 2 and 
port 3 in a FPS are faulty, they must not be misplaced with each 
other. On the contrary, P2 represent that if the port 2 and port 3 in 
the same FPS are faulty, they must be misplaced with each other. 
Since the port 2 and port 3 in this FPS cannot be "misplaced" with 
each other and "not misplaced" with each other simultaneously, 
the port 2 and port 3 have not to be faulty, and they have to be 
placed in single groups in the PUPs, respectively. The proposed 
cross-group operation accomplishes this object indeed. 

The environment and mechanism of POF verification, which 
exploits the IEEE P1500 SECT [15], can be found in [6]. Thus, 
we omit describing them here. 

P2 = (1)(2)(3)(4). 

3. THE AIR ALGORITHM 

The input to the AIR is the simulation model of an IP core. The 
four stages of AIR are pattern generation, fault detection, fault di- 
agnosis and correction, and PUPs calculation as shown in Fig. 2. 
The pattern generation stage generates valid patterns Si to differ- 
entiate the outputs of fault free interconnection and faulty inter- 
connection. The fault detection stage applies Si into the integrated 
design to examine whether the interconnection are misplaced or 
not. If the fault effect appears after the fault detection stage, the 
misplaced interconnection are identified and rectified in the fault 
diagnosis and correction stage. Otherwise, the PUPs calculation 
stage is performed. After the fault diagnosis and correction stage, 
the same PUPs calculation stage is performed as well. The PUPs 
calculation stage can figure out the possible faulty ports remained 
in the integrated design. These remaining possible faulty ports will 
be verified in the subsequent iterations by additional verification 
patterns. Since the fault diagnosis and correction stage usually 
cannot correct all misplaced ports in one iteration, the rectified 
interconnection has to be verified (detection, diagnosis, and cor- 
rection) by Si again until the fault effect disappears after the fault 
detection stage. These iterative procedures are presented with bold 
lines in the AIR flow as shown in Fig. 2. 

3.1. Pattern Generation 

Definition 4: The set consists of all patterns with m 1s and (N-m)  
Os is denoted as OK, where m E [0,1,2,  . ., N - 1, NI. The size 
of 0; is the number of patterns in 0; and is denoted as IOkl. 
Example 4: For a 4-input core, O~={OOOO}, =l .  e;'={ 1000, 

Theorem 1: OK can activate all (N!-1)  POFs where m E [ I ,  2, 
0100,0010, OOOl}, p:1=4. 

' . ., N-2, N-I ] .  [6] 

Figure 2: The AIR flow 

According to Theorem 1, we arbitrarily apply one d", to the 
inputs of core form E [I, 2 , .  . ., N - 2 ,  N-11. Since is smaller 
when m is closer to the end points of interval [l, 2, . . ., N-11, we 
select m from 1 up to LN/2J or from N-1 down to LN/PJ. 

We use an example to demonstrate the pattem generation stage. 
This example will be used to demonstrate the other stages in the 
AIR as well later. Given an 8-input combinational core, the initial 
PUPs are (12345678). Assume the simulation results of @ are 
shown in Fig. 3 and are represented in symbolic output represen- 
tation. The patterns with the same output are grouped into one set. 
0: patterns can be grouped into two sets SI and S2. Either SI or 
S2 can be selected as the verification pattems. Here we select the 
smaller set S1 as the verification pattems [6]. 

initial PUPs = (12345678) _ _ _ _ _ _ _ _ _ _ _ _ _  
8 - 1 - Q D - Q D - Q D - Q  

0 1 0 0 0 0 0 0  
0 0 1 0 0 0 0 0  
0 0 0 1 0 0 0 0  
0 0 0 0 1 0 0 0  
0 0 0 0 0 1 0 0  
0 0 0 0 0 0 1 0  
0 0 0 0 0 0 0 1  

s1 
10000000 

s2 
01 000000 
00 100000 
000 10000 
0000 1000 
00000 100 
000000 10 
0000000 1 

Figure 3: The simulation outputs of 

The system integrators do not know how the cores are connected 
exactly in the actual integrated design. However, to demonstrate 
the fault detection, diagnosis, and correction procedures on the in- 
terconnection verification, we assume the FPS X of this example is 
given and is 8376245 1. 

3.2. Fault Detection 

We apply SI {lOOOOOOO} into the design with the FPS X 
83762451, and find that the corresponding output of {lOOOOOOO} 
is BO as shown in Fig. 4(a). Since the fault free output is AO, the 
fault effect appears and X is detected by S1. 

3.3. Fault Diagnosis and Correction 

Definition 5: Given a set of patterns S with the same length, we 
count the number of digits 1 in the same bit position to form a 
vector with the same length. This vector is called the characteristic 
vector (CV) of S and is denoted as C V S .  

We apply SI into the integrated design, and realize that the real 
applied input is not { lOOOOOOO} by observing the unexpected out- 
put BO. Since there are seven patterns that produce BO output, we 
do not know exactly what the actual applied pattem is. Neverthe- 
less, we know the actual applied pattern which produces A0 
output instead. Therefore, we simulate O; pattems with the FPS 
83762451 and observe the outputs until the output is AO. These 
results are shown in Fig. 4(a). From Fig. 4(a), we find that when 
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( 8 )  

S I .  F’PS S I  
00000001 - 10000000 

cv-s 1 ’= 0000000 1 cv-s 1 = 10000000 

0 “ l P “ f S  

Fault Free F‘PS 1 2 7 6 2 4 S X  
S 1  

10000000 1 A0 I A0 

PUPs - (1234567)<8> a (1)(2345678) - <1>(234567><8) 

<=> 

Figure 4: Rectification processes of @ 

the last pattern (00000001) is applied, the output becomes AO. 
This result implies that the FPS X turns the pattern {OOOOOOOl} 
to (l0000000). We put the pattern (0000000l) into SI’ and as- 
sume S1 is { lOOOOOOO}, and we calculate CV-S1’=00000001 and 
CVS1=10000000. Then, the misplaced ports can be identified by 
comparing CV-SI ’ and CV-S 1. 
Definition 6: The exchange of the ith port with the j t h  port is 
denoted as 2_switch(i, j). 

Comparing CV-SI’ and CV-S1, we observe that the lst digit 
and the 8th digit of CV-SI’ and CV-SI are different. We know 
that if the FPS is the FFPS, CV-S and C V S ’  will be identical. The 
FFPS will keep CV being intact for all patterns. Therefore, 
switching the ports with different CV values to preserve CV 
can move the FPS to the FFPS. Thus, we apply 2..switch(l, 8) on 
C V S  1 to let C V S  1 be the same as CV-S 1’ as shown in Fig. 4(b). 
Now, the corrected FPS becomes 13762458. 

We exploit this property of the FFPS to rectify the misplaced 
ports throughout the AIR algorithm. 

The following lemmas and theorems state the convergency of 
fault correction procedure, 
Theorem 2: The correct ports in a FPS X will not be rectified to 
faulty ones in the fault diagnosis and correction stage. 
Definition 7: Given a set of n-bit patterns S’, when a 2-switch 
is applied on S’ and C V S ’  is invariant, the 2-switch is called a 
CV invariant fault of S’ (CVIF(S’)). Otherwise, it is called a CV 
variant fault of S’ (CVVF(S’)). 
Theorem 3: Given a set of n-bit patterns S’ and a FPS A. There 
exists a jn i te  sequence of 2-switches, Lswi tch l  - 2_switchl, to 
convert the FFPS into A, and this sequence of2-switches must be 
in one of the following three categories: 
(I): 2-switch1 - 2-switch1 are all CVIFs(S’) 
(II): 2-switch1 - 2-switchi are CVIFs(S’) and 2_switchi+l - 
2-switchl are CWFs(S’) where 1 5 i 5 1-1 
(Ill): 2-switchl - 2-switch1 are all CWFs(S’) 

In this example, the 2_switch( 1,8) is a CVVF(S 1 ’). Therefore, 
according to Theorem 3, the corrected FPS is a sequence of CV- 
IFs(S1’). Theorem 3 guarantees that CVIF(S1’) are the only 
possible faults which we have to deal with in the succeeding 
iterations. 

3.4. PUPs Calculation 

As mentioned above, CVIF(S 1 ’) are the remaining possible faults 
only and they are occurred among the port 1 - 7. Thus, the 
PUPS representation is (1234567)(8). This PUPs has to be cross- 
grouped with the initial PUPs (12345678) to obtain the updated 
PUPS. Thus, the updated PUPs = (12345678) A (1234567)(8) = 
(1234567)(8). This result is also shown in Fig. 4(b). 

Thereafter, we apply SI into the integrated design again with 
the corrected FPS 13762458 to examine whether the corrected FPS 
13762458 can be further corrected by SI .  In Fig. 4(c), we find that 
the outputs of SI with the FPS 13762458 are the same as the ex- 
pected outputs AO, thus, the FPS 13762458 cannot be further cor- 
rected by S 1. Please note that this reexamining process also 
provide the information to reduce the PUPs representation. 
The corrected FPS 13762458 does not change the outputs AO, 
therefore, the actual input pattern is also { 10000000) (SI) and the 
corresponding CV-SI is unchanged. According to Theorem 3, the 
remaining possible faults are CVIFs(S1) and they can be expressed 
as (1)(2345678). Thus, the updated PUPs become (1)(234567)(8), 
which are obtained from (1234567)(8) A (1)(2345678). At this 
time. we move to the next iteration to generate further patterns to 
detect and rectify the remaining faulty ports among port 2 - 7. 

3.5. Summary 

The FF‘S is corrected from 83762451 to 13762458, and the PUPs 
representation is reduced from (1 2345678) to (1)(234567)(8). 
These results illustrate that the PUPs representation presents the 
corrected FPS appropriately. The succeeding iterations in the AIR 
follow the same flow to rectify the misplaced interconnection. 
However, due to the page limit, we skip these repeated demon- 
stration of the AIR algorithm here. 

The success of the AIR depends on the pattern generation stage 
strongly. Since the pattern generation stage will search all e, for 
m=l, 2, . . ., N-1 if necessary, it is a complete algorithm [6] [7]. 
This complete pattern generation algorithm leads the AIR algo- 
rithm to be complete as well. 

3.6. The Sequential AIR 

The development of the sequential AIR is based on the same as- 
sumption as the combinational AIR, i.e., the CUV is pre-verified 
and fault free. The fault occurs only at the interconnection between 
the cores. For the testability concern, most sequential cores are 
designed with scan chains. Thus, here we assume that the sequen- 
tial cores in the experiments are scan-testable. These sequential 
cores can be set in arbitrary state and therefore they can be seen as 
combinational ones. Consequently, the AIR algorithm used in the 
combinational cores is applicable to the sequential ones. The only 
difference is that the sequential cores have to be set to a state by 
sequential AIR before evaluating outputs. 

4. EXPERIMENTAL RESULTS 

The heuristic AIR, which adds the iteration counter to bound the 
processing time, has been integrated into the SIS [I41 environment. 
Experiments are conducted over a set of ISCAS-85, 89, and ITC- 
99 benchmarks. These benchmarks are in BLIF format which is 
a netlist level design description. However, we only use the simu- 
lation information to conduct the experiments and therefore, arbi- 
trary level of design description can be used for conducting POF 
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bench 
c17 

c880 
c1355 
c1908 
c432 
c499 

c3540 
c5315 
c2670 
c7552 
c6288 

- 

- 

parameters 

4 / 4 0  
1497 32/32 
372 36/36 
616 39/39 

50 2934 49/49 
178 4369 1781178 
233 2043 2311231 
207 6098 2071207 
32 4800 32/32 

Id connection 

636 
10270 
9373 
23972 
425 

Table 1: Experimental results of the heuristic AIR on ISCAS-85 

verification. The simulation information of the BLIF benchmarks 
imitate the simulation model of IP cores. The functionalities of 
these benchmarks include ALU (c53 1 3 ,  multiplier (c6288), pro- 
cessors (b14, b15), and some ASIC designs, thus, the experiments 
can represent the realistic SoC design appropriately to some de- 
gree. 

Table 1 summaries the experimental results of the heuristic AIR 
on ISCAS-85. The [PI1 represents the number of inputs. The 
number of literals (lits.) indicates the scale of a benchmark. The 
a/b presents "number of corrected portshumber of faulty ports". 
These faulty ports in the experiments are caused by the blind con- 
nection. The blind connection represents the worst case of the SoC 
integration. To imitate the actual interconnection faults in the inte- 
gration, the FPS is generated as follows. For each port i, i from 1 
to N, we assign a random number (E [I N NI) to it. If the number 
has been assigned to port j ,  where 1 g < i ,  we generate another one 
to the port i until it is not repeated. This process is similar to the 
real interconnection process with blindness. Since the FPSs in the 
experiments are generated randomly, the generated FPSs quantify 
the inject out of order permutations. 

The iteration bound in the experiment was set to 100. The AIR 
algorithm will be terminated automatically if the iteration counter 
is over the bound or the PUPs representation becomes empty. At 
the end of AIR, the number of corrected ports, IPUPsl, and CPU 
time are returned. The number of corrected ports is obtained by 
comparing the final FPS with the FFPS. The (PUPS( is obtained 
from the final PUPs representation. The CPU time is measured in 
second on an Ultra Sparc I1 workstation. 

Note that since we greatly concem about how many faulty ports 
are injected and corrected rather than the number of verification 
patterns [6] [7] in the experiments, we do not report the number 
of the verification pattems in the experimental results. 

According to Table 1 and 2, the faulty ports of each benchmark 
are all corrected, the lPUPsl of each benchmark is 0 as well, and 
the processing time of each benchmark is acceptable. These results 
demonstrate that the heuristic AIR is able to correct the misplaced 
ports within reasonable efforts. 

5. CONCLUSIONS 

In the SoC era, the embedded cores are mixed and integrated to 
create a system chip. System designers integrate those cores man- 
ually and have the possibility of incorrect integration due to the 
misplaced 110 ports. Furthermore, without the knowledge of the 
intemal structures of the embedded cores, system designers have 
,difficult time to locate the position of having erroneous intercon- 
nection. The AIR technique provides an efficient solution to inte- 

bench 
s1196 
s1238 
s1488 
91494 

~ 1 5 8 5 0  
927 

95378 
9641 
s713 
9820 
9832 

s9234 
23444 
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9349 
9382 
9386 
9400 

~ 1 3 2 0 7  
91423 
96669 
s4863 
81269 
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s3271 
s3330 
s3384 
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b12 
b13 
b14 
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121 
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14/14 
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35/35 
17/17 
17/17 
16/16 
34/34 
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19/19 
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919 
313 
7 n  
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17/17 
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17/17 
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919 

31/31 
37/37 

818 

- 

F 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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time0 
-592 

37.6 
17.1 
18.4 
608 
0.1 
680 
136 
127 
137 

147.6 
1961 
3.4 
38.5 
4.9 
5.5 
9.2 
3.8 
4.2 

2338 
67.4 
6985 
1391 
66.7 
218.2 
403 

1327 
8.4 

52.6 
19.3 
15.8 
2634 
5062 

a20 

- 

Table 2: Experimental results of the heuristic AIR on sequential 
benchmarks 

grate the cores with correct interconnection automatically. There- 
fore this algorithm can reduce the time on design verification in 
core-based design methodology. 
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