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Abstract 
In a system-on-a-chip (SOC) design, several to hundreds 
of design blocks or intellectual properties (IPs) are 
integrated to form a complex function. Prior to verify the 
functionality of the integrated IPs, it is very important to 
ensure the correctness of the port connections among 
these IPs. This paper addresses the problem of 
verification on port connections while IPs are integrated 
into a larger block or a system, and presents a new 
connection model and the corresponding error model for 
port connections. An algorithm providing the minimum 
pattern set and a general verification flow used to verify 
port connections are also proposed. 

1. Introduction 
Traditional interconnect testing for multichip module 
(MCM) and printed circuit board (PCB) detects and 
diagnoses the existence of physical defects on the 
interconnections. The possible faults caused by physical 
defects are open, short, and stuck faults. Many papers [1-
8, 10] tried to find various test sets to detect and diagnose 
possible faults on an interconnect network. Through 
boundary scan or physical probes, test patterns can be 
applied at drivers and response patterns can be observed 
at receivers on interconnections. By analyzing the 
observed pattern at receivers, faults can be detected or 
diagnosed depending on the ability of the applied test 
patterns. 

In this paper, we address a slightly different scenario 
from the traditional interconnect testing: verify the 
correctness of interconnections of all components in a 
design. That is, while interconnect testing tries to verify 
interconnections formed by physical wiring networks, we 
try to verify interconnections formed by port 
specifications. And instead of detecting faults that are 
caused by defects introduced in the process of 
manufacturing, we try to find out errors in a design that 

are caused by EDA tools or designers at higher abstract 
levels. Since the terms: IP, Virtual Component (VC), and 
design block, are used interchangeably at higher abstract 
levels in literatures, they are also used interchangeably in 
this paper. 

After the specification and architecture of a design is 
decided, designers know what IP blocks are going to be 
integrated in the design. Before starting to verify the 
whole system by simulation, all necessary IP blocks are 
connected together by EDA tools automatically or by 
designers manually. Either way we could have mis-
connected components because of carelessness or mis-
understanding on port definitions of IP blocks. For 
convenience, we use Verilog HDL for our examples in 
this paper. However, our work can not only be applied to 
Verilog HDL but also to all other hardware description 
languages (HDLs) which allow bit-precision descriptions 
of port connections under our assumptions.  
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Figure 1. An example of port connection error in Verilog 
HDL: (a) error-free port connections, and (b) 
erroneous port connections. 
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Figure 1 shows a mis-connected example for designs 
written in Verilog HDL. Figure 1(a) shows correct port 
connections between two IPs, and Figure 1(b) shows 
possible mis-connected port connections. We call the 
errors that lead to mis-connections as "Port Connection 
Errors (PCEs)".  

Furthermore, designs may be re-configured during the 
design exploration process. For example, new IPs may be 
added for performance enhancement and existing IPs may 
be removed for cost reduction. And thus port connections 
in a design are modified, so that PCEs would possibly 
occur repeatedly in the design process. 

While the number of IPs integrated into a system 
increases, the number of interconnects increases 
intensively as well and greatly raises the possibility of the 
occurrence of PCEs. 

This paper presents an approach that can verify the 
correctness of the interconnections among IPs and thus 
can smooth the verification process of the entire system. 
A verification flow is also proposed to verify port 
connection easily and fast, and thus reduces the efforts 
required to find PCEs from hours to minutes or even 
seconds. 

Following sections are organized as follows. In Section 2, 
we first review previous work on interconnect testing, and 
some necessary definitions, notations, and models are 
also described. Verification patterns and their 
diagnosablilty are discussed in Section 3. The proposed 
verification flow is described in Section 4. Section 5 
concludes this paper. 

2. Preliminary 

2.1 Previous Work 
Lien and Breuer [5], Shi and Fuchs [8] defined different 
levels of diagnostic resolution (DR) to assess the 
diagnosability of a test pattern set. The diagnostic 
resolutions range from the lowest resolution of 
determining if an interconnect is fault-free to the highest 
resolution of identifying all faults in an interconnect.  

Fault models used in the previous work on interconnect 
testing are primarily based on one of the following three 
fault models: (1) short fault only, (2) short and stuck fault, 
and (3) short, stuck, and open faults. Since it is more 
realistic to take all short, stuck, and open faults into 
consideration, the third fault model is commonly used and 
discussed in the latest work on interconnect testing. 

Also, interconnects can be behavioral or structural. No 
adjacency information of nets is available in a behavioral 
interconnect while some or detailed adjacency 
information is available in a structural interconnect. For 
structural interconnects, test patterns can be further 

reduced by exploiting available structural information [1, 
5, 6, 10]. 

To diagnose an interconnect, there are non-adaptive or 
adaptive methods. In a non-adaptive diagnosis method, 
diagnosis starts only after all patterns are applied. In an 
adaptive diagnosis method, diagnosis starts after a group 
of leading patterns is applied and the corresponding 
response may affect the succeeding patterns applied. Non-
adaptive diagnosis is also known as one-step diagnosis, 
and adaptive diagnosis is also known as two-step 
diagnosis in some papers. Adaptive diagnosis methods 
require more computations, but usually can reduce test 
patterns for diagnosis[5, 8]. Previous work on 
interconnect testing primarily focuses on finding 
minimum test patterns to diagnose an interconnect. 

Since our work in this paper targets on verifying designs 
at abstract levels higher than gate-level, we assume that 
structural information is not available (It is true for most 
of designs.) and ports of IPs are behaviorally connected. 
To prevent from getting confused with the definition of 
“fault” used in testing, we use “error” that is commonly 
used in the verification field to present incorrect 
connections. And the term “port connections” we use in 
this paper is analogous to the “interconnect” in 
interconnect testing. Port connections among IPs at 
higher abstract levels form physical interconnects in a 
physical design.  

Compare our work with the similar work in [9] that 
verifies port connections only based on the port-order 
fault model, we verify port connections based on a more 
general error model that can model all possible 
connection errors including the errors identical to port-
order faults. 

For simplicity, we only define two levels of diagnostic 
resolution that are further simplified from those defined in 
the previous work [5, 8]: 
 DR1: Determine if port connections are error-free. 
 DR2: Identify all errors in port connections.  

2.2 Port Connection Model (PCM) and 
Definitions 

All connection ports can be divided into two groups, 
driver group and receiver group. Input ports of all design 
blocks are regarded as drivers, and output ports are 
regarded as receivers. For inout ports that can be either 
input or output ports, they can be regarded as either 
drivers or receivers. To generalize all port connections, 
we use a port connection model (PCM) shown in Figure 2 
that models port connections between drivers and 
receivers. 
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Figure 2.  Port connection model. 

 

Given an Imn(D,R,W) that presents port connections, we 
have: 

 Driver set D: 
{ }mdddD ,...,, 21= , |D| = m: number of drivers in 

driver set. 

 Receiver set R: 
{ }nrrrR ,...,, 21= , |R| = n: number of receivers in 

receiver set. 

 Net (Wire) set W: 
{ },,...,, 21 lwwwW = |W | = l: number of nets, 

),min( nml ≤ . 

We further define following relationships: 

 R(di): Receivers of a driver di , 
{ }1,,...,,|,...,,)( 2121 ≥∈= jRrrrrrrdR ijiiijiii  

 D(ri): Drivers of a receiver ri , 
{ }1,,...,,|,...,,)( 2121 ≥∈= kDddddddrD ikiiikiii  

 D(wi): Drivers on a net wi , 
{ }1,,...,,|,...,,)( 2121 ≥∈= xDddddddwD ixiiixiii , 

|D(wi)| = x : number of drivers on wi. 
 
R(wi): Receivers on a net wi , 

{ }1,,...,,|,...,,)( 2121 ≥∈= yRrrrrrrwR iyiiiyiii ,  

|R(wi)| = y : number of receivers on wi. 

 C(wi): Drivers and receivers on a net wi , 
)()()( iii wRwDwC ∪=  

And for each net on Imn(D,R,W), we also have: 
RDwCwCwC l ∪=∪∪∪ )(...)()( 21  

.,,;)()( jiWwwwCwC jiji ≠∈=∩ φ  

Also, wi is called a simple net if |D(wi)|=1 and 
|R(wi)|=1, i.e., exact one driver and one receiver are 
connected to it. And wi is called a complex net if 
|D(wi)|>1 or  |R(wi)|>1, i.e., more than two drivers or 
receivers are connected to it. A complex net wi is said 
a multiple-drive net if |D(wi)| > 1, and said a multiple-
fanout net if |R(wi)| >1. A complex net could be 
multiple-drive, multiple-fanout, or both.  

Let Nc = number of complex nets in an interconnect 
and Ns = number of simple nets in an interconnect, we 
have |W| = l = Nc+Ns. 

If a port is connected to more than one other ports in a 
design, there must exist at least one complex net. It is 
usually the case that if a design contains multiple-fanout 
ports or tri-state buses. 

For convenience, we repeat some notations and 
definitions established in [2] as follows: 

 Parallel Test Vector (PTV): the vector applied to all 
drivers in parallel. 

 Sequential Test Vector (STV): the vector applied to 
a driver in serial. 

 Verification Pattern Set (S): the collection of all 
STVs, S = {STV1, STV2, …, STVm}. Each STV may 
have different bit length, and the bit length of the 
longest STV is the number of (PTV) patterns required. 

 Sequential Response Vector (SRV): the response 
vector observed at receivers. An SRV can be a vector 
contributed by one or more STVs. For any SRV that is 
contributed by multiple STVs, the value in its vector 
is a result of certain logic operations of all 
contributing STVs. 

 Response Pattern Set (S’): the collection of all SRVs, 
S’ = {SRV1, SRV2, …, SRVn} 

 Syndrome: the SRV of a connection error. 

 Aliasing syndrome: the resulting syndrome of a set of 
erroneous nets is the same as a correct SRV of a net 
not in the set. 

 Confounding Syndrome: identical syndromes that 
result from different sets of multiple independent 
errors. 

Figure 3 shows an example of a verification pattern set. 
The pattern set consists of six patterns that applied to four 
drivers. Note the shaded patterns are shown for clarity to 
denote PTV and STV respectively. 

P
TV

STV 0 0 1 0 0 1
1 0 1 0 1 0
0 1 0 1 1 1
1 1 1 0 0 1

Verification Pattern Set

Driver Side

d1

d2

d3

d4

Patterns are
driven to

connections.

 
Figure 3.  An example of a verification pattern set. 
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2.3 Assumptions 
Unlike the environment in the previous work on 
interconnect testing, we verify the correctness of port 
connections of a design at a higher abstract level. Since 
there are various types of EDA (Electronic Design 
Automation) tools and environments for designers, we 
make some assumptions described in the following to 
make our work viable: 

(1) The simulation environment allows 4-value (0-1-X-Z) 
logic simulation: Most simulators nowadays support 
4-value logic simulation. 

(2) Output ports that are supposed not to be connected 
to anything are discarded: In some cases, some 
output ports of IPs are not in use in certain 
configuration and not connected to anything in the 
design. These ports should be removed first before 
the verification to avoid false negative alarms. 

(3) A net that is driven by different logic value 0 and 1 is 
supposed to have logic value X (unknown): It is true 
for most simulators that allow 4-value simulation. 

(4) For inout ports, either input or output direction must 
be specified before the verification and not 
changeable during the verification process: Note that 
we are verifying the correctness of the port 
connections, the direction of ports does not matter. 

(5) For multiple-drive and multiple-fanout nets, 
assumptions are made as follows. (i) Repeaters or 
bus keepers used to hold logic values on nets are 
removed. (ii) No wired-logic behavior is assumed. (iii) 
No driving strength is assumed: Information about 
driving strengths is usually not available for designs 
at abstract levels higher than gate-level. Even for a 
design that having driving strength information, it is 
not hard to temporally remove it. 

(6) For a net that is not connecting to any driver in the 
driver set, it would have a fixed logic  value (0, 1, or 
X) during the verification process: A net that is not 
connecting to any driver in the driver set is either 
connected to no drivers or connected to drivers 
providing fixed logic values during the verification 
process. 

The assumptions made above are mostly self-satisfied in 
most EDA environments for designs at a abstract level  
higher than gate-level. 

2.4 PCE Model 
We categorize PCEs into two categories, floating errors 
and connection errors. Based on the PCM in Section 2.2, 
these two categories of PCEs are described as follows: 

 

 Floating errors:  
A driver di∈D is floating if no receiver receives its 
value, and a receiver is floating if no driver drives it. 

 Connection errors: 
A driver di∈D is said to have erroneous connections 
if it is connected to any receiver rj that rj∉R(di). A 
receiver ri∈R is said to have erroneous connections if 
it is connected to any driver dj that dj∉D(ri). 

To distinguish our work from traditional interconnect 
testing, we use some different terminology but basically 
presenting the same ideas as in testing. A floating error is 
like an open fault in testing, and a connection error is like 
a short fault or a combination of several short and open 
faults. 

3. Verification Patterns 
In this section, we first discuss the algorithm deriving 
verification patterns with the simplified PCM that is 
analogous to the interconnect model commonly used in 
interconnect testing. Then the algorithm is extended to 
handle the PCM. 

Since we verify the port connections by simulation, the 
number of verification patterns is not as critical as that in 
traditional interconnect testing. In interconnect testing, 
number of test patterns presented in literatures so far 
requires at least O(logn)1 and at most O(n) patterns [8], 
where n is the number of nets on an interconnect. The 
difference for the time to simulate the least and the most 
patterns is possibly less than seconds and at virtually no 
cost. But we still present a method to generate the 
minimum number of patterns to verify port connections. 

3.1  n-to-n Port Connections with All Simple Nets 
Given Inn(D,R,W) of error-free port connections 
simplified from the PCM with 2 extra constraints: (1) 
m=n, (2) d(wi)=r(wi)=1, for all wi∈W, i.e., all nets are 
simple nets. This is also the model that is commonly used 
in interconnect testing. Neither multiple-drive nor 
multiple-fanout nets are allowed. 

In [8], ⎡ ⎤)2log( +n  test patterns had been proved to be 
necessary and sufficient for reaching the lowest diagnosis 
resolution, i.e., DR1. And it is also the lower bound of the 
number of required patterns in interconnect testing that 
takes all fault models into consideration. 

Using the PCM and assumptions in Section 2, we can use 
almost as less as the lower bound of patterns in 
interconnect testing to diagnose port connections in 
Inn(D,R,W) but reach DR2 instead of DR1. 

                                                 
1 For convenience, log2 is denoted as log in this paper. 
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Theorem 1: To diagnose all errors in Inn(D,R,W), i.e., to 
reach DR2, ⎡ ⎤ 1)1log( ++n  verification patterns are 
necessary and sufficient. 

Proof:  
Necessity: 
(1) To identify each and every driver, a unique bit string 

(STV) is required for each and every driver. 
⎡ ⎤)log(n  patterns are required. 

(2) To detect any receiver that receives a fixed logic 
value 0 or 1, neither all-0 nor all-1 STV is allowed. A 
receiver that receives a fixed logic value is identified 
as a floating error. 
⎡ ⎤)2log( +n  patterns are required. 

(3) To avoid confounding syndromes that all receivers 
are floating and all ports are connected (both  cases 
lead to an all-X value in SRVs), an extra all-0 or all-1 
PTV is required. Note that this pattern can further 
reduce ⎡ ⎤)2log( +n  to ⎡ ⎤)1log( +n  in (2), since it 
can avoid either all-1 or all-0 STVs. 

In summary, ⎡ ⎤ 1)1log( ++n patterns are necessary. 

Sufficiency: 
After simulation, if a receiver ri receives SRVif≠ SRVi, an 
error is detected and we can further identify errors by 
analyzing SRVif : 
(1) SRVif is all-X: Receiver ri is floating. If not, the all-0 

or all-1 PTV guarantees at least one bit of SRVif is not 
X. 

(2) One or more bits in SRVif are X: Since each STV is 
unique, only cases that two or more drivers drive the 
receiver ri would generate X in SRVif. Furthermore, 
we can identify which drivers are involved in the 
errors by analyzing bit positions of value X in SRVif. 

(3) No bits in SRVif  is X: The receiver ri is mis-connected 
to a wrong driver. 

Also, a floating driver dj can be diagnosed by analyzing 
the verification pattern set since no contribution can be 
found by the corresponding STVj.  

Neither aliasing syndromes nor confounding syndromes 
can occur since a receiver would receive SRVif≠ SRVi if 
there exists any PCEs in Inn(D,R,W) by analyzing the 
response set at the receivers.                                             

Table 1 shows an example of the verification patterns for 
a 4-to-4 port connections where all nets are simple nets. 
The pattern in the shaded column is the extra all-0 PTV, 
and the others are generated by the counting algorithm 
without all-0 and all-1 STVs. Next, we extend port 
connections to the general PCM. 

 
 

 

Table 1.  An example of verification patterns. 

Driver Verification Pattern (STV) 
d1  0 001  
d2  0 010  
d3  0 011  
d4  0 100  

3.2  m-to-n Generalized Port Connections 
Given Imn(D,R,W) of error-free port connections, where 
no constraints are set, it presents a more realistic and 
general case of port connections. That is, the existence of 
complex nets is allowed. To verify such port connections, 
two phases of verification are required. The first phase 
verifies the connections as n-to-n port connections 
without complex nets, and the second phase ensures that 
all complex nets are properly connected as expected. 
These two verification phases are described as follows: 

 Phase 1:  
Regard all complex nets in Imn(D,R,W) as simple nets, 
and Imn(D,R,W) effectively becomes x-port to x-port 
connections, where x=|W|. Use the verification 
patterns discussed in Section 3.1 to verify such 
connections, we need ( ⎡ ⎤ 1)1|log(| ++W ) = 
( ⎡ ⎤ 1)1log( +++ cs NN ) patterns. For a complex net 
wi, all drivers in D(wi) are regarded as a single driver 
and drive the same STV, meanwhile, all receivers in 
R(wi) are regarded as a single receiver and should 
receive the same SRV. Phase 1 can diagnose all port 
connection errors except ones that not all drivers on a 
complex net are floating, since all drivers on a 
complex net are driving same STV and thus the 
responses are not distinguishable. For example, for a 
complex net w1 that C(w1) = {d1, d2, d3, r1}, if only d1 
is floating, it can not be detected since r1 still receives 
a correct SRV. 
Phase 1 detects and diagnoses all floating and 
connection errors on all receivers, and all connection 
errors on all drivers. 

 Phase 2: 
Verify the connectivity of drivers on all complex nets. 
Note that for a complex net wi, the connectivity of all 
receivers in R(wi) is ensured in Phase 1 if they all 
receive the same SRV. To ensure the connectivity of 
all drivers in D(wi), |D(wi)| patterns that generated by 
walking-one or walking-zero method are required 
(proved later). Therefore, to verify Imn(D,R,W) in 
Phase2, number of verification patterns required is 
max(|D(wi)|), where { }||,...,2,1, WiWwi =∈ . And all 
receivers on complex nets are expected to receive the 
SRV of all-X value. 
Phase 2 detects and diagnoses all floating errors on all 
drivers. 
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Theorem 2: To verify the connectivity of n drivers on a 
complex net, a pattern set must have at least n different 
patterns of one-hot or one-cold vectors. 

Proof: 
A one-hot vector is a vector with only one bit of value 1 
and all other bits of value 0, and a one-cold vector is a 
vector with only one bit of value 0 and all other bits of 
value 1. For a pattern set S = {PTV1, PTV2, …, PTVx} that 
is used to verify the connectivity of drivers {d1, d2,…, dn} 
on a complex net, each PTV of value {v1, v2,…, vn} is 
applied to all drivers in the manner of {v1  d1, v2  d2, …, 
vn  dn}. To verify if a driver di is connected on the 
complex net, a PTV must be applied to all drivers that the 
bit value of vi applied at di is different from all other bits 
in the PTV, i.e., a vector with vi=0 and all others are ones 
(one-cold vector), or vi=1 and all others are zeros (one-
hot vector), so that only di can possibly contribute the X 
value to receivers. Therefore, n drivers on a complex net 
require at least n different patterns of one-hot or one-cold 
vectors to verify the connectivity, i.e., to ensure that all 
drivers are indeed connected to the complex net.             

By Theorem 2, it is obvious that the minimum number of 
patterns required to verify the connectivity of drivers on a 
complex net is the number of drivers on it. Therefore, 
number of patterns required to verify all complex nets in 
Phase 2 is determined by the complex net that has the 
most drivers. The simplest way to generate such patterns 
is applying walking-one or walking-zero sequences. 

In summary, to verify Imn(D,R,W), we need a total number 
of ( ⎡ ⎤ +++ 1)1|log(| W max|D(wi)| ) to reach DR2.  

Since the term (max|D(wi)|) is the number of additional 
patterns required in m-to-n port connections compared to 
n-to-n port connections, verification patterns can be 
reduced if (max|D(wi)|) can be reduced. Therefore, for a 
complex net having ports that can be either drivers or 
receivers, i.e., inout ports, patterns can be minimized if 
inout ports are configured as output ports as many as 
possible. But note that at least one driver must be left on a 
complex net for the use of pattern application. 

3.3 An Example 
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        Receiver
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Side
(IP1)

        Receiver
               Side
               (IP2)

IP1 U_IP1(.d1(w1),.d2(w2),.d3(w2),.d4(w3));
IP2 U_IP2(.r1(w1),.r2(w2),.r3(w2),.r4(w3),.r5(w5));

d1

d2

d3

d4

r1

r2

r3

r4

r5

 
 

Figure 4. An example of possible port connections. 
 

Figure 4 shows an example of 4-to-5 port connections.  

To derive verification patterns discussed in Section 3.2, 
total number of verification patterns required is calculated 
as:  ⎡ ⎤ 21)13log( +++  = 5. And these five verification 
patterns are shown in Table 2. Note that the verification 
patterns required in Phase 1 and Phase 2 are listed in the 
separate columns in Table 2. In Phase 1, d2 and d3 apply 
the same STV (shown in the shaded area), because they 
are both on the same complex net (w2). 
Table 2.  Verification patterns for the example in Figure 4. 

Verification Pattern (STV) Driver 
Phase 1 Phase 2 

d1 001  
d2 010 01 
d3 010 10 
d4 011  

 

After the verification patterns are applied at the driver 
side, expected response patterns at the receiver side are 
listed in Table 3. Note that the SRVs containing all-X 
values are expected at r2 and r3 (shown in the shaded 
area), because they are both on the same complex net (w2). 

Table 3. Response patterns for the example in Figure 4. 

Response Pattern (SRV) Receiver 
Phase 1 Phase 2 

r1 001  
r2 010 XX 
r3 010 XX 
r4 011  
r5 011  

4. Verification Flow 
Like most verification work, design intent is virtually 
impossible to be thoroughly verified and so is the intent 
of correct port connections. We exploit redundancy like 
many of other verification methods to reduce the 
possibility of errors. That is, a design can be described in 
two different formats, and the correctness of the design 
can be ensured by checking whether they are consistent. 

The verification flow we propose here also requires two 
formats of port connections. One is the design written in 
any HDL like Verilog HDL or VHDL, etc., and the other 
is the format that purely describes the connections of all 
ports and it can be as simple as a two-column table. 
Drivers in port connections are described in one column, 
and corresponding receivers are described in the other. 

Figure 5 shows our verification flow. Once the design 
specification is decided, designers start HDL coding for 
the design; meanwhile, a file is maintained for port 
connections descriptions. Processes in the shaded area 
shown in Figure 5 can be done automatically. Verification 

Paper 29.3

835



and Response patterns are generated from the file with the 
information of port connections. A testbench can be 
automatically generated from the whole design written in 
HDL that will be used for simulation later. In the 
testbench that is automatically generated, all modules are 
the stub models that only have the information of port 
interfaces extracted from the HDL design, and an 
additional process that is used to apply verification 
patterns and analyze response patterns is also added. 

After simulating the testbench, a pass signal is asserted if 
port connections are correct. Otherwise a fail signal is 
asserted and all PCEs in port connections would be 
reported. Designers can verify the port connections based 
on the information reported and go through the 
verification flow again whenever the port connections are 
modified. 

Spec.

Verification and Response
Pattern Set Generation

Auto Testbench
Generation (ATBG)

Simulation

HDL Coding Port Connection
Description

Pass/Fail ?

Other Verification
Processes

Check & Fix
Port

Connection
Description

Check & Fix
Port

Connections in
the HDL
Design
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Verification and Response
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Generation (ATBG)

Simulation

HDL Coding Port Connection
Description

Pass/Fail ?

Other Verification
Processes

Pass

Fail Fail

Check & Fix
Port

Connection
Description

Check & Fix
Port

Connections
in the HDL

Design

 
Figure 5. Flow Chart of the Verification Flow 

 

Note that both descriptions for port connections could be 
erroneous, but it is indeed a fundamental problem in 
verification: for a design written in two different formats 
or even by two different teams, neither one is guaranteed 
a golden description of the design. But the possibility of 
errors can be greatly reduced by exploiting such 
redundancy. 

5. Conclusions 
Before verifying the function of a system, designers have 
to connect all modules together for simulation. Though it 
is not a hard work to verify the correctness of port 
connections manually, it is extremely time-consuming. It 
is especially true when SOC designs are getting more 
complex and designers have to put more IPs into one 
system that have thousands of ports to be connected. Also, 
configurations of a design may be changed from time to 
time to accommodate performance requirement during the 
design exploration process. This process leads to the 
iterative modification of port connections. It also means 
that errors in port connections could occur repeatedly and 
must be verified whenever port connections are modified.  

In this paper, we present a port connection model (PCM) 
to model port connections at higher abstract levels, and a 
port connection error (PCE) model to describe all 
possible errors in port connections. By taking advantage 
of most simulators that support 4-value logic simulation, 
we propose an algorithm generating a minimum 
verification pattern set and a verification flow that can 
diagnose all PCEs in port connections efficiently. We 
believe that this work is very practical and can save lots 
of time compared with the time required to verify port 
connections manually, say, from hours to fewer than 
minutes or even seconds. 
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