

Verification on Port Connections

Geeng-Wei Lee*, Chun-Yao Wang , Juinn-Dar Huang*, and Jing-Yang Jou*

* Department of Electronics Engineering

National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
{gwlee, jyjou}@eda.ee.nctu.edu.tw, jdhuang@mail.nctu.edu.tw

 Department of Computer Science
National Tsing Hua University, Hsinchu, Taiwan, R.O.C.

wcyao@cs.nthu.edu.tw

Abstract
In a system-on-a-chip (SOC) design, several to hundreds
of design blocks or intellectual properties (IPs) are
integrated to form a complex function. Prior to verify the
functionality of the integrated IPs, it is very important to
ensure the correctness of the port connections among
these IPs. This paper addresses the problem of
verification on port connections while IPs are integrated
into a larger block or a system, and presents a new
connection model and the corresponding error model for
port connections. An algorithm providing the minimum
pattern set and a general verification flow used to verify
port connections are also proposed.

1. Introduction
Traditional interconnect testing for multichip module
(MCM) and printed circuit board (PCB) detects and
diagnoses the existence of physical defects on the
interconnections. The possible faults caused by physical
defects are open, short, and stuck faults. Many papers [1-
8, 10] tried to find various test sets to detect and diagnose
possible faults on an interconnect network. Through
boundary scan or physical probes, test patterns can be
applied at drivers and response patterns can be observed
at receivers on interconnections. By analyzing the
observed pattern at receivers, faults can be detected or
diagnosed depending on the ability of the applied test
patterns.

In this paper, we address a slightly different scenario
from the traditional interconnect testing: verify the
correctness of interconnections of all components in a
design. That is, while interconnect testing tries to verify
interconnections formed by physical wiring networks, we
try to verify interconnections formed by port
specifications. And instead of detecting faults that are
caused by defects introduced in the process of
manufacturing, we try to find out errors in a design that

are caused by EDA tools or designers at higher abstract
levels. Since the terms: IP, Virtual Component (VC), and
design block, are used interchangeably at higher abstract
levels in literatures, they are also used interchangeably in
this paper.

After the specification and architecture of a design is
decided, designers know what IP blocks are going to be
integrated in the design. Before starting to verify the
whole system by simulation, all necessary IP blocks are
connected together by EDA tools automatically or by
designers manually. Either way we could have mis-
connected components because of carelessness or mis-
understanding on port definitions of IP blocks. For
convenience, we use Verilog HDL for our examples in
this paper. However, our work can not only be applied to
Verilog HDL but also to all other hardware description
languages (HDLs) which allow bit-precision descriptions
of port connections under our assumptions.

 U_IP1 U_IP2 U_IP1 U_IP2

d1

d2

d3

d4

IP1 U_IP1(.d1(w1),.d2(w2),.d3(w3),.d4(w4));
IP2 U_IP2(.r1(w1),.r2(w2),.r3(w3),.r4(w4));

r1

r2

r3

r4

w1

w2

w3

w4

(a)

 U_IP1 U_IP2

IP1 U_IP1(.d1(w1),.d2(w2),.d3(w4),.d4(w5));
IP2 U_IP2(.r1(w1),.r2(w2),.r3(w2),.r4(w4));

 U_IP1 U_IP2

d1

d2

d3

d4

r1

r2

r3

r4

w1

w2

w3

w5

(b)

Figure 1. An example of port connection error in Verilog
HDL: (a) error-free port connections, and (b)
erroneous port connections.

ITC INTERNATIONAL TEST CONFERENCE

0-7803-8580-2/04 $20.00 Copyright 2004 IEEE

Paper 29.3

830

Figure 1 shows a mis-connected example for designs
written in Verilog HDL. Figure 1(a) shows correct port
connections between two IPs, and Figure 1(b) shows
possible mis-connected port connections. We call the
errors that lead to mis-connections as "Port Connection
Errors (PCEs)".

Furthermore, designs may be re-configured during the
design exploration process. For example, new IPs may be
added for performance enhancement and existing IPs may
be removed for cost reduction. And thus port connections
in a design are modified, so that PCEs would possibly
occur repeatedly in the design process.

While the number of IPs integrated into a system
increases, the number of interconnects increases
intensively as well and greatly raises the possibility of the
occurrence of PCEs.

This paper presents an approach that can verify the
correctness of the interconnections among IPs and thus
can smooth the verification process of the entire system.
A verification flow is also proposed to verify port
connection easily and fast, and thus reduces the efforts
required to find PCEs from hours to minutes or even
seconds.

Following sections are organized as follows. In Section 2,
we first review previous work on interconnect testing, and
some necessary definitions, notations, and models are
also described. Verification patterns and their
diagnosablilty are discussed in Section 3. The proposed
verification flow is described in Section 4. Section 5
concludes this paper.

2. Preliminary

2.1 Previous Work
Lien and Breuer [5], Shi and Fuchs [8] defined different
levels of diagnostic resolution (DR) to assess the
diagnosability of a test pattern set. The diagnostic
resolutions range from the lowest resolution of
determining if an interconnect is fault-free to the highest
resolution of identifying all faults in an interconnect.

Fault models used in the previous work on interconnect
testing are primarily based on one of the following three
fault models: (1) short fault only, (2) short and stuck fault,
and (3) short, stuck, and open faults. Since it is more
realistic to take all short, stuck, and open faults into
consideration, the third fault model is commonly used and
discussed in the latest work on interconnect testing.

Also, interconnects can be behavioral or structural. No
adjacency information of nets is available in a behavioral
interconnect while some or detailed adjacency
information is available in a structural interconnect. For
structural interconnects, test patterns can be further

reduced by exploiting available structural information [1,
5, 6, 10].

To diagnose an interconnect, there are non-adaptive or
adaptive methods. In a non-adaptive diagnosis method,
diagnosis starts only after all patterns are applied. In an
adaptive diagnosis method, diagnosis starts after a group
of leading patterns is applied and the corresponding
response may affect the succeeding patterns applied. Non-
adaptive diagnosis is also known as one-step diagnosis,
and adaptive diagnosis is also known as two-step
diagnosis in some papers. Adaptive diagnosis methods
require more computations, but usually can reduce test
patterns for diagnosis[5, 8]. Previous work on
interconnect testing primarily focuses on finding
minimum test patterns to diagnose an interconnect.

Since our work in this paper targets on verifying designs
at abstract levels higher than gate-level, we assume that
structural information is not available (It is true for most
of designs.) and ports of IPs are behaviorally connected.
To prevent from getting confused with the definition of
“fault” used in testing, we use “error” that is commonly
used in the verification field to present incorrect
connections. And the term “port connections” we use in
this paper is analogous to the “interconnect” in
interconnect testing. Port connections among IPs at
higher abstract levels form physical interconnects in a
physical design.

Compare our work with the similar work in [9] that
verifies port connections only based on the port-order
fault model, we verify port connections based on a more
general error model that can model all possible
connection errors including the errors identical to port-
order faults.

For simplicity, we only define two levels of diagnostic
resolution that are further simplified from those defined in
the previous work [5, 8]:
 DR1: Determine if port connections are error-free.
 DR2: Identify all errors in port connections.

2.2 Port Connection Model (PCM) and
Definitions

All connection ports can be divided into two groups,
driver group and receiver group. Input ports of all design
blocks are regarded as drivers, and output ports are
regarded as receivers. For inout ports that can be either
input or output ports, they can be regarded as either
drivers or receivers. To generalize all port connections,
we use a port connection model (PCM) shown in Figure 2
that models port connections between drivers and
receivers.

Paper 29.3

831

Driver
Side

 Receiver
Side

Driver
Side

 Receiver
Side

d1
d2
d3

dm

r1
r2
r3

rn

Connection
Network

Figure 2. Port connection model.

Given an Imn(D,R,W) that presents port connections, we
have:

 Driver set D:
{ }mdddD ,...,, 21= , |D| = m: number of drivers in

driver set.

 Receiver set R:
{ }nrrrR ,...,, 21= , |R| = n: number of receivers in

receiver set.

 Net (Wire) set W:
{ },,...,, 21 lwwwW = |W | = l: number of nets,

),min(nml ≤ .

We further define following relationships:

 R(di): Receivers of a driver di ,
{ }1,,...,,|,...,,)(2121 ≥∈= jRrrrrrrdR ijiiijiii

 D(ri): Drivers of a receiver ri ,
{ }1,,...,,|,...,,)(2121 ≥∈= kDddddddrD ikiiikiii

 D(wi): Drivers on a net wi ,
{ }1,,...,,|,...,,)(2121 ≥∈= xDddddddwD ixiiixiii ,

|D(wi)| = x : number of drivers on wi.

R(wi): Receivers on a net wi ,

{ }1,,...,,|,...,,)(2121 ≥∈= yRrrrrrrwR iyiiiyiii ,

|R(wi)| = y : number of receivers on wi.

 C(wi): Drivers and receivers on a net wi ,
)()()(iii wRwDwC ∪=

And for each net on Imn(D,R,W), we also have:
RDwCwCwC l ∪=∪∪∪)(...)()(21

.,,;)()(jiWwwwCwC jiji ≠∈=∩ φ

Also, wi is called a simple net if |D(wi)|=1 and
|R(wi)|=1, i.e., exact one driver and one receiver are
connected to it. And wi is called a complex net if
|D(wi)|>1 or |R(wi)|>1, i.e., more than two drivers or
receivers are connected to it. A complex net wi is said
a multiple-drive net if |D(wi)| > 1, and said a multiple-
fanout net if |R(wi)| >1. A complex net could be
multiple-drive, multiple-fanout, or both.

Let Nc = number of complex nets in an interconnect
and Ns = number of simple nets in an interconnect, we
have |W| = l = Nc+Ns.

If a port is connected to more than one other ports in a
design, there must exist at least one complex net. It is
usually the case that if a design contains multiple-fanout
ports or tri-state buses.

For convenience, we repeat some notations and
definitions established in [2] as follows:

 Parallel Test Vector (PTV): the vector applied to all
drivers in parallel.

 Sequential Test Vector (STV): the vector applied to
a driver in serial.

 Verification Pattern Set (S): the collection of all
STVs, S = {STV1, STV2, …, STVm}. Each STV may
have different bit length, and the bit length of the
longest STV is the number of (PTV) patterns required.

 Sequential Response Vector (SRV): the response
vector observed at receivers. An SRV can be a vector
contributed by one or more STVs. For any SRV that is
contributed by multiple STVs, the value in its vector
is a result of certain logic operations of all
contributing STVs.

 Response Pattern Set (S’): the collection of all SRVs,
S’ = {SRV1, SRV2, …, SRVn}

 Syndrome: the SRV of a connection error.

 Aliasing syndrome: the resulting syndrome of a set of
erroneous nets is the same as a correct SRV of a net
not in the set.

 Confounding Syndrome: identical syndromes that
result from different sets of multiple independent
errors.

Figure 3 shows an example of a verification pattern set.
The pattern set consists of six patterns that applied to four
drivers. Note the shaded patterns are shown for clarity to
denote PTV and STV respectively.

P
TV

STV 0 0 1 0 0 1
1 0 1 0 1 0
0 1 0 1 1 1
1 1 1 0 0 1

Verification Pattern Set

Driver Side

d1

d2

d3

d4

Patterns are
driven to

connections.

Figure 3. An example of a verification pattern set.

Paper 29.3

832

2.3 Assumptions
Unlike the environment in the previous work on
interconnect testing, we verify the correctness of port
connections of a design at a higher abstract level. Since
there are various types of EDA (Electronic Design
Automation) tools and environments for designers, we
make some assumptions described in the following to
make our work viable:

(1) The simulation environment allows 4-value (0-1-X-Z)
logic simulation: Most simulators nowadays support
4-value logic simulation.

(2) Output ports that are supposed not to be connected
to anything are discarded: In some cases, some
output ports of IPs are not in use in certain
configuration and not connected to anything in the
design. These ports should be removed first before
the verification to avoid false negative alarms.

(3) A net that is driven by different logic value 0 and 1 is
supposed to have logic value X (unknown): It is true
for most simulators that allow 4-value simulation.

(4) For inout ports, either input or output direction must
be specified before the verification and not
changeable during the verification process: Note that
we are verifying the correctness of the port
connections, the direction of ports does not matter.

(5) For multiple-drive and multiple-fanout nets,
assumptions are made as follows. (i) Repeaters or
bus keepers used to hold logic values on nets are
removed. (ii) No wired-logic behavior is assumed. (iii)
No driving strength is assumed: Information about
driving strengths is usually not available for designs
at abstract levels higher than gate-level. Even for a
design that having driving strength information, it is
not hard to temporally remove it.

(6) For a net that is not connecting to any driver in the
driver set, it would have a fixed logic value (0, 1, or
X) during the verification process: A net that is not
connecting to any driver in the driver set is either
connected to no drivers or connected to drivers
providing fixed logic values during the verification
process.

The assumptions made above are mostly self-satisfied in
most EDA environments for designs at a abstract level
higher than gate-level.

2.4 PCE Model
We categorize PCEs into two categories, floating errors
and connection errors. Based on the PCM in Section 2.2,
these two categories of PCEs are described as follows:

 Floating errors:
A driver di∈D is floating if no receiver receives its
value, and a receiver is floating if no driver drives it.

 Connection errors:
A driver di∈D is said to have erroneous connections
if it is connected to any receiver rj that rj∉R(di). A
receiver ri∈R is said to have erroneous connections if
it is connected to any driver dj that dj∉D(ri).

To distinguish our work from traditional interconnect
testing, we use some different terminology but basically
presenting the same ideas as in testing. A floating error is
like an open fault in testing, and a connection error is like
a short fault or a combination of several short and open
faults.

3. Verification Patterns
In this section, we first discuss the algorithm deriving
verification patterns with the simplified PCM that is
analogous to the interconnect model commonly used in
interconnect testing. Then the algorithm is extended to
handle the PCM.

Since we verify the port connections by simulation, the
number of verification patterns is not as critical as that in
traditional interconnect testing. In interconnect testing,
number of test patterns presented in literatures so far
requires at least O(logn)1 and at most O(n) patterns [8],
where n is the number of nets on an interconnect. The
difference for the time to simulate the least and the most
patterns is possibly less than seconds and at virtually no
cost. But we still present a method to generate the
minimum number of patterns to verify port connections.

3.1 n-to-n Port Connections with All Simple Nets
Given Inn(D,R,W) of error-free port connections
simplified from the PCM with 2 extra constraints: (1)
m=n, (2) d(wi)=r(wi)=1, for all wi∈W, i.e., all nets are
simple nets. This is also the model that is commonly used
in interconnect testing. Neither multiple-drive nor
multiple-fanout nets are allowed.

In [8], ⎡ ⎤)2log(+n test patterns had been proved to be
necessary and sufficient for reaching the lowest diagnosis
resolution, i.e., DR1. And it is also the lower bound of the
number of required patterns in interconnect testing that
takes all fault models into consideration.

Using the PCM and assumptions in Section 2, we can use
almost as less as the lower bound of patterns in
interconnect testing to diagnose port connections in
Inn(D,R,W) but reach DR2 instead of DR1.

1 For convenience, log2 is denoted as log in this paper.

Paper 29.3

833

Theorem 1: To diagnose all errors in Inn(D,R,W), i.e., to
reach DR2, ⎡ ⎤ 1)1log(++n verification patterns are
necessary and sufficient.

Proof:
Necessity:
(1) To identify each and every driver, a unique bit string

(STV) is required for each and every driver.
⎡ ⎤)log(n patterns are required.

(2) To detect any receiver that receives a fixed logic
value 0 or 1, neither all-0 nor all-1 STV is allowed. A
receiver that receives a fixed logic value is identified
as a floating error.
⎡ ⎤)2log(+n patterns are required.

(3) To avoid confounding syndromes that all receivers
are floating and all ports are connected (both cases
lead to an all-X value in SRVs), an extra all-0 or all-1
PTV is required. Note that this pattern can further
reduce ⎡ ⎤)2log(+n to ⎡ ⎤)1log(+n in (2), since it
can avoid either all-1 or all-0 STVs.

In summary, ⎡ ⎤ 1)1log(++n patterns are necessary.

Sufficiency:
After simulation, if a receiver ri receives SRVif≠ SRVi, an
error is detected and we can further identify errors by
analyzing SRVif :
(1) SRVif is all-X: Receiver ri is floating. If not, the all-0

or all-1 PTV guarantees at least one bit of SRVif is not
X.

(2) One or more bits in SRVif are X: Since each STV is
unique, only cases that two or more drivers drive the
receiver ri would generate X in SRVif. Furthermore,
we can identify which drivers are involved in the
errors by analyzing bit positions of value X in SRVif.

(3) No bits in SRVif is X: The receiver ri is mis-connected
to a wrong driver.

Also, a floating driver dj can be diagnosed by analyzing
the verification pattern set since no contribution can be
found by the corresponding STVj.

Neither aliasing syndromes nor confounding syndromes
can occur since a receiver would receive SRVif≠ SRVi if
there exists any PCEs in Inn(D,R,W) by analyzing the
response set at the receivers.

Table 1 shows an example of the verification patterns for
a 4-to-4 port connections where all nets are simple nets.
The pattern in the shaded column is the extra all-0 PTV,
and the others are generated by the counting algorithm
without all-0 and all-1 STVs. Next, we extend port
connections to the general PCM.

Table 1. An example of verification patterns.

Driver Verification Pattern (STV)
d1 0 001
d2 0 010
d3 0 011
d4 0 100

3.2 m-to-n Generalized Port Connections
Given Imn(D,R,W) of error-free port connections, where
no constraints are set, it presents a more realistic and
general case of port connections. That is, the existence of
complex nets is allowed. To verify such port connections,
two phases of verification are required. The first phase
verifies the connections as n-to-n port connections
without complex nets, and the second phase ensures that
all complex nets are properly connected as expected.
These two verification phases are described as follows:

 Phase 1:
Regard all complex nets in Imn(D,R,W) as simple nets,
and Imn(D,R,W) effectively becomes x-port to x-port
connections, where x=|W|. Use the verification
patterns discussed in Section 3.1 to verify such
connections, we need (⎡ ⎤ 1)1|log(| ++W) =
(⎡ ⎤ 1)1log(+++ cs NN) patterns. For a complex net
wi, all drivers in D(wi) are regarded as a single driver
and drive the same STV, meanwhile, all receivers in
R(wi) are regarded as a single receiver and should
receive the same SRV. Phase 1 can diagnose all port
connection errors except ones that not all drivers on a
complex net are floating, since all drivers on a
complex net are driving same STV and thus the
responses are not distinguishable. For example, for a
complex net w1 that C(w1) = {d1, d2, d3, r1}, if only d1
is floating, it can not be detected since r1 still receives
a correct SRV.
Phase 1 detects and diagnoses all floating and
connection errors on all receivers, and all connection
errors on all drivers.

 Phase 2:
Verify the connectivity of drivers on all complex nets.
Note that for a complex net wi, the connectivity of all
receivers in R(wi) is ensured in Phase 1 if they all
receive the same SRV. To ensure the connectivity of
all drivers in D(wi), |D(wi)| patterns that generated by
walking-one or walking-zero method are required
(proved later). Therefore, to verify Imn(D,R,W) in
Phase2, number of verification patterns required is
max(|D(wi)|), where { }||,...,2,1, WiWwi =∈ . And all
receivers on complex nets are expected to receive the
SRV of all-X value.
Phase 2 detects and diagnoses all floating errors on all
drivers.

Paper 29.3

834

Theorem 2: To verify the connectivity of n drivers on a
complex net, a pattern set must have at least n different
patterns of one-hot or one-cold vectors.

Proof:
A one-hot vector is a vector with only one bit of value 1
and all other bits of value 0, and a one-cold vector is a
vector with only one bit of value 0 and all other bits of
value 1. For a pattern set S = {PTV1, PTV2, …, PTVx} that
is used to verify the connectivity of drivers {d1, d2,…, dn}
on a complex net, each PTV of value {v1, v2,…, vn} is
applied to all drivers in the manner of {v1 d1, v2 d2, …,
vn dn}. To verify if a driver di is connected on the
complex net, a PTV must be applied to all drivers that the
bit value of vi applied at di is different from all other bits
in the PTV, i.e., a vector with vi=0 and all others are ones
(one-cold vector), or vi=1 and all others are zeros (one-
hot vector), so that only di can possibly contribute the X
value to receivers. Therefore, n drivers on a complex net
require at least n different patterns of one-hot or one-cold
vectors to verify the connectivity, i.e., to ensure that all
drivers are indeed connected to the complex net.

By Theorem 2, it is obvious that the minimum number of
patterns required to verify the connectivity of drivers on a
complex net is the number of drivers on it. Therefore,
number of patterns required to verify all complex nets in
Phase 2 is determined by the complex net that has the
most drivers. The simplest way to generate such patterns
is applying walking-one or walking-zero sequences.

In summary, to verify Imn(D,R,W), we need a total number
of (⎡ ⎤ +++ 1)1|log(| W max|D(wi)|) to reach DR2.

Since the term (max|D(wi)|) is the number of additional
patterns required in m-to-n port connections compared to
n-to-n port connections, verification patterns can be
reduced if (max|D(wi)|) can be reduced. Therefore, for a
complex net having ports that can be either drivers or
receivers, i.e., inout ports, patterns can be minimized if
inout ports are configured as output ports as many as
possible. But note that at least one driver must be left on a
complex net for the use of pattern application.

3.3 An Example

Driver
Side

 Receiver
 Side

w1

w2

w3

Driver
Side
(IP1)

 Receiver
 Side
 (IP2)

IP1 U_IP1(.d1(w1),.d2(w2),.d3(w2),.d4(w3));
IP2 U_IP2(.r1(w1),.r2(w2),.r3(w2),.r4(w3),.r5(w5));

d1

d2

d3

d4

r1

r2

r3

r4

r5

Figure 4. An example of possible port connections.

Figure 4 shows an example of 4-to-5 port connections.

To derive verification patterns discussed in Section 3.2,
total number of verification patterns required is calculated
as: ⎡ ⎤ 21)13log(+++ = 5. And these five verification
patterns are shown in Table 2. Note that the verification
patterns required in Phase 1 and Phase 2 are listed in the
separate columns in Table 2. In Phase 1, d2 and d3 apply
the same STV (shown in the shaded area), because they
are both on the same complex net (w2).
Table 2. Verification patterns for the example in Figure 4.

Verification Pattern (STV) Driver
Phase 1 Phase 2

d1 001
d2 010 01
d3 010 10
d4 011

After the verification patterns are applied at the driver
side, expected response patterns at the receiver side are
listed in Table 3. Note that the SRVs containing all-X
values are expected at r2 and r3 (shown in the shaded
area), because they are both on the same complex net (w2).

Table 3. Response patterns for the example in Figure 4.

Response Pattern (SRV) Receiver
Phase 1 Phase 2

r1 001
r2 010 XX
r3 010 XX
r4 011
r5 011

4. Verification Flow
Like most verification work, design intent is virtually
impossible to be thoroughly verified and so is the intent
of correct port connections. We exploit redundancy like
many of other verification methods to reduce the
possibility of errors. That is, a design can be described in
two different formats, and the correctness of the design
can be ensured by checking whether they are consistent.

The verification flow we propose here also requires two
formats of port connections. One is the design written in
any HDL like Verilog HDL or VHDL, etc., and the other
is the format that purely describes the connections of all
ports and it can be as simple as a two-column table.
Drivers in port connections are described in one column,
and corresponding receivers are described in the other.

Figure 5 shows our verification flow. Once the design
specification is decided, designers start HDL coding for
the design; meanwhile, a file is maintained for port
connections descriptions. Processes in the shaded area
shown in Figure 5 can be done automatically. Verification

Paper 29.3

835

and Response patterns are generated from the file with the
information of port connections. A testbench can be
automatically generated from the whole design written in
HDL that will be used for simulation later. In the
testbench that is automatically generated, all modules are
the stub models that only have the information of port
interfaces extracted from the HDL design, and an
additional process that is used to apply verification
patterns and analyze response patterns is also added.

After simulating the testbench, a pass signal is asserted if
port connections are correct. Otherwise a fail signal is
asserted and all PCEs in port connections would be
reported. Designers can verify the port connections based
on the information reported and go through the
verification flow again whenever the port connections are
modified.

Spec.

Verification and Response
Pattern Set Generation

Auto Testbench
Generation (ATBG)

Simulation

HDL Coding Port Connection
Description

Pass/Fail ?

Other Verification
Processes

Check & Fix
Port

Connection
Description

Check & Fix
Port

Connections in
the HDL
Design

Spec.

Verification and Response
Pattern Set Generation

Auto Testbench
Generation (ATBG)

Simulation

HDL Coding Port Connection
Description

Pass/Fail ?

Other Verification
Processes

Pass

Fail Fail

Check & Fix
Port

Connection
Description

Check & Fix
Port

Connections
in the HDL

Design

Figure 5. Flow Chart of the Verification Flow

Note that both descriptions for port connections could be
erroneous, but it is indeed a fundamental problem in
verification: for a design written in two different formats
or even by two different teams, neither one is guaranteed
a golden description of the design. But the possibility of
errors can be greatly reduced by exploiting such
redundancy.

5. Conclusions
Before verifying the function of a system, designers have
to connect all modules together for simulation. Though it
is not a hard work to verify the correctness of port
connections manually, it is extremely time-consuming. It
is especially true when SOC designs are getting more
complex and designers have to put more IPs into one
system that have thousands of ports to be connected. Also,
configurations of a design may be changed from time to
time to accommodate performance requirement during the
design exploration process. This process leads to the
iterative modification of port connections. It also means
that errors in port connections could occur repeatedly and
must be verified whenever port connections are modified.

In this paper, we present a port connection model (PCM)
to model port connections at higher abstract levels, and a
port connection error (PCE) model to describe all
possible errors in port connections. By taking advantage
of most simulators that support 4-value logic simulation,
we propose an algorithm generating a minimum
verification pattern set and a verification flow that can
diagnose all PCEs in port connections efficiently. We
believe that this work is very practical and can save lots
of time compared with the time required to verify port
connections manually, say, from hours to fewer than
minutes or even seconds.

6. References
[1] W.-T. Cheng, J. L. Lewandowski, and E. Wu,

“Optimal diagnostic methods for wiring
interconnects,” IEEE Transaction on Computer-
Aided Design of Integrated Circuits and Systems,
vol. 11, Sep. 1992, pp. 1161-1166.

[2] A. Hassan, J. Rajski, and V. K. Agarwal, “Testing
and diagnosis of interconnects using boundary scan
architecture,” in Proc. IEEE International Test
Conference, 1988, pp. 126-137.

[3] Najmi Jarwala and C. W. Yau, “A new framework
for analyzing test generation and diagnosis
algorithms for wiring interconnect,” in Proc. IEEE
International Test Conference,1989, pp.63-70.

[4] W. H. Kautz, “Testing for faults in wiring
networks,” IEEE Transaction on Computer, vol. C-
23, Apr.1973, pp. 358-363.

[5] J.-C. Lien and M. A. Breuer, “Maximal diagnosis
for wiring networks,” in Proc. IEEE International
Test Conference, 1991, pp.96-105.

[6] D. McBean and W. R. Moore, “Testing
interconnects: a pin adjacency approach,” in Proc.
IEEE European Test Conference, 1993, pp.484-490.

[7] G. D. Robinson and J. G. Deshayes, “Interconnect
testing of boards with partial boundary scan,” in
Proc. IEEE International Test Conference, 1990,
pp.572-581.

[8] W. Shi, and W. K. Fuchs, “Optimal interconnect
diagnosis of wiring networks,” IEEE Trans. on Very
Large Scale Integration Systems, vol. 3, Sept. 1995,
pp. 430-436.

[9] C. Y. Wang, S. W. Tung, and J. Y. Jou, “On
automatic verification pattern generation for SOC
with port order fault model,” IEEE Transaction on
Computer-Aided Design of Integrated Circuits and
Systems, vol. 21, no. 4, Apr. 2002, pp.466 – 479.

[10] C. W. Yau and N. Jarwala, “A unified theory for
designing optimal test generation and diagnosis
algorithms for board interconnects,” in Proc. IEEE
International Test Conference, 1989, pp. 71-77.

Paper 29.3

836

	ITC04
	Table of Contents
	Author Index

