
An Improved Approach for Alternative Wires Identification ∗

Yung-Chih Chen Chun-Yao Wang
Department of Computer Science, National Tsing Hua University, HsingChu, Taiwan R.O.C.

{phi@nthucad.cs.nthu.edu.tw; wcyao@cs.nthu.edu.tw}

Abstract

Redundancy Addition and Removal (RAR) is a restructur-
ing technique used in the synthesis and optimization of logic
designs and physical designs. It finds alternative wires to
replace a given target wire without changing the function-
ality of the circuit. Previous approaches apply two-stage
algorithms for this problem. First, they build up a set of
candidate wires for the target wire. Second, they perform
redundancy test on each candidate wire to determine if it is
an alternative wire. Recently, a one-stage algorithm RAM-
FIRE [1] is proposed. It conducts three logic implications to
identify backward alternative wires without trial-and-error
redundancy tests. However, the number of alternative wires
it can find is smaller than that obtained by the previous two-
stage approaches. Here, we propose an improved one-stage
algorithm, which only conducts two logic implications. The
experimental results show that compared to RAMFIRE, our
approach only requires 83% cpu time on average, while ob-
taining the same number of backward alternative wires. As
extending to finding both backward and forward alternative
wires, on average our approach gets 157% improvement with
32% cpu time overhead.

1. Introduction

Redundancy Addition and Removal (RAR) or rewiring is
a process of adding an alternative wire and removing a target
wire in a circuit without changing the circuit’s functionality.
The objective of RAR is to add a redundant wire such that the
target wire becomes redundant and, hence, can be removed.
Many applications based on the RAR technique have been
developed over last decade [2] [6] [8]. With this technique,
designers can optimize a circuit to achieve certain objectives
by performing a sequence of rewiring.

In general, the techniques for RAR can be divided into
two categories. One is Automatic Test Pattern Genera-
tion (ATPG)-based approaches [1]∼[5] [7], and the other is
graph-based approach [14]. The former first constructs a set
∗This work was supported in part by ROC National Science Council

under Grant NSC93-2220-E-007-012.

of candidate wires by finding the Mandatory Assignments
(MAs) for the stuck-at fault test of the target wire. Then
it performs redundancy test on each candidate wire to de-
termine if it is an alternative wire. The latter depends on
a set of pre-defined graph patterns and each pattern has a
pair of target wire and alternative wire. It only requires a
pattern matching process between the local sub-circuit and
the graph pattern to identify alternative wires. However, the
rewiring capability is limited to the number of pre-defined
graph patterns. A quantitative comparison and analysis on
these approaches are presented in [13].

The traditional ATPG-based approaches [2]∼[5] [7] are
two-stage algorithms. They conduct redundancy tests in the
second stage on each candidate wire which are suggested in
the first stage. Thus, they would spend much effort in the
redundancy tests when the candidate set is large. One way to
reduce the computation effort is to prune the candidate set. In
[5], REWIRE proposes theorems as filters to eliminate those
wires that cannot be redundant in the candidate set. Never-
theless, the redundancy tests are still required for the remain-
ing candidate wires. On the other hand, RAMFIRE [1] uses
FIRE [9], which is a redundancy identification algorithm, to
identify redundant wires such that it can identify alternative
wires in one stage. Although RAMFIRE has much improve-
ment on cpu time, about 15 times reduction on average, its
rewiring capability is not as good as that of previous two-
stage approach [5]. Furthermore, RAMFIRE only finds the
backward alternative wires. RAMFIRE contains three logic
implications for the backward alternative wire identification.

In this paper, we propose an ATPG-based and improved
one-stage algorithm for alternative wires identification. It
only requires two logic implications and is applicable to both
backward and forward alternative wires. It should be noted
that we do not propose an algorithm that targets a specific
optimization objective, but we introduce a new approach that
improves and complements existing technique [1].

This paper is organized as follows. Section 2 introduces
some notations and reviews related concepts. Section 3 de-
scribes the sufficient conditions for forward and backward
alternative wires. Section 4 describes the alternative wires
identification with the addition of redundant gates. Section 5



discusses the complexity analysis and complexity reduction
by our approach. Section 6 presents the experimental results.
Finally, Section 7 concludes this work.

2. Notations and background

In this work, we only consider circuits consisting of AND,
OR and INV gates. Complex gates can be decomposed into
these gates. Also, the circuits are irredundant, i.e., no wire
in the circuits is redundant. This is because the redundant
circuits can be restructured directly by removing redundant
wires. These circuits are not considered by the RAR tech-
nique.

A Boolean network is a Directed Acyclic Graph (DAG)
where each node ni is associated with a Boolean func-
tion fi . A wire w(ni → nj ) is a connection directed from
a node ni to a node nj . An input of a gate g has a
controlling value cv(g) if this value determines the output
of the gate g regardless of the other inputs. The inverse of
the controlling value is called noncontrolling value ncv(g)
of gate g . For example, if g is an AND gate, the cv(g) is 0
and the ncv(g) is 1. The dominators [10] of a wire w is a set
of gates G such that all paths from w to any primary outputs
have to pass through all gates in G . Consider the dominators
of a wire w , the fault propagating inputs of a dominator are
its inputs in the transitive fanout of the wire w , and the other
inputs are side inputs of the dominator. For stuck-at 1 {0}
fault test on a wire w(ni → nj ), a test vector must generate
0 {1} at the source ni of the wire w to activate the fault ef-
fect and generate noncontrolling values for all side inputs of
w ’s dominators to propagate the fault effect. If no such test
vector exists, the wire w is stuck-at 1 {0} untestable and can
be replaced by a constant 1 {0}.

The mandatory assignments (MAs) are the unique
value assignments to nodes required for a test to ex-
ist. The MAs for a test can be obtained by performing
logic implication . Logic implication is a process of comput-
ing unique logic values based on known logic values of wires
in a Boolean network. Given a logic value assigned at one
wire, the value can be propagated forward or backward until
no more logic values can be determined. Consider comput-
ing MAs for a stuck-at fault test on a wire w(ni → nj ), the
MA on ni is set to fault-activating value and the MAs on the
side inputs of dominators nd are set to their corresponding
ncv(nd). The MAs then can be propagated forward or back-
ward to infer more MAs. Recursive learning [11], which is a
learning method for ATPG, can be used to find more MAs.

Forced MA [5] is a kind of MA such that violating it
causes the target fault untestable. The MAs obtained by set-
ting side inputs of dominators nd to ncv(nd) and activating
the target fault effect are forced. Besides, the MAs obtained
by backward implications are also forced. Based on the idea
of violating Forced MA, a theorem developed in [5] shows a

necessary and sufficient condition for a redundant wire to be
an alternative wire for the target wire wt .

Theorem 1: (Theorem 13 in [5]) A redundant wire
wr (ns → nd) is an alternative wire for wt , if and only if an
AND {OR} gate nd has a forced MA 1 or D {0 or D} and
ns has a MA 0 {1} for the stuck-at fault test of wt .

Theorem 1 also shows how to construct a set of candidate
wires that can make the target wire redundant. First, compute
the MAs for the wt stuck-at fault test. Then, collect a set of
candidate wires according to the MAs and the types of gates.

In this work, we analyze Theorem 1 and then derive two
conditions for identifying wires that make the target wire re-
dundant. Furthermore, we also propose two corresponding
conditions for justifying which candidate wires are redun-
dant.

Note that for simplicity, the target wire is denoted as wt

and its alternative wire is denoted as wa . Furthermore, the
stuck-at fault of wt is called the target fault in this paper.
In the following examples, we always explain our approach
using stuck-at 1 fault test for convenience. In fact, it works
for stuck-at 0 fault test as well.

3. Single alternative wire

The idea of Single Alternative Wire (SAW) is proposed in
[3]. For a wire to be a SAW wa of a given target wire wt , two
requirements have to be held. (1) The addition of wa makes
the target fault untestable and, hence, wt is redundant. (2) wa

itself is a redundant wire in the original circuit. For example,
in Figure 1(a) (taken from [5]), adding w(g1 → g5 ) makes
w(c → g2 ) stuck-at 1 fault untestable, and w(g1 → g5 ) is
a redundant wire in the circuit. Therefore, w(g1 → g5 ) is
a SAW for w(c → g2 ). Since w(g1 → g5 ) is an alternative
wire for w(c → g2 ), w(c → g2 ) is an alternative wire for
w(g1 → g5 ) as well.

Let us discuss the requirement (1) first, i.e., how to make
a target fault untestable by adding a wire to the circuit. There
are two methods for this. (a) Blocking the fault effect prop-
agation to the primary outputs. (b) Causing MAs inconsis-
tent. These two methods also classify SAWs into forward
and backward. We will discuss them in Section 3.1 and 3.2,
respectively. The requirement (2), checking if wa itself is a
redundant wire in the original circuit, will be discuss in the
corresponding subsections as well.

3.1. Forward single alternative wire

We say that a SAW is a Forward Single Alternative Wire
(FSAW) of wt if its addition can block the fault effect prop-
agation of the target fault test. We can add a wire according
to the type of the dominator nd and the MAs at ns , such that
the target fault is untestable. The sufficient condition of an



Figure 1. Examples of single alternative wire.
(a) Forward: blocking the fault effect propa-
gation to the primary outputs. (b) Backward:
causing the MAs inconsistent.

added wire to block the fault effect propagation of the target
fault test is stated in Condition 1.

Condition 1: If there exists a gate ns with a MA cv(nd) for
the target fault test, where nd is a dominator of wt , adding
w(ns → nd) can block the fault effect propagation of the
target fault test.

Next, let us consider requirement (2), determining if the
added wire is a redundant wire or not. Suppose w(ns → nd)
is a wire added to the circuit, where nd is a dominator
of wt and p is the fault propagating input of nd . For the
stuck-at fault test of w(ns → nd), p has to be ncv(nd) to
propagate fault effect through nd . However, if p = cv(nd)
is necessary to activate the fault effect, the fault is untestable
and, hence, the added wire w(ns → nd) is a redundant wire.
The following condition is a sufficient condition for a wire
connecting to a dominator is a redundant wire.

Condition 2: If w(ns → nd) requires fault propagating
input p of nd to be cv(nd) to activate fault effect for
w(ns → nd) stuck-at fault test, w(ns → nd) is redundant.

Theorem 2: If there exists a wire w(ns → nd) which
satisfies Condition 1 and Condition 2, it is a FSAW of wt .

We can modify Condition 1 for identifying a SAW
w(ns → nd) with an INV between ns and nd . Figure 2 sum-
marizes the configurations of ns values and nd types such
that w(ns → nd) is a wa . In each configuration, there is a
pair of values, x/y , for ns . x is the MA of ns for the tar-
get fault test and y is the result of ns after performing logic

Figure 2. FSAW addition example.

implication of p = ncv(nd).
The procedure for FSAWs identification is conducted as

follows. First, computing the MAs for the target fault test.
Second, selecting a dominator nd of wt and then performing
logic implication of p = ncv(nd). Finally, checking if there
exists a wire w(ns → nd) that satisfies Condition 1 and Con-
dition 2.

For example, in Figure 1(a), suppose we would like to
remove w(c → g2 ) and w(g1 → g5 ) is not present in the
circuit now. First, after computing w(c → g2 ) stuck-at 1
fault test , we have the MAs:{c=0, b=1, a=1, d=0, g1 =0,
e=1, g4 =1}. Then in the second step, we select a dom-
inator g5 of w(c → g2 ). Since w(g3 → g5 ) is the fault
propagating input of g5 , we perform logic implication of
w(g3 → g5 )=ncv(g5 )=1 and then have g1 =1 by recursive
learning. Finally, we find that adding w(g1 → g5 ) to the cir-
cuit makes w(c → g2 ) stuck-at 1 fault untestable, and the
stuck-at 1 fault of w(g1 → g5 ) is untestable as well. There-
fore, w(g1 → g5 ) is a FSAW of w(c → g2 ).

3.2. Backward single alternative wire

We say that a SAW is a Backward Single Alternative
Wire (BSAW) of wt if its addition makes the MAs of the
target fault test inconsistent. We can make the target fault
untestable by adding a wire which violates a forced MA.
The sufficient condition of an added wire to make the target
fault untestable is stated in Condition 3.

Condition 3: If there exists a gate ns with a MA 0 {1}
and an AND {OR} gate nd with a forced MA 1 {0} for the
target fault test, adding w(ns → nd) makes the target fault
untestable and, hence, wt is redundant.

Let us consider adding a redundant wire violating the
forced MA for the target fault test. Theorem 5 of [1]
shows that if wa is an alternative wire of wt , after adding
wa to the circuit, the redundancy test on wa results in a
conflict at wt . Therefore, we can find a redundant wire by
checking if its redundancy test results in a conflict at wt .
The following condition is a sufficient condition for a wire



to be a redundant wire whose redundancy test results in a
conflict at wt .

Condition 4: Suppose the source of wt is nts and the sink
is ntd . If w(ns → nd) requires nts = cv(ntd) to activate
the fault effect and nts = ncv(ntd) to propagate the fault
effect for w(ns → nd) stuck-at fault test, w(ns → nd) is
redundant.

Theorem 3: If there exists a wire w(ns → nd) which
satisfies Condition 3 and Condition 4, it is a BSAW of wt .

We can also modify Condition 3 for identifying BSAWs
with inverted polarity. If there exists a gate ns with a MA
0 {1} and an OR {AND} gate nd with a forced MA 0 {1},
adding w(ns → nd) with an INV between ns and nd makes
the target fault untestable and, hence, wt is redundant.

The procedure for BSAWs identification is conducted as
follows. Suppose the source of wt is nts and the sink is ntd .
First, computing the MAs for the target fault test. Second,
performing logic implication of nts = ncv(ntd). Finally,
checking if there exists a wire w(ns → nd) which satisfies
Conditions 3 and Condition 4.

For example, in Figure 1(b), suppose we would like to
remove w(g1 → g5 ) and w(g1 → g2 ) is not present in the
circuit now. First, after computing w(g1 → g5 ) stuck-at 1
fault test, we have the MAs:{g1 =0, c=0, d=0, g3 =1, e=1,
g2 =1, a=1, b=1, g4 =1}. Among the MAs, {g1 =0, c=0,
d=0, g3 =1, e=1, g2 =1, a=1, b=1} are the forced MAs.
Then in the second step, we perform logic implication of
w(g1 → g5 )=1 and then have g1 =1. Finally, we find that
adding w(g1 → g2 ) violates the forced MA on g2 . This is
because g1 has a MA 0 and g2 is a AND gate with a forced
MA 1. For the stuck-at 1 fault test of w(g1 → g2 ), g1 has
to be 0 for activating the fault effect and g1 has to be 1 for
propagating the fault effect through g5 . There is a conflict on
g1 for w(g1 → g2 ) stuck-at 1 test and, hence, w(g1 → g2 )
is a redundant wire. Therefore, w(g1 → g2 ) is a BSAW of
w(g1 → g5 ).

4. Alternative wire with gate

Sometimes, a wt does not have a SAW, however it could
be replaced by a redundant wire with a redundant gate
[1]∼[4]. We extend our SAW identification approaches with
the addition of a redundant gate. If a SAW does not exist due
to the sufficient conditions are violated, a redundant gate gr
is added such that a wire wr could satisfy the sufficient con-
ditions. The wire wr and the gate gr are the alternative wire
and gate for the wt .

4.1. Forward alternative wire with gate

If a FSAW cannot be found for the wt , we could add a gate
nd new at the fanout of nd for finding another FSAW. Since

nd new is located at the fanout of nd , nd new is also a dom-
inator of wt . For the target fault test, it is possible to block
the fault effect propagation by adding a wire connecting to
nd new . For example, in Figure 3(a), suppose we would like
to remove w(b → g1 ) and the dotted lines and nodes are not
present in the circuit now. First, we compute the MAs for
w(b → g1 ) stuck-at 1 fault test. We have the MAs:{b=0,
a=1, g2 =0}. In the second step, we perform logic implica-
tion of w(g1 → g3 )=0. Finally, we cannot find a FSAW for
w(b → g1 ). However, we can add an AND gate g4 at the
fanout of g3 as a new dominator for w(b → g1 ) and then we
have a new fault propagating input w(g3 → g4 ). After per-
forming logic implication of w(g3 → g4 )=1, we find that
w(b → g4 ) which satisfies Condition 1 and Condition 2 is a
wa for w(b → g1 ). Therefore, w(b → g1 ) can be replaced
by w(b → g4 ) with g4 .

4.2. Backward alternative wire with gate

Review Condition 3 for BSAW identification. If there ex-
ists a gate ns with a MA 0 {1} and an AND {OR} gate nd

with a forced MA 1 {0}, adding w(ns → nd) makes the tar-
get fault untestable. If we cannot find alternative wires due
to unmatched type nd in Condition 3, such as an OR {AND}
gate nd with a forced MA 1 {0}, we can add an AND {OR}
gate nd new at the fanout of nd . Because nd new is located at
the fanout of nd , it also has a forced MA 1 {0}. After adding
nd new , we get a BSAW w(ns → nd new ) for wt . There-
fore, w(ns → nd new ) and nd new are the alternative wire
with gate for the wt . For example, in Figure 3(b), suppose
we would like to remove w(g1 → g3 ) and the dotted lines
and node are not present in the circuit now. First, we com-
pute the MAs for w(g1 → g3 ) stuck-at 1 fault test. We have
the MAs:{g1 =0, a=0, b=0, g2 =1, g4 =1, e=1} and they are
all forced MAs. In the second step, we perform logic impli-
cation of w(g1 → g3 )=1 and we have g1 =1. The stuck-at 1
fault test of a wire with a source g1 requires g1 =0 to activate
fault effect. Furthermore, the stuck-at fault test of a wire with
a sink g4 requires g1 =1 to propagate fault effect through g3 .
However, g4 is not an AND gate and, hence, w(g1 → g4 )
is not an alternative wire. But we can add an AND gate g5
between g4 and g2 . Since g4 has a forced MA 1, g5 also has
a forced MA 1, adding w(g1 → g5 ) violates the forced MA.
Next, consider the stuck-at 1 test of w(g1 → g5 ), the test re-
quires g1 =0 to activate the fault effect and g1 =1 to propagate
the fault effect. Therefore, w(g1 → g5 ) is a redundant wire.
Consequently, w(g1 → g3 ) can be replaced by w(g1 → g5 )
with g5 .

5. Complexity and quality analysis

This section reviews our backward alternative wires iden-
tification procedure and analyzes the time complexity. At the



Figure 3. Examples of alternative wire with gate. (a) Forward: add a new dominator g4 . (b) Backward:
add a redundant node g5 .

end, we explain why our approach obtains the same number
of backward alternative wires as RAMFIRE but costs less
computation effort.

5.1. The time complexity comparison

Let us consider identifying BSAWs for a target wire wt ,
we first compute the MAs for the target fault test. Let M
denote the time complexity of computing the MAs. After
computing the MAs, we perform a logic implication from
wt . We use P to denote the time complexity of performing a
logic implication. Therefore, the time complexity of finding
BSAWs for wt is M + P . Consider adding a redundant gate,
because no additional logic implications are needed, the time
complexity is also M + P .

FIRE [9] is a redundancy identification algorithm that
can identify redundant wires in a circuit. RAMFIRE uses
FIRE to determine if the added wires are redundant wires.
The process of RAMFIRE includes three logic implications.
First, computing the MAs for the target fault test (one im-
plication). Then, performing FIRE on wt to find redundant
wires. The process of FIRE involves two logic implications
and each logic implication includes uncontrollability and un-
observability implications. We use F to denote the time
complexity of one logic implication. Thus, the time com-
plexity of RAMFIRE is M + 2F . The complexity compari-
son of F and P will discussed in Section 5.2.

5.2. The determination of redundant wires

Let us consider determining if the added wires are
redundant wires. In an irredundant circuit, there are two
possible situations for a wire to cause a conflict on the
target wire wt(nts → ntd) for its stuck-at fault test. (1) A
wire requires nts = ncv(ntd) to activate fault effect and
nts = cv(ntd) to propagate fault effect. (2) A wire requires
nts = cv(ntd) to activate fault effect and nts = ncv(ntd) to
propagate fault effect. However, situation (1) is useless for
finding alternative wires.

Theorem 4: Suppose the source of wt is nts and the sink
is ntd . If a redundant wire wr that is not yet in the circuit
requires nts = ncv(ntd) to activate the fault effect, and
requires nts = cv(ntd) to propagate the fault effect for its

stuck-at fault test, then wr is not an alternative wire of wt .

Therefore, for identifying backward alternative wires, we
only consider the wires that require nts = cv(ntd) to acti-
vate fault effect and nts = ncv(ntd) to propagate fault effect
for their stuck-at fault test. In our approach, our logic impli-
cation of nts = ncv(ntd) does not involve unobservability
implication which FIRE involves. Thus, F is more com-
plicated than P . Furthermore, we combine the implication
of nts = cv(ntd) with the process of computing the MAs
for the target fault test. Therefore, as compared with RAM-
FIRE, our approach costs less computation effort and obtains
the same rewiring results.

6. Experimental results

The experiments are conducted over a set of ISCAS85 and
MCNC benchmarks within SIS [12] environment on a Sun
Fire V440 workstation. These benchmarks are in Berkeley
Logic Interchange Format (BLIF), which is a netlist level de-
sign description. Since the circuits under consideration only
consist of AND, OR, and INV gates and are irredundant, we
decompose the complex gates into these primitive gates and
remove redundant wires by using decomp tech network and
com redundancy removal functions in SIS, respectively.

Our approach for finding backward alternative wires is
named Pb , and for finding both backward and forward al-
ternative wires is named Pb+f . In the experiments, finding
more alternative wires is desirable. Recursive learning tech-
nique is also applied in these experiments with depth=1.

Table 1 summarizes the experimental results of our ap-
proaches as compared with the reimplemented RAMFIRE
algorithm. Column 1 lists the name of the benchmarks. Col-
umn 2 lists the total number of wires in each benchmark, Nt .
These wires are all considered as target wires in the exper-
iments. Column 3, 5, and 7 list the number of target wires
having alternative wires. Column 4, 6, and 8 list the cpu time
of corresponding approaches measured in second.

According to Table 1, the number of target wires which
have alternative wires are the same for Pb and RAMFIRE,
which is shown in row Ratio 1. However, Pb only re-
quires 83% cpu time of that of RAMFIRE on average,
which is shown in row Ratio 2. In particular, for circuits



Table 1. Comparison of experimental results
between RAMFIRE [1] and our approaches.

Back. Back.+For.
[1] Pb Pb+f

Circuit Nt Na CPU Na CPU Na CPU
c432 285 73 2.24 73 2.1 109 2.84
c880 640 149 2.22 149 2.07 183 3.77

c1908 1046 147 31.24 147 29.58 321 55.7
c2670 1167 201 14.24 201 12.73 279 18.66
c3540 2060 396 135.44 396 125.71 952 204.73
c5315 3398 414 31.59 414 29.56 1186 51.83
c7552 4425 659 199.94 659 166.47 2128 225.11

9symml 387 40 6.37 40 5.88 152 7.84
alu2 598 57 28.26 57 24.37 205 60.61
alu4 1239 87 156.04 87 119.4 399 276.93

apex6 1216 75 7.84 75 5.07 240 13.16
apex7 411 24 1.81 24 1.35 119 3.03

b9 230 54 0.37 54 0.31 131 0.56
c8 335 63 1.06 63 0.91 157 1.94
cc 131 29 0.21 29 0.16 78 0.25

cm85a 88 28 0.12 28 0.11 56 0.17
comp 159 54 0.38 54 0.36 94 0.47

cu 109 44 0.17 44 0.15 71 0.22
dalu 2708 797 576.61 797 481.44 1754 657.16

example2 487 44 2.94 44 2.38 115 5.31
frg2 2604 717 196.86 717 156.08 1544 261.65

go 111 30 0.13 30 0.12 79 0.2
i10 3808 459 537.21 459 444.31 1401 663.43
lal 304 118 1.08 118 0.94 192 1.21

mux 82 8 0.12 8 0.1 24 0.22
pair 2770 509 19.88 509 16.3 1177 29.13

pcler8 125 7 0.2 7 0.16 24 0.44
pm1 111 30 0.12 30 0.11 79 0.2

rot 1579 106 24.92 106 23.43 500 51.72
sct 299 66 1.89 66 1.72 189 2.75

term1 789 196 9.63 196 8.93 538 14
ttt2 558 126 3.78 126 3.24 369 6.19

unreg 208 16 0.51 16 0.4 64 0.79
x3 2084 377 24.69 377 20.2 1154 42.18
x4 1025 260 14.61 260 12.19 513 19.48

Total 37576 6460 2034.72 6460 1698.34 16576 2683.88
Ratio 1 1 0.1719 0.1719 0.4411
Ratio 2 1 0.83 1.32
Ratio 3 1 1 2.57

with more target wires, the cpu time reduction is more
significant. Comparing Pb+f with RAMFIRE, Pb+f has
Na/Nt =44.11% and gets 157% improvement with 32%
cpu time overhead on average. This is because Pb+f in-
cludes the process of finding forward alternative wires that
RAMFIRE canonot find. This is shown in row Ratio 2 and
3. Since RAMFIRE shows that it has 15 times speed-up as
compared with REWIRE on average, our approach is effi-
cient as well.

7. Conclusions

Redundancy Addition and Removal is an important tech-
nique for synthesis and optimization of logic designs and
physical designs. RAMFIRE has shown that it obtains
much speed-up for backward alternative wires as compared
with previous approaches. Especially, as compared with
REWIRE, the speed-up is 15 times on average. In this pa-

per, we propose an improved approach for identifying both
forward and backward alternative wires of a target wire. As
compared with RAMFIRE, our approach obtains the same
results for backward alternative wires with less cpu time.
Furthermore, our approach finds forward alternative wires
as well. The rewiring capability of our approach is close to
that of REWIRE.

References

[1] C.-W. Jim Chang, M.-F. Hsiao, and M. Marek-Sadowska, ”A
New Reasoning Scheme for Efficient Redundancy Addition
and Removal,” IEEE Trans. Computer-Aided Design, vol. 22,
pp. 945-952, July 2003.

[2] S.-C. Chang, K.-T. Cheng, N.-S. Woo, and M. Marek-
Sadowska, ”Postlayout Logic Restructuring Using Alterna-
tive Wires,”IEEE Trans. Computer-Aided Design, vol. 16,
pp. 587-596, June 1997.

[3] S.-C. Chang, K.-T. Cheng, N.-S. Woo and M. Marek-
Sadowska, ”Layout Driven Logic Synthesis for FPGA,” in
Proc. Design Automation Conf., pp. 308-313, 1994.

[4] S.-C. Chang, M. Marek-Sadowska, and K.-T. Cheng, ”Per-
turb and Simplify: Multi-level Boolean Network Op-
timizer,”IEEE Trans. Computer-Aided Design, vol. 15,
pp. 1494-1504, Dec. 1996.

[5] S.-C. Chang, L. P. P. P. Van Ginneken, and M. Marek-
Sadowska, ”Fast Boolean Optimization by Rewiring,” in
Proc. IEEE Int. Conf. Computer-Aided Design, pp. 262-269,
1996.

[6] David I. Cheng, C.-C. Lin, and M. Marek-Sadowska, ”Cir-
cuit Partitioning with Logic Perturbation,” in Proc. IEEE
Int. Conf. Computer-Aided Design, pp. 650-655, 1995.

[7] L. A. Entrena, and K.-T. Cheng, ”Combinational and Se-
quential Logic Optimization by Redundancy Addition and
Removal,”IEEE Trans. Computer-Aided Design, vol. 14,
pp. 909-916, July 1995.

[8] L. A. Entrena, J. A. Espejo, E. Olias, and J. Uceda, ”Tim-
ing Optimization by An Improved Redundancy Addition and
Removal Technique,” in Proc. Eur. Design Automation Conf.,
pp. 342-347. 1996,

[9] M. A. Iyer and M. Abramovici, ”FIRE: A Fault-Independent
Combinational Redundancy Identification Algorithm,”IEEE
Trans. Very Large Scale Integrated Systems, vol. 4, pp. 295-
301, June 1996.

[10] T. Kirkland and M. R. Mercer, ”A Topological Search Algo-
rithm For ATPG,” in Proc. Design Automation Conf., pp. 502-
508, 1987.

[11] W. Kunz and D. K. Pradhan, ”Recursive Learning: An At-
tractive Alternative to the Decision Tree for Test Generation
for Digital Circuits,” in Proc. Int. Test Conf., pp. 816-825,
1992.

[12] E. M. Sentovich, K. T. Singh, C. Moon, H. Savoj, R. K. Bray-
ton, and A. Sangiovanni-Vincentelli, ”Sequential circuit
design using synthesis and optimization,” in Proc. IEEE
Int. Conf. Computer Design, pp. 328-333, 1992.

[13] W.-C. Tang, W.-H. Lo, T.-K. Lam, K.-K. Mok, C.-K. Ho,
S.-H. Yeung, H.-B. Fan, and Y.-L. Wu, ”A Quantitative
Comparison and Analysis on Rewiring Techniques,” in Proc.
Int. Conf. on ASIC, pp. 242-245, 2003.

[14] Y.-L. Wu, W.-N. Long, and H.-B. Fan, ”A Fast Graph-based
Alternative Wiring Scheme for Boolean Networks,” in
Proc. Int. VLSI Design Conf., pp. 268-273, 2000.


