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Abstract—With the continuing increase of chip density and the shrinkage
of feature size of transistor in VLSI circuits, high temperature has become
a concerned issue. High temperature not only decreases the functionality
and reliability of chips, but also causes high package cost in order to cool
down the system. For design consideration, one important issue related to
temperature is how hot the chip may be. Thus, this paper investigates on the
lower bound of peak temperature of a packaged chip and on the patterns
that cause such bound. Two algorithms, Genetic Algorithm and Ant Colony
Optimization, are applied for finding this lower bound of peak temperature.
Experimental results show that the proposed approach obtains an average
of 39.03% higher lower bound for ISCAS’85 combinational benchmarks
and 6.80% for ISCAS’89 sequential benchmarks as compared to random
approach under the TSMC 0.18μm library.

I. INTRODUCTION

With the relentless push for higher integration and higher perfor-

mance, the chip density and clock frequency increase rapidly. This

results in the extensive rises of power density and temperature in VLSI

circuits. High temperature has a significant impact on the functionality

and reliability of chips. Small [12] shows that the failure rate for

components doubles every 10◦C increase. Thus, to cool down the

temperature in a system such that the peak temperature is confined

below a threshold, package design has to consider the worst case heating

condition [11], and results in the high expense of package cost. On

the other hand, the understanding of the peak temperature and the

temperature distribution of VLSI circuits can serve as guidelines for

design references.

Temperature profile has a close spatial correlation with power profile;

therefore, extensive power density areas can lead to localized overheat-

ings, called hotspots. Power consumption is mainly depending on input

signals and circuit states once process parameters and architecture are

fixed. Therefore, peak temperature associates with a specific starting

state of circuit and a specific sequence of patterns. An exhaustive

search from the space of all input pattern combinations for finding the

pattern sequence that leads to peak temperature is impractical for large

circuits, since there are (2n)2 = 4n possible pattern pair combinations

for n−input circuits, where one pattern pair corresponds to a switch

between two input patterns.

However, as indicated in [1], the location with the highest power

density does not necessarily coincide with the location having peak

temperature. It is because temperature distribution is a localized phe-

nomenon governed not only by heat generation but by heat dissipation

to ambient air. Thus, thermal simulation should be performed for

more accurate results. Inspired by [4][7], our approach intergrates Ant

Colony Optimization and Genetic Algorithm to produce the patterns

with higher power consumption in the hotspot areas. Then thermal

simulation is performed, and the results will be feedback for further

pattern generation. Our approach can deal with large combinational and

sequential circuit with the considerations of delay models and package

cooling effect. The overall chip temperature profile is obtained at the

end of algorithm for design reference. The experimental results show

that our approach can find a tighter lower bound than that obtained by

random patterns under the same amount of patterns.
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under Grants NSC 98-2220-E-007-015 and NSC 98-2220-E-007-023.

II. PRELIMINARIES

A. Temperature Accumulation
Peak temperature occurs in localized overheating areas, hotspots. For

the recognition of hotspots, we define a hotspot frame which is a square

of high power density area. The frame size is determined heuristically.

For combinational circuits, the power dissipation is governed by a pair

of input patterns Vi and Vi+1. The average power consumption caused

by switching this pattern pair is the same. Thus, we can re-apply a apir

of patterns to reach steady-state peak temperature.
For sequential circuits, however, the state values of flip-flops within

the circuit also affect the transition activities. Thus, the same input

pattern under different states could lead to different next states and

power consumption. On the other hand, if a state transition loop

exists, same states can be recaptured, and the power consumption can

be sustained over many cycles. We try to find the state transition

loop and re-apply it to reach peak temperature in sequential circuits.

Nevertheless, the state transition loop with higher power consumption

in some sequential circuits may be difficult to be found or unreachable

from the given initial state. Thus, we produce a sequence of patterns

that consumes higher average power in the framed area instead.

B. Power model
The power consumption of CMOS circuits can be roughly divided

into two groups: static power consumption, which is caused by static

current drawn from power supply; and dynamic power consumption,

which associates with signal switching activities. Once the process

parameters and circuit architecture are determined, the power dissipation

is dominated by dynamic power which corresponds to the input patterns

and gate delay. Consider a digital circuit with m gates in the framed

area, the dynamic power dissipation in the framed area over a cycle

time T can be computed as Equation (1)

P =

m∑
i=1

V 2
dd

2T
CiDi (1)

where Vdd is the supply voltage, Ci is the load capacitance of gate i;
Di is the number of transitions of gate i from 0 to 1 or vice versa in

the time interval T.
We aim to increase the power dissipation of the gates within the

framed area. Instead of finding the Ci value, we use the actual power
dissipation value APi which is calculated by HSPICE with the given

cell library [8] to represent the effect of Ci. Then we define the framed
gate power (FPg) as the average power consumption of the gates in

a frame during the time interval T . FPg is an important parameter in

our approach and is detailed in Equation (2). Note that different framed

area may have different numbers of gates, therefore m is not a constant.

FPg =

∑m
i=1 APiDi

m
(2)

For example, in Fig. 1, assume that there are 4 gates in the framed

area. The NOT gate A and AND gate C are with 2-unit delays, and

the OR gates B and D are with 3-unit delays shown as a subscript

on the top of the gate. Thus, the transition time of the gates can be

calculated and are specified on the top right of the gate. We can find

three transitions from 1 to 0 at gates A, B, and D, at t2, t5, and t8,

respectively. If assume the power consumption for NOT gate is 1.2 unit,

and is 1.8 unit for the other types of gates. Then, the FPg will be 1.2
as calculated in Fig. 1.
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Fig. 1. An example of framed gate power (FPg) calculation.

C. Thermal model

The temperature distribution on a chip is governed by the heat

diffusion equation as Equation (3) shows [10]:

ρcp
∂T (r, t)

∂t
= ∇ [k (r, t)∇T (r, t)] + g (r, t) (3)

where T is the temperature ◦C, ρ is the density of the material (kg/m3),

cp is the specific heat capacity (J/kg◦C), k is the thermal conductivity

(W/m◦C), g is the power density (J/kg), and t is time (s). The heat

conducting differential equation has a similar form to the electrical

differential equation. A well known duality between them states that the

heat flow passing through a thermal resistor acts as the electrical current

passing through a resistor, and the temperature gradient corresponds to

voltage gradient. Equation (3) can be solved for temperature distribution

by finite difference methods [5] [13].

In this work, a chip is divided into thermal blocks when performing

thermal simulation. The center of each block is regarded as the heat

source in which the power generated within the block comes, and

thermal resistances exist between each pair of adjacent blocks.

III. GA2CO FOR COMBINATIONAL CIRCUITS

A. Hotspot evaluation

In our thermal model, a chip is divided into thermal blocks, and a

hotspot frame is delimited and sequentially moved for hotspot recog-

nition. To construct the initial hotspots, 10,000 random patterns are

applied. After the simulation of a pattern pair, the hotspot frame is

moved to search the area with the highest power density, and push this

suspicious hotspot into a hotspot queue for succeeding simulations. To

avoid a rapid increase of hotspot number, a clarification mechanism

is performed by combining adjacent hotspots into the one which has

the highest power density among them, where adjacency means two

radiuses that centered by two hotspots are overlapped. Take Fig. 2 as

an example, the radiuses of frame A and frame B are intersected, the

frame B will be neglected if the frame A has a higher power density than

that of frame B. This clarification mechanism can also avoid ambiguous

input bit extraction in the next stage.

Fig. 2. Initial suspicious hotspot construction.

B. Critical input extraction

With the suspicious hotspots, the next stage of our approach is to

increase the transitions in the framed areas where suspicious hotspots

located. We apply the Ant Colony Optimization (ACO) algorithm [2] to

find the input transitions that significantly cause the power dissipation

in the framed area.

The ACO is an algorithm which imitates ants’ behavior of seeking a

“good” path between the nest and food. A chemical named pheromone

is deposited by ants and forms a pheromone trail when ants pass by.

This pheromone also evaporates with time such that the pheromone

concentrations of trails are different with respect to the frequency of

re-visiting. Ants tend to choose a path with a stronger pheromone

concentration.

For each primary input i of a circuit, there are four transition

conditions: 0→0, 0→1, 1→0, 1→1. Four parameters τ i
0→0, τ i

0→1,

τ i
1→0, τ i

1→1 are used to represent the corresponding pheromones for

these four transition conditions of primary input i. During the logic

simulation, the FPg value of an input pattern pair is added to these four

parameters for pheromone accumulation. The amount of pheromone is

updated heuristically as expressed in Equation (4)

τ i
0→0 (t + 1) = �τ i

0→0 (t) + (1 − k) τ i
0→0 (t) (4)

where τ i
0→0 (t + 1) is the updated pheromone for transition 0 → 0 of

primary input i, Δτ i
0→0 is the amount of pheromone newly deposited,

i.e., FPg value, and k ∈ [0, 1] is the pheromone evaporation rate. The

other three parameters, τ i
0→1, τ i

1→0, and τ i
1→1, are also expressed as

Equation (4) except the subscripts of transition conditions.

Fig. 3. An example for demonstrating pheromone trail accumulation.

Fig. 3 is an example for pheromone trail accumulation. Assume the

circuit has five primary inputs and one of the framed area is the same as

Fig. 1 shows. Four parameters τ0→0, τ0→1, τ1→0, and τ1→1 represent

the pheromones of four transition conditions on the primary inputs.

These τ values are all initialized to zero. After the input pattern pair

(V1, V2) = (11011, 01000) is applied, the input signals are switched as

010 → 100 in the framed area. The FPg value of this pattern pair (V1,

V2) is derived as shown in Fig. 1. Then, this value 1.2 is added to each

τ i with respect to the transition condition. For instance, the transition

condition of the primary input 1 between (V1, V2) pair is 1 → 0, then

the parameter τ1
1→0 is increased by the FPg value 1.2.

The higher τ values are regarded as the higher probabilities to

produce more transitions in the framed area. Each suspicious hotspot in

the hotspot queue will keep its pheromone parameters for the generation

of high power pattern pairs in the third stage.

C. Pattern generation

Genetic Algorithm [3] is a technique inspired by evolutionary biology.

Parent genes generate offspring genes with higher fitness value through

inheritance, mutation, and crossover. In this work, input pattern pairs

with higher transitions are encoded into gene fragments. Then these

pattern pairs perform inheritance, mutation, and crossover operations to

generate new pattern pairs which may have higher power consumption

in the framed area, and hence, heat up the hotspots.

After the simulations for hotspot i in the queue, three kinds of parent

pattern pairs can be obtained. The first one is the pattern pair that

obtained from pheromone accumulation of hotspot i in the critical input

extraction stage. The pheromone parameter of each primary input with

the highest value is selected. The second one is the pattern pair that

causes the peak temperature among all simulations for the hotspot i.
The last one, which is extracted from all hotspots, is a group of top 100

pattern pairs that cause the highest temperature among all hotspots.

Fig. 4 gives an example of our pattern generation. The row above

the left top block contains the pheromone parameters that have the

highest pheromone values for the hotspot i. The pheromone parameters
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Fig. 4. The Genetic Algorithm-based pattern generation in our approach.

whose pheromone concentration are exceed 1.5 standard deviation, e.g.,

τ1
1→0, τ3

0→1, and τ4
0→0 are picked up and are inherited since these

input transitions have significant impacts on the transition times in the

framed area. Thus, we can obtain a gene fragment (1X00X→0X10X)

accordingly, where X means don’t care. The mutation operation replaces

the don’t care bits of this gene fragment with random values, e.g.,

(10001→01101). The crossover operation between the gene fragment

and the top 100 pattern pairs is shown on the bottom of Fig. 4, where

the non-don’t care bits are replaced with top 100 pattern pairs in the

corresponding position. Thus, an offspring pattern pair (11001→00100)

is generated. The crossover operation also occurs between the highest

temperature pattern pair and the top 100 pattern pairs, and occurs among

the top 100 pattern pairs themselves. For these crossover operations, the

offspring pattern pair is composed of parent genes which are randomly

selected.

Fig. 5. The flow chart of our approach for combinational circuits.

D. Overall algorithm
The overall algorithm of our approach for combinational circuits is

shown in Fig. 5. First, we construct the initial solution for suspicious

hotspots by randomizing 10,000 patterns. Second, for each hotspot in the

hotspot queue, ACO is performed to find the critical input transitions.

And finally, the pheromone parameters of primary inputs and higher

power pattern pairs are passed to the GA-based pattern generation stage

to generate the patterns of the next generation. The population size

generated from GA is 4,000 pattern pairs, and another 1,000 random

pattern pairs are added for each generation to avoid being trapped in

the local optimum.
For the sake of time saving, only the pattern pairs with extreme

localized overheating or excessive overall power consumption will be

passed to thermal simulation. After thermal simulation, newly discov-

ered hotspots would be pushed into the queue. On the contrary, if a

hotpot cannot reach a higher temperature for a period of time, then it

is frozen. The frozen hotspots will be popped out from the queue. The

algorithm is terminated when the hotspot queue is empty.

IV. GA2CO FOR SEQUENTIAL PEAK TEMPERATURE ESTIMATION

As explained in Section II.A, when a high power pattern pair is found,

it is re-applied to reach a steady state temperature for combinational

circuits. For sequential circuits, however, we should also take the state

issue into consideration. Therefore, we try to reach peak temperature

by producing a sequence of patterns or a state transition loop that

has high transition activities in the hotspot area. The same GA and

ACO mechanisms as illustrated in the previous section are applied for

producing these patterns.
However, if we apply the GA2CO greedily to find the every next

cycle pattern with high power consumption, it is easy to get trap in

state transition loops and obtain a local optimum solution. Our heuristic

is to determine the frequency GA2CO would be applied by defining

a grasping number (GN ). The GA2CO will be performed every GN
cycles for finding the next pattern. At the other cycles, random approach

is applied instead for producing more “different” patterns to escape from

the loops. For consecutive n-cycles in a circuit, if the number of reached

states is fewer, it is easier to get trapped in loops. Hence, the period

of applying GA2CO should be larger. That is, the GN is inversely

proportional to the number of reached states within the initial cycles.

The GN is defined as Equation (5)

GN = 	 Initial cycles

Number of reached states

 + 1 (5)

where initial cycles is the number of random pattern consecutively

applied from the initial state. We set this value as 100. We add the

number “1” at the end of this equation for performing GA2CO at most

every two cycles. Take Fig. 6 as an example, after applying 100 cycles

of random patterns, the number of reached states is 36. Thus, the GN
is 4 as calculated in Fig. 6. Therefore, the GA2CO is applied to find

the next high power pattern every four cycles.

Fig. 6. An example of determining the GN for sequential circuits.

The overall algorithm for sequential circuits is illustrated as Fig. 7.

First, we set the cycle limit which represents the length of pattern

sequence allowed for peak temperature estimation, and set the initial

state as a legal state. The hotspot frame is initially placed on the area

with the highest average power density through initial sequence, and this

location will be adjusted according to the average power profile every

100 cycles. For every GN cycles, the ACO and GA are performed

to find the critical input transitions and to generate the high transition

patterns respectively. Otherwise, the next pattern is randomly generated.

If a state transition loop is found, and its average power consumption is

higher than that of the simulated sequence, we record this loop. When

the pattern sequence length reaches the cycle limit, thermal simulation is

performed for reporting the steady-state temperature of these sequences

and loops.

V. EXPERIMENTAL RESULTS

We have implemented our approach in C++ for peak temperature

estimation over a set of ISCAS’85 combinational benchmarks and

ISCAS’89 sequential benchmarks. The layout and parasitic information

are provided by [8], under the TSMC 0.18um library. The layout

information and delay values are extracted from the DEF and SDF

files. The power profile is obtained from HSPICE with the given cell

libraries in [8] under 100MHz simulation frequency. The glitch behavior

is modeled by the method [6]. Initial temperature is set to 25◦C,

package information and thermal constants such as thermal conductivity

are as that in Hotspot4.0 [5]. The experiments were conducted on Linux

CentOS workstation with 32GByte memory. To show the effectiveness

of the temperature elevation, the risen temperature (ΔT = T − 25◦C)

is shown in the experimental results rather than actual temperatures.
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Fig. 7. The flow chart of our approach for sequential circuits.

TABLE I
PEAK TEMPERATURE ESTIMATION FOR ISCAS’85 COMBINATIONAL

CIRCUITS

ΔT (◦C) Time(m)

Circuit PI NG RAN Ours Impro.(%) RAN Ours Ours
RAN

(%) |Pattern|
c432 36 160 6.40 8.87 38.63 3.08 0.38 12.34 119000
c499 41 202 3.60 3.62 0.49 4.41 0.14 3.09 69000
c880 60 383 8.93 13.97 56.44 20.32 1.56 7.69 159000

c1355 41 546 6.91 10.11 46.32 23.65 2.56 10.81 152000
c1908 33 880 11.45 15.76 37.65 20.50 2.73 13.33 129000
c2670 234 1269 8.86 14.50 63.67 40.99 4.77 11.64 255000
c3540 50 1669 13.40 17.02 27.06 24.40 3.44 14.10 149000
c5315 178 2307 10.60 16.72 57.80 47.23 5.72 12.10 278000
c6288 32 2416 62.81 75.27 19.83 27.39 6.02 21.98 119000
c7552 207 3513 13.12 18.70 42.45 63.20 12.03 19.03 360000

Average - - - - 39.03 - - 12.61 -

Table I shows the experimental results of our approach and random

approach for ISCAS’85 combinational benchmarks. For example, c5315

has 178 PIs and 2307 gates. ΔT is 10.60◦C for the random approach

and is 16.72◦C for ours. The improvement of our approach against the

random approach is 57.80%. The CPU time for random approach is

47.23 minutes and is 5.75 minutes for ours. The CPU time ratio of ours

and random approach is 12.10%, and the number of patterns simulated

for both approaches are 278000.

According to Table I, on average, our approach gives 39.03% tighter

lower bound of peak temperature than that of random approach under

the same amount of pattern pairs, and consumes only 12.61% CPU

time. The reason that our approach consumes less CPU time against

the random one, is because a selection condition is set for thermal

simulation in our approach while not in the random one. This is because

each random pattern is treated equally. Thus, thermal simulation was

performed for every pattern pair among all patterns for finding out the

pattern pair that leads to peak temperature.

Another comparison is taken by the risen temperature between the

normal operating condition and the worst case condition found by

GA2CO. In the normal temperature estimation, the power profile was

estimated by 10,000 random patterns. Note that in the worst case

temperature estimation, we only find one pattern pair and reapply it

to achieve a steady-state temperature. Table II shows the experimental

results. Row 1 lists the benchmarks. Rows 2 and 3 list the risen

temperature in the normal case and ours (worst case), respectively. Row

4 shows the ratio of risen temperature under these two conditions (worst

case/normal). According to Table II, the average risen temperature in

the worst case is larger than that of the normal case one with a ratio of

2.78.

Table III shows the experimental results of our approach and random

approach for ISCAS’89 sequential benchmarks. Since [8] only provides

the layout of some ISCAS’89 benchmarks, the experiments were

conducted on these benchmarks which are list in Column 1. Columns 5

through 8 list the results of random approach. Column 5 lists the steady-

state temperature difference after applying 10,000 pattern sequence

(SΔT ). Column 6 lists temperature difference when state transition

loops exist (LΔT ). Column 7 lists the number of states reached by

applying 10,000 cycles. (Maximum = next states (10,000) + initial state

TABLE II
THE COMPARISON BETWEEN NORMAL AND WORST CASE RISEN

TEMPERATURE.

Circuit c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552
Normal �T 2.38 2.08 3.34 3.95 5.68 4.38 5.97 6.81 40.18 7.98

Worstcase �T 8.87 3.62 13.97 10.11 15.76 14.50 17.02 16.72 75.27 18.70
Worstcase �T

Normal �T
3.73 1.74 4.18 2.56 2.77 3.31 2.85 2.46 1.87 2.34

Average ratio = 2.78

TABLE III
PEAK TEMPERATURE ESTIMATION FOR ISCAS’89 SEQUENTIAL CIRCUITS.

Random Ours
Circuit PI FFs NG SΔT LΔT States Time SΔT LΔT Impro.(%) States Time
s1488 8 7 694 1.45 4.51 16 0.59 1.70 4.62 2.58 26 0.87

s15850 77 534 11067 2.05 - 10001 0.44 2.29 - 11.47 10001 20.24
s35932 35 1728 19876 3.63 9.53 2040 3.33 3.88 9.77 2.53 2390 82.27
s38584 38 1426 22447 3.23 - 10001 2.58 3.32 3.32 2.55 10001 257.25
s38417 28 1636 25585 1.97 - 10001 1.42 2.26 - 14.88 10001 161.77
Average - - - - - - - - - 6.80 - -

(1) = 10,001). For example, s1488 has 8 PIs, 7 flip-flops, and 694

gates. For the random approach, the ΔT estimated by 10,000 patterns is

1.45◦C, and is 4.51◦C from a state transition loop. The random patterns

reach 16 states and the CPU time is 0.59 minutes. For our approach,

the ΔT estimated by 10,000 patterns is 1.70◦C, and is 4.62◦C from a

state transition loop. The higher temperature between SΔT and LΔT is

selected for comparison. Thus, the improvement is 2.58% in comparison

of the LΔT . The number of reached state is 26 and the CPU time is

0.87 minutes. According to Table III, on average, our approach gives

6.80% tighter lower bound of peak temperature than that of random

approach under the same cycle limit, 10,000.

VI. CONCLUSIONS

Getting tighter lower bound on estimating the worst case peak

temperature requires the assistance of an efficient search algorithm in

enormous search space. This paper proposes the GA2CO algorithm

for peak temperature estimation to avoid searching the whole solution

space. The delay model, package cooling effect, and the reachability

issue in sequential circuits are also considered. The experimental results

show that the GA2CO can find a tighter lower bound for larger

combinational and sequential circuits than random approach does.
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