GA2CO: Peak Temperature Estimation of VLSI Circuits

Ya-Hsin Chang, Chun-Yao Wang, and Yen-An Chen
Dept. of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.
g9662520@oz.nthu.edu.tw, wcyao@cs.nthu.edu.tw, g9762639@oz.nthu.edu.tw

Abstract—With the continuing increase of chip density and the shrinkage of feature size of transistor in VLSI circuits, high temperature has become a concerned issue. High temperature not only decreases the functionality and reliability of chips, but also causes high package cost in order to cool down the system. For design consideration, one important issue related to temperature is how hot the chip may be. Thus, this paper investigates on the lower bound of peak temperature of a packaged chip and on the patterns that cause such bound. Two algorithms, Genetic Algorithm and Ant Colony Optimization, are applied for finding this lower bound of peak temperature. Experimental results show that the proposed approach obtains an average of 39.03\% higher lower bound for ISCAS'85 combinational benchmarks and 6.80\% for ISCAS'89 sequential benchmarks as compared to random approach under the TSMC 0.18\textmu m library.

I. INTRODUCTION

With the relentless push for higher integration and higher performance, the chip density and clock frequency increase rapidly. This results in the extensive rises of power density and temperature in VLSI circuits. High temperature has a significant impact on the functionality and reliability of chips. Small [12] shows that the failure rate for components doubles every 10\textdegree C increase. Thus, to cool down the temperature in a system such that the peak temperature is confined below a threshold, package design has to consider the worst case heating condition [11], and results in the high expense of package cost. On the other hand, the understanding of the peak temperature and the temperature distribution of VLSI circuits can serve as guidelines for design references.

Temperature profile has a close spatial correlation with power profile; therefore, extensive power density areas can lead to localized overheating, called hotspots. Power consumption is mainly depending on input signals and circuit states once process parameters and architecture are fixed. Therefore, peak temperature associates with a specific starting state of circuit and a specific sequence of patterns. An exhaustive search from the space of all input pattern combinations for finding the pattern sequence that leads to peak temperature is impractical for large circuits, since there are \(2^n\) possible pattern pair combinations for \(n\)-input circuits, where one pattern pair corresponds to a switch between two input patterns.

However, as indicated in [1], the location with the highest power density does not necessarily coincide with the location having peak temperature. It is because temperature distribution is a localized phenomenon governed not only by heat generation but by heat dissipation to ambient air. Thus, thermal simulation should be performed for more accurate results. Inspired by [4][7], our approach integrates Ant Colony Optimization and Genetic Algorithm to produce the patterns with higher power consumption in the hotspot areas. Then thermal simulation is performed, and the results will be feedback for further pattern generation. Our approach can deal with large combinational and sequential circuit with the considerations of delay models and package cooling effect. The overall chip temperature profile is obtained at the end of algorithm for design reference. The experimental results show that our approach can find a tighter lower bound than that obtained by random patterns under the same amount of patterns.

This work was supported in part by the National Science Council of R.O.C. under Grants NSC 98-2220-E-007-015 and NSC 98-2220-E-007-023.

II. PRELIMINARIES

A. Temperature Accumulation

Peak temperature occurs in localized overheating areas, hotspots. For the recognition of hotspots, we define a hotspot frame which is a square of high power density area. The frame size is determined heuristically. For combinational circuits, the power dissipation is governed by a pair of input patterns \(V_i\) and \(V_{i+1}\). The average power consumption caused by switching this pattern pair is the same. Thus, we can re-apply a pair of patterns to reach steady-state peak temperature.

For sequential circuits, however, the state values of flip-flops within the circuit also affect the transition activities. Thus, the same input pattern under different states could lead to different next states and power consumption. On the other hand, if a state transition loop exists, same states can be recaptured, and the power consumption can be sustained over many cycles. We try to find the state transition loop and re-apply it to reach peak temperature in sequential circuits. Nevertheless, the state transition loop with higher power consumption in some sequential circuits may be difficult to be found or unreachable from the given initial state. Thus, we produce a sequence of patterns that consumes higher average power in the framed area instead.

B. Power model

The power consumption of CMOS circuits can be roughly divided into two groups: static power consumption, which is caused by static current drawn from power supply; and dynamic power consumption, which associates with signal switching activities. Once the process parameters and circuit architecture are determined, the power dissipation is dominated by dynamic power which corresponds to the input patterns and gate delay. Consider a digital circuit with \(m\) gates in the framed area, the dynamic power dissipation in the framed area over a cycle time \(T\) can be computed as Equation (1)

\[
P = \sum_{i=1}^{m} \frac{V_{dd}^2}{2T} C_i D_i
\]

where \(V_{dd}\) is the supply voltage, \(C_i\) is the load capacitance of gate \(i\); \(D_i\) is the number of transitions of gate \(i\) from 0 to 1 or vice versa in the time interval \(T\).

We aim to increase the power dissipation of the gates within the framed area. Instead of finding the \(C_i\) value, we use the actual \textit{power dissipation value} \(AP_i\) which is calculated by HSPICE with the given cell library [8] to represent the effect of \(C_i\). Then we define the \textit{framed gate power} \((FP_g)\) as the average power consumption of the gates in a frame during the time interval \(T\). \(FP_g\) is an important parameter in our approach and is detailed in Equation (2). Note that different framed area may have different numbers of gates, therefore \(m\) is not a constant.

\[
FP_g = \frac{\sum_{i=1}^{m} AP_i D_i}{m}
\]

For example, in Fig. 1, assume that there are 4 gates in the framed area. The NOT gate A and AND gate C are with 2-unit delays, and the OR gates B and D are with 3-unit delays shown as a subscript on the top of the gate. Thus, the transition time of the gates can be calculated and are specified on the top right of the gate. We can find three transitions from 1 to 0 at gates A, B, and D, at \(t_2\), \(t_5\), and \(t_8\), respectively. If assume the power consumption for NOT gate is 1.2 unit, and is 1.8 unit for the other types of gates. Then, the \(FP_g\) will be 1.2 as calculated in Fig. 1.
C. Thermal model

The temperature distribution on a chip is governed by the heat diffusion equation as Equation (3) shows [10]:

$$ \rho c_p \frac{\partial T(r,t)}{\partial t} = \nabla \left[k \nabla T(r,t) \right] + g(r,t) $$

where T is the temperature ($\degree C$), ρ is the density of the material (kg/m^3), c_p is the specific heat capacity ($J/kg\degree C$), k is the thermal conductivity ($W/m\degree C$), g is the power density (J/kg), and t is time (s). The heat conducting differential equation has a similar form to the electrical differential equation. A well known duality between states that the heat flow passing through a thermal resistor acts as the electrical current passing through a resistor, and the temperature gradient corresponds to voltage gradient. Equation (3) can be solved for temperature distribution by finite difference methods [5] [13].

In this work, a chip is divided into thermal blocks when performing thermal simulation. The center of each block is regarded as the heat source in which the power generated within the block comes, and thermal resistances exist between each pair of adjacent blocks.

III. GA2CO FOR COMBINATIONAL CIRCUITS

A. Hotspot evaluation

In our thermal model, a chip is divided into thermal blocks, and a hotspot frame is delimited and sequentially moved for hotspot recognition. To construct the initial hotspots, 10,000 random patterns are applied. After the simulation of a pattern pair, the hotspot frame is moved to search the area with the highest power density, and push this suspicious hotspot into a hotspot queue for succeeding simulations. To avoid a rapid increase of hotspot number, a clarification mechanism is performed by combining adjacent hotspots into the one which has the highest power density among them, where adjacency means two radiuses that centered by two hotspots are overlapped. Take Fig. 2 as an example, the radiuses of frame A and frame B are intersected, the frame B will be neglected if the frame A has a higher power density than that of frame B. This clarification mechanism can also avoid ambiguous input bit extraction in the next stage.

B. Critical input extraction

With the suspicious hotspots, the next stage of our approach is to increase the transitions in the framed areas where suspicious hotspots located. We apply the Ant Colony Optimization (ACO) algorithm [2] to find the input transitions that significantly cause the power dissipation in the framed area.

The ACO is an algorithm which imitates ants’ behavior of seeking a “good” path between the nest and food. A chemical named pheromone is deposited by ants and forms a pheromone trail when ants pass by. This pheromone also evaporates with time such that the pheromone concentrations of trails are different with respect to the frequency of re-visiting. Ants tend to choose a path with a stronger pheromone concentration.

For each primary input i of a circuit, there are four transition conditions: $0 \to 0$, $0 \to 1$, $1 \to 0$, and $1 \to 1$. Four parameters $\tau^0_{i \to 0}$, $\tau^0_{i \to 1}$, $\tau^1_{i \to 0}$, and $\tau^1_{i \to 1}$ are used to represent the corresponding pheromones for these four transition conditions of primary input i. During the logic simulation, the FP_p value of an input pattern pair is added to these four parameters for pheromone accumulation. The amount of pheromone is updated heuristically as expressed in Equation (4)

$$ \tau^0_{i \to 0}(t + 1) = \Delta \tau^0_{i \to 0}(t) + (1 - k) \tau^0_{i \to 0}(t) $$

where $\tau^0_{i \to 0}(t + 1)$ is the updated pheromone for transition $0 \to 0$ of primary input i, $\Delta \tau^0_{i \to 0}$ is the amount of pheromone newly deposited, i.e., FP_p value, and $k \in [0, 1]$ is the pheromone evaporation rate. The other three parameters, $\tau^0_{i \to 1}$, $\tau^1_{i \to 0}$, and $\tau^1_{i \to 1}$, are also expressed as Equation (4) except the subscripts of transition conditions.

This approach also increases the probability to visit the peaking areas in the framed area. Then the highest power density area will be extracted as the final critical transition points.

C. Pattern generation

Genetic Algorithm [3] is a technique inspired by evolutionary biology. Parent genes generate offspring genes with higher fitness value through inheritance, mutation, and crossover. In this work, input pattern pairs with higher transitions are encoded into gene fragments. Then these pattern pairs perform inheritance, mutation, and crossover operations to generate new pattern pairs which may have higher power consumption in the framed area, and hence, heat up the hotspots.

After the simulations for hotspot i in the queue, three kinds of parent pattern pairs can be obtained. The first one is the pattern pair that obtained from pheromone accumulation of hotspot i in the critical input extraction stage. The pheromone parameter of each primary input with the highest value is selected. The second one is the pattern pair that causes the peak temperature among all simulations for the hotspot i. The last one, which is extracted from all hotspots, is a group of top 100 pattern pairs that cause the highest temperature among all hotspots.

Fig. 3 gives an example of our pattern generation. The row above the left top block contains the pheromone parameters that have the highest pheromone values for the hotspot i. The pheromone parameters...
whose pheromone concentration are exceed 1.5 standard deviation, e.g., \(\tau^1_{t=0}, \tau^2_{t=0}, \) and \(\tau^3_{t=0} \) are picked up and are inherited since these input transitions have significant impacts on the transition times in the framed area. Thus, we can obtain a gene fragment \((1X00X–0X10X)\) accordingly, where X means don’t care. The mutation operation replaces the don’t care bits of this gene fragment with random values, e.g.,
\((10001–01101)\). The crossover operation between the gene fragment and the top 100 pattern pairs is shown on the bottom of Fig. 4, where the non-don’t care bits are replaced with top 100 pattern pairs in the corresponding position. Thus, an offspring pattern pair \((11001–00100)\) is generated. The crossover operation also occurs between the highest temperature pattern pair and the top 100 pattern pairs, and occurs among the top 100 pattern pairs themselves. For these crossover operations, the offspring pattern pair is composed of parent genes which are randomly selected.

![Fig. 4. The Genetic Algorithm-based pattern generation in our approach.](image)

D. Overall algorithm

The overall algorithm of our approach for combinational circuits is shown in Fig. 5. First, we construct the initial solution for suspicious hotspots by randomizing 10,000 patterns. Second, for each hotspot in the hotspot queue, ACO is performed to find the critical input transitions. And finally, the pheromone parameters of primary inputs and higher power pattern pairs are passed to the GA-based pattern generation stage to generate the patterns of the next generation. The population size generated from GA is 4,000 pattern pairs, and another 1,000 random pattern pairs are added for each generation to avoid being trapped in the local optimum.

For the sake of time saving, only the pattern pairs with extreme localized overheating or excessive overall power consumption will be passed to thermal simulation. After thermal simulation, newly discovered hotspots would be pushed into the queue. On the contrary, if a hotspot cannot reach a higher temperature for a period of time, then it is frozen. The frozen hotspots will be popped out from the queue. The algorithm is terminated when the hotspot queue is empty.

IV. GA\(^2\)CO FOR SEQUENTIAL PEAK TEMPERATURE ESTIMATION

As explained in Section II.A, when a high power pattern pair is found, it is re-applied to reach a steady state temperature for combinational circuits. For sequential circuits, however, we should also take the state issue into consideration. Therefore, we try to reach peak temperature by producing a sequence of patterns or a state transition loop that has high transition activities in the hotspot area. The same GA and ACO mechanisms as illustrated in the previous section are applied for producing these patterns.

However, if we apply the GA\(^2\)CO greedily to find the every next cycle pattern with high power consumption, it is easy to get trap in state transition loops and obtain a local optimum solution. Our heuristic is to determine the frequency GA\(^2\)CO would be applied by defining a grasping number (\(GN\)). The GA\(^2\)CO will be performed every \(GN\) cycles for finding the next pattern. At the other cycles, random approach is applied instead for producing more “different” patterns to escape from the loops. For consecutive \(n\)-cycles in a circuit, if the number of reached states is fewer, it is easier to get trapped in loops. Hence, the period of applying GA\(^2\)CO should be larger. That is, the \(GN\) is inversely proportional to the number of reached states within the initial cycles.

The \(GN\) is defined as Equation (5)

\[
GN = \left\lceil \frac{\text{Initial cycles}}{\text{Number of reached states}} \right\rceil + 1
\]

where initial cycles is the number of random pattern consecutively applied from the initial state. We set this value as 100. We add the number “1” at the end of this equation for performing GA\(^2\)CO at most every two cycles. Take Fig. 6 as an example, after applying 100 cycles of random patterns, the number of reached states is 36. Thus, the \(GN\) is 4 as calculated in Fig. 6. Therefore, the GA\(^2\)CO is applied to find the next high power pattern every four cycles.

![Fig. 6. An example of determining the \(GN\) for sequential circuits.](image)

The overall algorithm for sequential circuits is illustrated as Fig. 7. First, we set the cycle limit which represents the length of pattern sequence allowed for peak temperature estimation, and set the initial state as a legal state. The hotspot frame is initially placed on the area with the highest average power density through initial sequence, and this location will be adjusted according to the average power profile every 100 cycles. For every \(GN\) cycles, the ACO and GA are performed to find the critical input transitions and to generate the high transition patterns respectively. Otherwise, the next pattern is randomly generated. If a state transition loop is found, and its average power consumption is higher than that of the simulated sequence, we record this loop. When the pattern sequence length reaches the cycle limit, thermal simulation is performed for reporting the steady-state temperature of these sequences and loops.

V. EXPERIMENTAL RESULTS

We have implemented our approach in C++ for peak temperature estimation over a set of ISCAS’85 combinational benchmarks and ISCAS’89 sequential benchmarks. The layout and parasitic information are provided by [8], under the TSMC 0.18um library. The layout information and delay values are extracted from the DEF and SDF files. The power profile is obtained from HSPICE with the given cell libraries in [8] under 100MHz simulation frequency. The glitch behavior is modeled by the method [6]. Initial temperature is set to 25\(^\circ\)C, package information and thermal constants such as thermal conductivity are as that in Hotspott4.0 [5]. The experiments were conducted on Linux CentOS workstation with 32GByte memory. To show the effectiveness of the temperature elevation, the risen temperature (\(\Delta T = T - 25\deg C\)) is shown in the experimental results rather than actual temperatures.
Table I shows the experimental results of our approach and random approach for ISCAS’85 combinational benchmarks. For example, c5315 has 178 PIs and 2307 gates. ΔT is 10.60°C for the random approach and is 16.72°C for ours. The improvement of our approach against the random approach is 57.80%. The CPU time for random approach is 47.23 minutes and is 5.75 minutes for ours. The CPU time ratio of ours and random approach is 12.10%, and the number of patterns simulated for both approaches are 278000.

According to Table I, on average, our approach gives 39.03% tighter lower bound of peak temperature than that of random approach under the same amount of pattern pairs, and consumes only 12.61% CPU time. The reason that our approach consumes less CPU time against the random one, is because a selection condition is set for thermal simulation in our approach while not in the random one. This is because each random pattern is treated equally. Thus, thermal simulation was performed for every pattern pair among all patterns for finding out the pattern pair that leads to peak temperature.

Another comparison is taken by the risen temperature between the normal operating condition and the worst case condition found by GA^2CO. In the normal temperature estimation, the power profile was estimated by 10,000 random patterns. Note that in the worst case temperature estimation, we only find one pattern pair and reapply it to achieve a steady-state temperature. Table II shows the experimental results. Row 1 lists the benchmarks. Rows 2 and 3 list the risen temperature in the normal case and ours (worst case), respectively. Row 4 shows the ratio of risen temperature under these two conditions (worst case/normal). According to Table II, the average risen temperature in the worst case is larger than that of the normal case one with a ratio of 2.78.

Table III shows the experimental results of our approach and random approach for ISCAS’89 sequential benchmarks. Since [8] only provides the layout of some ISCAS’89 benchmarks, the experiments were conducted on these benchmarks which are list in Column 1. Columns 5 through 8 list the results of random approach. Column 5 lists the steady-state temperature difference after applying 10,000 pattern sequence ($SΔT$). Column 6 lists temperature difference when state transition loops exist ($LΔT$). Column 7 lists the number of states reached by applying 10,000 cycles. (Maximum = next states (10,000) + initial state (1) = 10,001). For example, s1488 has 8 PIs, 7 flip-flops, and 694 gates. For the random approach, the $ΔT$ estimated by 10,000 patterns is 1.45°C, and is 4.51°C from a state transition loop. The random patterns reach 16 states and the CPU time is 0.59 minutes. For our approach, the $ΔT$ estimated by 10,000 patterns is 1.70°C, and is 4.62°C from a state transition loop. The higher temperature between $SΔT$ and $LΔT$ is selected for comparison. Thus, the improvement is 2.58% in comparison of the $LΔT$. The number of reached state is 26 and the CPU time is 0.87 minutes. According to Table III, on average, our approach gives 68.0% tighter lower bound of peak temperature than that of random approach under the same cycle limit, 10,000.

VI. CONCLUSIONS

Getting tighter lower bound on estimating the worst case peak temperature requires the assistance of an efficient search algorithm in enormous search space. This paper proposes the GA^2CO algorithm for peak temperature estimation to avoid searching the whole solution space. The delay model, package cooling effect, and the reachability issue in sequential circuits are also considered. The experimental results show that the GA^2CO can find a tighter lower bound for larger combinational and sequential circuits than random approach does.

REFERENCES