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VI. CONCLUDING REMARKS

Currently, two main research directions can be identified in low-
power testing. The first research direction considers power dissipation
during test as a minimization objective. The second direction considers
power dissipation as a design constraint, while test application time
becomes the minimization objective. This paper presented a link be-
tween the two separate research directions, using a new power profile
manipulation approach based on the following components: test vector
reordering, test sequence expansion, two local peak power approxima-
tion model, and test sequence rotation. Test vector reordering is used to
lower and reshape the test power profiles. Test sequence expansion fur-
ther lowers the power profiles of shorter tests which do not affect the
total test application time. Then, the proposed two local peak power
approximation model translates the power profile it into a simple, re-
liable, and accurate test power representation, which can be exploited
by test sequence rotation in order to increase test concurrency under
a power constraint. Since the proposed power profile manipulation is
orthogonal to the test scheduling policy and the test set values, the dis-
tinctive feature of the proposed solution is that it can beequally in-
cluded in, and consequently leverage the performance of,anyexisting
power constrained test scheduling algorithm.
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An Automorphic Approach to Verification Pattern
Generation for SoC Design Verification Using

Port-Order Fault Model
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Abstract—Embedded cores are being increasingly used in the design of
large system-on-a-chip (SoC). Because of the high complexity of SoC, the
design verification is a challenge for system integrators. To reduce the veri-
fication complexity, the port-order fault (POF) model was proposed. It has
been used for verifying core-based designs and the corresponding verifica-
tion pattern generation has been developed. Here, the authors present an
automorphic technique to improve the efficiency of the automatic verifica-
tion pattern generation (AVPG) for SoC design verification based on the
POF model. On average, the size of pattern sets obtained on the ISCAS-85
and MCNC benchmarks are 45% smaller and the run time decreases 16%
as compared with the previous results of AVPG.

Index Terms—Automatic verification pattern generation (AVPG), auto-
morphism, characteristic vector (CV), port-order fault (POF), SoC, su-
perset of all automorphism (SAA), verification.

I. INTRODUCTION

Spurred by process technology leading to the availability of more
than 1 million gates per chip, and more stringent requirements upon
time-to-market and performance constraints, system level integration
and platform-based design [1] are evolving as a new paradigm
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Fig. 1. The schemes of interconnection testing and interconnection verification.

in system designs. A multitude of components that are needed to
implement the required functionality make it hard for a company to
design and manufacture an entire system in time and within reasonable
cost. Hence, design reuse and reusable building blocks (cores) trading
are becoming popular in the system-on-a-chip (SoC) era. However,
present design methodologies are not enough to deal with cores which
come from different design groups and are mixed and matched to
create a new system design. In particular, verifying whether a design
satisfies all requirements is one of the most difficult tasks.

Usage of cores divides the IC design community into two groups:
core providers and system integrators. In traditional system-on-board
(SoB) design, the components that go from provider to system inte-
grator are ICs, which are designed, verified, manufactured, and tested.
The system integrator verifies the design by using these components
as fault-free building blocks. SoB verification is limited to detecting
faults in the interconnection among the components. Similarly, in SoC
design, the components are cores. The system integrator verifies the de-
sign by using the cores as design error-free building blocks. The focus
of this core-based design verification should be on how the cores com-
municate with each other [2]. However, before the interface verifica-
tion, the interconnection between the cores in an SoC have to be ver-
ified first. This is because the SoC integrator has to connect a large
number of ports (hundreds or even thousands of ports) in an SoC. The
likelihood of interconnection misplacements between the cores is high.
Furthermore, the correct interconnection between the cores is the min-
imum requirement to verify the interface protocols. In other words, if
the interconnections between the cores are misplaced, the process of
the verification on the interface between the cores will be in vain. Thus,
the interconnection verification can be conducted as the first step to the
interface verification between the cores in a SoC.

Most previous work in testing interconnection focused on the devel-
opment of deterministic tests for interconnection between chips at the
board level [3], [4]. The main purpose is to test if the interconnection
are connected properly (neither short nor open). In the interconnection
testing phase, the basic assumption for a system under test is that the
system design is correct, and the faults are due to manufacturing defects
on interconnection among components. For the core-based SoC design
verification, however, the system is not fully verified yet and the most
of system design errors are due to the incorrect interconnection among
predesigned cores. The incorrect interconnections are normally intro-
duced by the misinterpretation of port description of IP cores, and this
misinterpretation is usually caused by some factors, such as ambiguous
or cryptic port names, Big Endian or Little Endian byte order of address
bus, etc. Therefore, the extension of these board level testing methods
is inadequate for connectivity-based design verification. Fig. 1(a) and
(b) shows the schemes to demonstrate the processes of interconnection
testing and interconnection verification, respectively. In the intercon-
nection testing, the test engineers focus on the success of implemen-

tation of interconnected wires between block1 and block2. The testing
patterns and corresponding responses are applied and observed at the
ends of the interconnects to check whether the interconnects are man-
ufactured correctly. On the other hand, in the interconnection verifi-
cation, the system integrators verify whether the interconnections be-
tween block1 and block2 are located in the correct ports. They apply
the verification patterns to primary inputs (PIs) of the integrated design,
then observe the corresponding responses in primary outputs (POs) of
the integrated design, and match them against the specification instead.

By creating the testbenches at a high level, a connectivity-based de-
sign fault model, port-order fault (POF), proposed in [5], is used for
reducing the time on core-based design verification [6], [7]. In [6], we
proposed an automatic verification pattern generation (AVPG) based on
the POF model. The AVPG generates a pattern set to detect all possible
misplacements among the ports of the cores. However, the approach of
determining the undetected port sequences (UPSs) in the AVPG is de-
ficient. It does not eliminate all detected port sequences from the fault
set and generates redundant patterns for some detected port sequences
sometimes.

In this paper, we present an automorphic technique, the superset of
all automorphisms (SAA) technique, to calculate the remaining UPSs
during the AVPG. This technique accelerates the AVPG and reduces
the size of verification pattern set.

The remainder of this paper is organized as follows: the POF model
and some terminology are introduced in Section II. Section III de-
scribes the mechanism of conducting POF verification and the veri-
fication environment which exploits the IEEE P1500 standard for em-
bedded core test (SECT) [8], [9]. The AVPG flow and the SAA tech-
nique are presented in Section IV. Section V presents the experimental
results. Section VI concludes the paper.

II. PRELIMINARY

The POF model belongs to the group of pin-faults models [10],
which assumes that a faulty cell has at least two I/O ports misplaced.
It also assumes that the components are fault free and only the
interconnections among the components could be faulty. There are
three types of POFs [5].

Definition 1: The type I POF is at least an output misplaced with
an input. The type II POF is at least two inputs misplaced. The type III
POF is at least two outputs misplaced.

It has been proven that the type II POFs dominate the other two types
of POFs [7]. Hence, in this paper, the AVPG focuses on the type II POFs
solely.

Definition 2: A port sequence is an input port number permutation
that indicates the relative positions among these input ports.

Definition 3: The fault-free port sequence is a port sequence that
none of the input ports were misplaced. For ann-input core, its input
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Fig. 2. Generic verification scheme.

Fig. 3. Generic test access architecture for embedded cores.

variables are numbered from 1 ton. The number of the input variable
permutations isn! and thesen! permutations represent then! port se-
quences of the core. Except the fault-free port sequence, the remaining
(n!�1) port sequences represent those corresponding cores with partic-
ular POFs and are called faulty port sequences. In this paper, the POFs
and the faulty port sequences are used exchangeably.

III. I NTEGRATION VERIFICATION

Fig. 2 depicts a generic verification scheme for the core-based
system chip. These cores are lined up sequentially for better il-
lustration. In fact, the interconnection between the cores could be
unidirectional or bidirectional according to the required bus structure.
During interconnection verification, the cycles in the interconnection
are broken up, hence, the interconnected wires between the cores are
verified. A typical SoC configuration is as seen in Fig. 3.

Since BLK1�BLK6 in Fig. 2 are preverified, the verification efforts
during the integration phase should focus on the interconnection among
the cores. To verify the interconnection among the BLK1�BLK6, de-
signers apply the pattern T to PIs of the integrated design, then com-
pare the responses R to the expected results in Ps. If the responses R
are inconsistent with the expected ones, some interconnection are mis-
placed. The generation of the pattern T depends on the functionalities
of BLK1�BLK6. As the complexity of cores increase or more cores

are involved in the SoC integrated design, the pattern T becomes harder
to generate.

To conquer this problem, we exploit the technique of design for
testability (DFT) to conduct verification. The solution is IEEE P1500
standard for embedded core test (SECT) [8], [9]. IEEE P1500 SECT is
a standard under development that aims at improving ease of reuse and
facilitating interoperability with respect to the test of core-based chips.
The most important component in this standard is the P1500 wrapper.
It is a thin shell around the core that provides the switching capability
between the core and its various access mechanisms. Fig. 3 depicts a
generic access architecture for testing embedded core schematically
[11]. The IEEE P1500 SECT establishes the mechanism that the test
patterns of any circuits under test (CUT) given by core providers can be
applied to PIs of the system chip (source) and propagated to POs of the
system chip (sink) via user-defined test access mechanisms (TAMs).
This characteristic allows the interconnection verification patterns
being propagated to the internal of SoC to verify the interconnection.

The glue logic in the interface between cores is absorbed into the
wrapper of cores and is assumed to be preverified. Since the outer
boundary of the wrapper is also standardized in the IEEE P1500 stan-
dard, this approach can still handle the glue logic in the interface be-
tween the cores. The mismatch of the number of primary inputs to the
CUT and the number of pins available to the SoC can be handled as
well by one mandatory serial interface in the wrapper, which is also
standardized in the P1500.

A straightforward core integration methodology is used and the
system is integrated block-wise. As a block is added into the system,
the verification patterns for the added block are generated from the
AVPG and are applied to the integrated system for the interconnection
verification.

We exploit P1500 wrappers and user-defined TAMs to propagate the
verification patterns from PIs to the wrappers in the predecessor of the
added block and to propagate responses of the added block to POs. The
P1500 wrapper was proposed with a few predefined operations, such
as core-internal test, core-external test, bypass, isolation, and normal
modes.

In order to verify the interconnection among the added block and
its predecessors, the added block is set in normal mode which allows
the added block functioning in its normal system operation. The pre-
decessors connected to the added block directly are set in external test
mode which allow verifying the interconnected wiring between cores
via the ordinary input/output ports in the core wrappers. The other pre-
decessors of the added block are all set in bypass mode which allow the
stimuli being bypassed through these predecessors to the added block.
The bypass mode propagates the stimuli via a singleSi andSo port di-
rectly without involving I/O cells in the wrapper and therefore shortens
the pattern propagation time during verification.

For example, assume the BLK1�BLK6 have to be integrated into
a system as shown in Fig. 2. In the beginning, the BLK1�BLK3 are
added into the system, respectively, and they are set in normal mode.
The interconnection verification between them and the AVPG are veri-
fied by the verification patterns. As the BLK4 is added into the system,
the BLK1 and BLK2 are the predecessors that are directly connected
to it. In order to verify the interconnection A among these blocks, the
BLK4 is set in normal mode, and the BLK1 and BLK2 are set in ex-
ternal test mode to propagate the POF stimuli from PIs through the
wrappers (of BLK1 and BLK2) to the inputs of the BLK4 as shown in
Fig. 4. Hence, the verification patterns can easily go through the system
from PIs to POs and verify the interconnection A. If there are any mis-
placements in the interconnection A, the inconsistent results will be
observed in the output analyzer. Similarly, as the BLK5 is added into
the system, it is set in normal mode. The BLK2 and BLK3 are set in ex-
ternal test mode as shown in Fig. 5. When the patterns are applied into
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Fig. 4. POF verification when integrating the BLK4.

Fig. 5. POF verification when integrating the BLK5.

Fig. 6. POF verification when integrating the BLK6.

the system from PIs, the interconnection B is verified, and so forth; as
the BLK6 is added into the system, it is set in normal mode. The BLK4
is the predecessor that directly connected to the BLK6, therefore, it is
set in external test mode. The BLK1 and BLK2 are the other predeces-
sors of the BLK6, they are set in bypass mode. This operation is shown
in Fig. 6 and the interconnection C is verified.

This verification mechanism allows AVPG to focus solely on the
functionality of the added block when generating the verification pat-
tern set and reduce the complexity of POF verification. Please note that
for verifying the interconnection of an added core, this core is exercised
via the normal operation path. This is because only the consistency of
simulation results and expected results can guarantee the correctness
of integrated design. Furthermore, by using the P1500 test structure
for POF verification, no more hardware overhead is introduced in the
chip implementation. The mechanism reuses the hardware overhead in-
curred in the testing phase.

Fig. 7. The flowchart of the POF-based AVPG.

IV. THE SAA TECHNIQUE IN THE AVPG

The AVPG flow proposed in [6] is shown in Fig. 7. It reads the com-
binational core and generates heuristic patterns. The patterns simula-
tion results determine the valid verification patterns and the remaining
undetected port sequences (UPSs) so that more verification patterns
can be generated accordingly. When the fault coverage (F_C) reaches
100% or the iterations are over the bound, the AVPG will be terminated.
The detailed descriptions of these stages, the pattern generation stage
in particular, in the AVPG can be found in [6]. Here, only the AVPG
flow and some important ideas are presented.

The UPS’s calculation (UPSs_Calculation) procedure shown in
Fig. 7 determines what the remaining UPSs are and guides the further
pattern generation. If the results of UPS’s calculation are not precise
enough, some of the further verification patterns could be redundant
and the processing time to reach the desired fault coverage will in-
crease. In [6], the characteristic vector (CV) approach of determining
the remaining UPSs encountered this weakness. Thus, the superset
of all automorphisms (SAA) technique is proposed to improve the
UPSs_Calculation procedure so that the AVPG will be more efficient.

A. Undetected Port Sequence (UPS) Representation

For the POF-based AVPG, the fault list is not enumerated explicitly,
this is because the total number of POFs in ann-input core is (n!� 1).
This number grows rapidly whenn increases, for instance, asn = 69,
n! � 1 � 1.7� 1098. Instead, an implicit representation is used to
indicate the remaining UPSs during the verification pattern generation.

In the beginning, Example 1 demonstrates the implicit UPS repre-
sentation.

Example 1: Given an eight-input core, the input ports are numbered
from 1 to 8. The UPSs (12 345 678) represent the UPS that are caused
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by all possible misplacements of the port numbers in the same group,
i.e., port 1�port 8. The UPSs (125)(4)(3678) indicate the UPSs that
are caused by all possible misplacements among the port numbers 1,
2, and 5 and/or all possible misplacements among the port numbers 3,
6, 7, and 8. The number of the undetected POFs is 3!� 1! � 4! �
1. The UPS (1)(2)(3)(4)(5)(6)(7)(8) represents that 8!� 1 POFs are all
detected and the remaining UPS is empty. If the UPSs are induced from
(12 345 678) to (1)(2)(3)(4)(5)(6)(7)(8), all POFs are detected.

B. The Comparison of the CV Approach and the SAA Approach

In this section, we will describe the CV approach, which exploits
the similar technique proposed in [12], and the SAA approach in de-
termining the remaining UPSs and compare their results.

Definition 4: Given a set of patterns S with the same length, we
count the number of digits 1 in the same bit position to form a vector
with the same length [12]. This vector is called the characteristic vector
(CV) of S and is denoted as CV_S.

Definition 5: Given two pattern sets S and T, if S� T and S� T,
we said S= T; otherwise S6= T. If the corresponding bits in the CV_S
and CV_T are all the same, we said CV_S= CV_T; otherwise, CV_S
6= CV_T.

Lemma 1: One pattern set only has one CV.
Lemma 2: Given two pattern sets S and T, if CV_S6= CV_T, then

S 6= T.
In [6], the pattern generation stage generates all patterns with the

same number of 1s and 0s, then the patterns with the same outputs are
grouped into the same set. Thereafter, the CV of each pattern set is
calculated and the valid verification patterns and the remaining UPSs
are determined by the CV.

For example, assume the original UPSs are (1 234 567), all7

3
“three

1s patterns” are generated and simulated [assume all7

1
“one 1 pat-

terns” and 7

2
“two 1s patterns” have been simulated and known inef-

fectual in reducing UPSs], and assume these patterns can be grouped
into two sets S1 and S2 only, where patterns in the same set have
the same output. Fig. 8 shows one of the pattern sets, S1, and its CV,
CV_S1[1 : 7]= 1 121 223.

Lemma 3: Assume a pattern P hasm 1s and (n�m) 0s. If it turns
to P0 after any port misplacements�, then the pattern P0 also hasm 1s
and (n�m) 0s and is a permutation of P by the port misplacements�.

Theorem 1: Assume a pattern set S1 consists of all patterns with the
same output and each pattern in the S1 has the same number of digits
1s and 0s. If S1 turns to another pattern set S10 after the port misplace-
ments� and the CV_S16= CV_S10, then the port misplacements� will
be detected by S1 patterns.

Proof: Because CV_S16= CV_S10, according to Lemma 2, we
assure S16= S10. Furthermore, becausejS1j = jS1’j, and each pattern
in the S10 is a permutation of the corresponding pattern in the S1, S10

must contain a pattern P=2 S1. According to Lemma 3, the pattern P
has the same number of digits 1s and 0s as S1 patterns and because S1
consists of all patterns with the same output, the output of P must be
different from that of patterns in the S1. Thus, when applying S1 into
the design with the port misplacements�, the real patterns assigned
into the design are S10. The difference between the real outputs and the
expected outputs makes the fault effect of the misplacements� propa-
gate and be observed in POs. Q.E.D.

According to Theorem 1, the port misplacements that change
CV_S1 will be detected by S1 patterns. Consequently, the port
misplacements which cannot change CV_S1 are regarded as the
remaining UPSs. Hence, the AVPG figures out CV_S1[1 : 7] and
groups the different numbers in CV_S1[1 : 7] into different subgroups.
In the example shown in Fig. 8, CV_S1[1 : 7] is 1121223, it groups
the three 1s in one subgroup, three 2s in another subgroup, and one
3 in the third subgroup. The grouped results can be represented as

Fig. 8. The pattern set S1 and the CV_SI.

(111)(222)(3) and its corresponding UPSs are (124)(356)(7). The port
misplacements occurred in one subgroup keep the CV the same and
are regarded as the remaining UPSs. Thus, when S1 is added into the
verification pattern set, the remaining UPSs become (124)(356)(7) as
shown in Fig. 8.

The AVPG generates further verification patterns according to this
remaining UPS (124)(356)(7) in the next iteration. Here, we describe
how to generate additional verification patterns from the UPSs
(124)(356)(7) briefly. The UPSs have three groups and we number
them from G1 to G3, i.e., G1 is (124), G2 is (356) and G3 is (7).
We have known that if we can reduce the UPSs from (124)(356)(7)
to (1)(2)(3)(4)(5)(6)(7), the remaining 3!� 3! � 1!-1 faulty port
sequences are detected. Our strategy is to attack one group at one
iteration. The group Gi withjGij � 2 is called a possible target
group, which can be chosen as the target group in arbitrary order at
any iteration. For instance, we choose G1 as the target group first.
For the input assignments in G1, we assign3

1
“one 1 patterns” to

them. For the input assignments in G2 or G3, we heuristically assign
values to them and let the assigned values be the same if they are in
the same group. The same value assignments in G2 and G3 groups
accelerate the calculation of the updated UPSs [6]. Fig. 9 shows such
assignments and the corresponding outputs. Since the outputs, A1 and
B1, are different, these three patterns are grouped into two sets, S3 and
S4, according to the outputs. Then we choose the smaller set, S3, as
the verification pattern. From the previous explanation, the grouping
result of CV_S3[G1] is the same as the corresponding UPSs on G1
group. Thus, the updated UPSs become (1)(24)(356)(7) and the size of
the UPSs is reduced to 1!� 2! � 3! � 1! � 1. However, if such input
assignments cannot differentiate the outputs of these patterns, other
assignments are chosen. A more detailed description of the AVPG can
be found in [6].

The pattern generation process in the AVPG depends on the
remaining UPSs. However, the remaining UPSs derived by using the
CV approach are not the real remaining UPSs in some situations. In
this example, the real remaining UPSs are (14)(2)(3)(56)(7) after the
exhaustive examination when only S1 is added into the verification
pattern set [the UPSs derived by the CV approach are (124)(356)(7)].
Actually, the CV approach gets pessimistic results sometimes. There-
fore, the automorphic approach is proposed to reach the real remaining
UPSs more closely.

Definition 6: A graph G with n vertices and m edges consists of a
vertex set V(G)= fV1, . . ., Vng and an edge set E(G)= fE1, . . .,
Emg. Each edge consists of two vertices called its endpoints. UV is an
edge with endpoints U and V. A graph is undirected if there is no “di-
rection” on the edges. A graph is weighted if there are positive integer
weights on the edges. The weight of the edge UV is denoted as W(UV).

Definition 7: An automorphism of graph G is a permutation of V(G)
that preserves adjacency.

Definition 8: A matching in a graph G is a set of pairwise disjoint
edges. The vertices belonging to the edges of a matching are saturated
by the matching; the others are unsaturated. If a matching saturates
every vertex of G, then it is a perfect matching.
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Fig. 9. The demonstration of generating additional patterns from the UPSs (124)(356)(7).

To solve the problem of calculating the remaining UPSs of the pattern
set S1 withn bits, an undirected, weighted graph G(V,E) is constructed,
which corresponds to the set S1 withjS1j patterns,P1 toPjS1j.Pi[j] in
S1 denotes thejth bit inPi wherei = 1 � jS1j andj = 1 � n. The
vertex Vk in G corresponds to thekth input variable/port in S1. For all
patternsP1 toPjS1j in S1, whenPi[k] = Pi[k

0] = 1, an edge VkVk0

is added into G and W(VkVk0)=1 where (k, k0) are all n

2
bit pairs. If

the edge VkVk0 has existed in G, W(VkVk0) is increased one.
We use the same example discussed previously to illustrate this

transformation. ForP1[1 : 7] in S1 shown in Fig. 10(a) again, 1010001,
sinceP1[1] = P1[3] = P1[7] = 1, edges V1V3, V1V7, and V3V7
are added into G, respectively. ForP2[1 : 7], 0100110, edges V2V5,
V2V6, and V5V6 are added into G, respectively, and so on. The
constructed graph G is an undirected weighted graph and is shown
in Fig. 10(b). Its corresponding adjacency matrix, Adj(G), is shown
in Fig. 10(c). In Adj(G), if there is no edge between Vk and Vk0 in
G, Adj(G)[k][k0] = Adj(G)[k0][k] = 0; otherwise Adj(G)[k][k0] =
Adj(G)[k0][k] = W(VkVk0).

The problem of calculating the remaining UPSs in S1 is now trans-
formed to finding all automorphisms of G. The effectiveness of this
problem transformation is that the position relations of digit 1s in each
pattern in S1 are transformed to the connectivity relations in G. Finding
the port misplacements that maintain S1 to be invariant (calculating
UPSs) is equivalent to finding all automorphisms of G.

Fig. 10(d) shows an implication chart that is used for identifying all
automorphisms of G. The vertices in G are listed in the X axial and
Y axial of the implication chart. Each pair of vertices has a grid entry.
Therefore, the total number of grid entries in the implication chart is
7

2
. Each grid entry (Vi, Vj) is filled with the conditions to be satisfied

such that the exchange of Vi and Vj is an automorphism. Column Ci in
Adj(G) represents the connectivity relation of Vi to the other vertices.
Therefore, comparing columns Ci and Cj in Adj(G) can examine the
relationship between Vi and Vj.

There are three steps in completing the implication chart. Step 1: If
Ci and Cj are identical, this means the connectivity of Vi and Vj to the
other vertices in G are identical, then an “O” is filled in the grid entry
(Vi,Vj); otherwise, go to step 2.

Example 2: Fig. 10(e) shows that the first and fourth columns of
Fig. 10(c) are identical, therefore, an “O” is filled in the grid entry (V1,
V4). This “O” means that the exchange of V1 and V4 preserves the
adjacency and is an automorphism.

Step 2: If Ci and Cj are not identical, we focus on the vertices that
have different degrees connected to Vi and Vj only. If these vertices
exhibit a perfect matching, M(Vx–Vy), such that every matched vertex
pair, Vx–Vy, has opposite degrees connected to Vi and Vj, respectively,
then this matching is filled in the grid entry (Vi, Vj); otherwise an “X”
is filled in the grid entry (Vi, Vj).

Example 3: Fig. 10(f) shows an example that only V5 and V6
(rounded) are considered when comparing C5 and C6 in Adj(G).
(V5, V6) is a perfect matching that has opposite degrees, therefore,
M(V5–V6) is filled in the grid entry (V5, V6). Fig. 10(g) shows

Fig. 10. The demonstration of the automorphic technique and the SAA
approach in calculating the remaining UPSs.

another example that only V3, V5, V6, and V7 are considered (they
have different degrees connected to V1 and V2). These vertices make
two perfect matchings, M(V3–V5, V6–V7) or M(V3–V6, V5–V7).
Therefore, these two matchings are filled in the grid entry (V1,
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V2). Each perfect matching is the sufficient condition to justify the
automorphism of V1 and V2. For example, if both matching pairs
V3–V5 and V6–V7 in M(V3–V5, V6–V7) are automorphic, then the
exchange of V1 and V2 is an automorphism.

Example 4: Fig. 10(h) shows an instance that the rounded vertices
cannot make a perfect matching, therefore, an “X” is filled in the grid
entry (V1, V3). This “X” means that the exchange of V1 and V3 is not
an automorphism.

The step 1 and step 2 are conducted iteratively until all grid entries
(Vi, Vj) are filled with an “O,” an “X” or matchings. Then the complete
implication chart is obtained, which is shown in Fig. 10(i). At this time,
the step 3 is processed.

Step 3: The grid entry (Vi, Vj) that is filled with matchings,
M(Vx–Vy), has to be examined again. Because each matching in the
grid entry (Vi, Vj) is the sufficient condition to justify the grid entry
(Vi, Vj), we have to examine the grid entry (Vx, Vy) before justifying
the grid entry (Vi, Vj). If the grid entry (Vx, Vy) has been filled with
an “X,” we mark the grid entry (Vi, Vj) with an “X,” too; otherwise,
the grid entry (Vi, Vj) remains unchanged.

Example 5: For the grid entry (V1, V2) and grid entry (V2, V4),
they are filled with two matchings, M(V3–V5, V6–V7) and M(V3–V6,
V5–V7). Therefore, we examine the grid entry (V3, V5), grid entry
(V6, V7), grid entry (V3, V6), and grid entry (V5, V7) before justifying
the grid entry (V1, V2) and grid entry (V2, V4). From Fig. 10(i), the
grid entry (V3, V5), grid entry (V6, V7), grid entry (V3, V6), and grid
entry (V5, V7) are all filled with “X.” Thus, we mark the grid entry (V1,
V2) and grid entry (V2, V4) with “X,” too. For the grid entry (V5, V6),
it is filled with a matching, M(V5–V6). This matching is compatible
to the grid entry (V5, V6), therefore, we leave it unchanged in the grid
entry (V5, V6).

After checking all grid entries (Vi, Vj) which are filled with match-
ings, the refined implication chart is obtained as shown in Fig. 10(j). In
the refined implication chart, if the grid entry (Vi, Vj) is filled with an
“O,” the exchange of Vi and Vj is an automorphism. If the grid entry
(Vi, Vj) is filled with a matching, M(Vx–Vy), the combination of ex-
change of (Vi, Vj) and (Vx, Vy) is an automorphism. All combinations
of different automorphisms are automorphisms, too. In Fig. 10(j), the
grid entry (V1, V4) and grid entry (V5, V6) are not filled with “X,”
thus all automorphisms of this example are as follows:

1) identity permutation, 1 234 567;
2) exchange of (V1, V4) which corresponds to the vertex permuta-

tion, 4 231 567;
3) exchange of (V5, V6) which corresponds to the vertex permuta-

tion, 1 234 657;
4) combination of exchanges of (V1, V4) and (V5, V6), which cor-

responds to the vertex permutation, 4 231 657.

The automorphisms of G can also be expressed as (14)(2)(3)(56)(7) in
our implicit UPSs representation and it is identical to the real remaining
UPSs in the previous discussion.

The graph automorphism problem is a well-known and well-studied
problem. However, it is not known to be either in P or NP-complete
[13], [14]. Therefore, in the proposed graph automorphism algorithm,
when we compare Ci and Cj of Adj(G) of ann-vertex graph, there
may existn=2! perfect matchings of vertices that satisfy the opposite
degrees requirement. In the worst case as shown in Fig. 10(k) with an
example ofn = 8, it takes 4! operations before justifying the grid entry
(Vi, Vj). This number is factorial ton and grows fast whenn increases.

To conquer this dilemma, we confine the problem to finding the su-
perset of all automorphisms (SAA) of G instead of all automorphisms
of G. The SAA contains all automorphisms and some nonautomor-
phisms. In Fig. 10(l), if an “O” is filled in the grid entry (Vi, Vj) di-
rectly instead of a matching in which this matching should be filled
originally in Fig. 10(i), then the implication chart is obtained as shown

Fig. 11. Hierarchical relation among the different approaches.

in Fig. 10(l) and it is called the modified implication chart. This process
avoids examining all matchings in the grid entry (Vi, Vj) of the com-
plete implication chart in completing the refined implication chart, and
therefore the modified implication chart can be constructed in polyno-
mial time. Thereafter, the same method is applied to acquire the results
of automorphisms and they are the SAA of G. In Fig. 10(l), the implicit
representation of the SAA in G is (124)(3)(56)(7) and is regarded as the
remaining UPSs when the pattern set S1 is included into the verifica-
tion pattern set.

In this example, the remaining UPSs obtained from the CV
approach are (124)(356)(7). However, it can be further reduced to
(124)(3)(56)(7) by the SAA approach and the real remaining UPSs are
(14)(2)(3)(56)(7). These results demonstrate that the SAA approach
gets more precise remaining UPSs than the CV approach does. The
intuition of this fact is that the port misplacements that maintain the
pattern set S1 invariant are the real UPSs. The automorphic approach
is a way to find these port misplacements, whereas the CV approach
finds port misplacements that just maintain the CV invariant.

Fig. 11 shows the hierarchical relation among the different ap-
proaches. It has five levels from the center to the boundary. The first
level represents the set of real remaining UPSs explicitly. The second
level is the implicit UPS representation of the first level. The third
level represents the UPSs that are obtained by the automorphism
approach. The SAA approach and CV approach are shown in the
fourth and fifth levels, respectively. The UPSs in the inner levels are
the subset of the outer levels. Hence, the approaches closer to the
inner levels are more precise. Nevertheless, this figure only indicates
the relative relation among them. In an extreme situation, these five
levels could be overlapped completely.

V. EXPERIMENTAL RESULTS

The AVPG that uses the SAA technique to calculate the remaining
UPSs has been integrated into an SIS [15] environment, which is devel-
oped by the University of California, Berkeley. Experiments are con-
ducted over a set of ISCAS-85 and MCNC benchmarks. The bench-
marks are in Berkeley Logic Interchange Format BLIF) format which
is a netlist level design description. However, only the simulation infor-
mation of these benchmarks is needed to conduct the experiments and
therefore arbitrary levels of design description can be used for gener-
ating verification pattern set. Table I summaries the experimental results
of the AVPG using the CV [6] and SAA approaches to calculate the re-
maining UPSs, respectively. The first five columns show the parameters
of each benchmark, including name,jPIj, jPOj, the number of literals
(lits.) and the number of POFs. ThejPIj represents the number of the
inputs and the size of the POF’s set isjPIj!-1. ThejPOj represents the
number of the outputs and influences on the probability of fault effects
propagation. The number of literals indicates the complexity of a bench-
mark. The remaining columns show the number of verification patterns
(pats.), fault coverage (F_C), and CPU time (time). The fault coverage is
defined as1� (# of undetected POFs=# of all POFs). The it-
eration bound is set to 100. The CPU time is measured on an Ultra Sparc
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TABLE I
EXPERIMENTAL RESULTS

II workstation. The algorithm will be terminated automatically if itera-
tions are over the bound or the fault coverage reaches 100%, and the ver-
ification pattern set and the fault coverage are returned. For example, in
c5315benchmark, the number of verification patterns is decreased from
371 to 222 and the processing time is reduced from 931 to 530 as well.
This is because the more precise remaining UPSs in the AVPG avoid
generating redundant verification patterns and reduce the simulation
time of further pattern generation. However, the processing time of the
SAA approach is not always smaller than that of CV approach. Inc7552

andi8, for example, the processing time is larger in SAA approach. Ac-
tually, the overall processing time consists of the time in every stage of
the AVPG and it depends on the remaining UPSs calculated in every
iteration. If the difference of the remaining UPS’s obtained by these
two approaches is less, the processing time of SAA approach could be
larger due to the higher computation complexity; otherwise, the SAA
approach could be faster. According to Table I, the size of the pattern set
obtained by SAA approach is 45% smaller than that obtained by the CV
approach on average. Furthermore, the run time also decreases 16% as
compared with the previous work. These results are shown in the last
row “ratio” in Table I and demonstrate that the SAA approach outper-
forms CV approach in the AVPG.

VI. CONCLUSION

In the SoC era, the embedded cores are mixed and integrated to
create a system chip. The verification of the core-based system design
should be focused on how the cores communicate with each other.
However, before the interface verification, the interconnections be-
tween the cores in an SoC have to be verified first. System integrators
integrate those cores manually and have the possibility of incorrect
integration due to the misplaced I/O ports. Therefore, we adopt the
connectivity-based POF model to raise the abstraction level of the
design verification and to reduce the time on functional verification
in core-based design methodology.

In this paper, we have presented the graph automorphism technique
to improve the UPSs_Calculation procedure proposed in [6]. However,
due to the high complexity of the graph automorphism technique, we
modify this technique to a linear time approach, the SAA approach.

The SAA approach gets more precise remaining UPSs and therefore
accelerates the AVPG and generates a more efficient verification pat-
tern set for verifying core-based designs.
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