
2222 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 12, DECEMBER 2007

A Bus-Encoding Scheme for Crosstalk Elimination in
High-Performance Processor Design

Wen-Wen Hsieh, Po-Yuan Chen, Chun-Yao Wang,
and TingTing Hwang

Abstract—A crosstalk effect leads to increases in delay and power
consumption and, in the worst-case scenario, to inaccurate results. With
the scale down of technology to deep-submicrometer level, the crosstalk
effect between adjacent wires becomes more and more serious, particularly
between long on-chip buses. In this paper, we propose a deassembler/
assembler technique to eliminate undesirable crosstalk effects on bus
transmission. By taking advantage of the prefetch process, where the in-
struction/data fetch rate is always higher than the instruction/data commit
rate, the proposed method incurs almost no penalty in terms of dynamic
instruction count. In addition, when the bus width is 128 b, the required
number of extra bus wires is only 7 as compared to the 85 extra bus wires
needed in the work of Victor and Keutzer.

Index Terms—Architecture, crosstalk, high-performance, instruction/
data bus.

I. INTRODUCTION

In deep-submicrometer technology, a coupling capacitance between
interconnects is the dominant factor in the total wire capacitance.
Coupling capacitance derives from one signal and its neighboring wire
switching in different directions. This effect, the crosstalk, leads to
serious timing and signal integrity problems that, in the worst case,
result in circuit malfunction. Thus, the elimination of crosstalk has
become a very important design issue.

In a bus structure, a number of wires are laid in parallel over a long
distance. Hence, the crosstalk problem in a bus structure is particularly
salient. One category to address this problem is designed for power
consumption, and its objective is to minimize the total crosstalk in all
wires [1]–[3]. Another category is designed for performance, and its
objective is to minimize the maximum crosstalk effect among all wires
[4]–[9]. In this paper, we will focus on the second problem, i.e., the
elimination of certain data transmission patterns so that the maximum
crosstalk effect is minimized.

Thus, a bus-encoding scheme is proposed for wide bus architecture
in high-performance processors. By inserting a deassembler and an
assembler at the sending and receiving ends of the bus in a prefetch
unit, respectively, certain transmission patterns that cause undesirable
crosstalk can be eliminated. Our method takes advantage of the
prefetch process, where the instruction/data fetch rate is always higher
than the instruction/data commit rate [10]. Therefore, in our approach,
there is almost no penalty in terms of dynamic instruction count.

The rest of this paper is organized as follows. Section II reviews
a related work on crosstalk elimination and reduction. Section III
describes the crosstalk model. Section IV presents our proposed
bus architecture. Section V shows the experimental results. Finally,
Section VI concludes this paper.

Manuscript received October 11, 2006; revised March 23, 2007. This work
was supported in part by the National Science Council under Grants NSC-95-
2220-E-007-003 and NSC-95-2220-E-007-019, and in part by the Ministry of
Economic Affairs under Grant MOEA-96-EC-17-A-01-S1-038. This paper was
recommended by Associate Editor V. Narayanan.

The authors are with the Department of Computer Science, National
Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C. (e-mail: wwhsieh@
cs.nthu.edu.tw; pychen@cs.nthu.edu.tw; wcyao@cs.nthu.edu.tw; tingting@
cs.nthu.edu.tw).

Digital Object Identifier 10.1109/TCAD.2007.907260

II. RELATED WORK

Approaches in [4], [5], and [7] use bus-encoding methods to mini-
mize the maximum crosstalk. All the proposed encoding data must be
crosstalk-free before they are transmitted on a bus. At the receiving
end of the bus, a decoder logic decodes the data into the original data.
The goal of these methods is to forbid the signal of adjacent wires from
switching in different directions at the same time.

In [4], two kinds of encoding methods with memory and without
memory are proposed. The experimental results in [4] show that it
takes 40- and 46-b wires to encode a 32-b bus by using the memory and
memory-free methods, respectively. In another work using the encod-
ing technique [5], the original code is first divided into several groups,
and then each group is encoded to be crosstalk-free through a corre-
sponding encoder. Although there is no crosstalk incurred within each
individual group, the crosstalk may occur across the group boundaries.
In such a case, inverting one of the encoding outputs at a time until
group boundaries are crosstalk-free is proposed. The extra wires for
inverse information of each group also need to be encoded crosstalk-
free in the same way. According to the experimental results shown in
[5], a 32-b bus is encoded into 52-b wires. In these approaches, the
core concept of encoding to have a crosstalk-free code sequence is to
expand the Boolean space so that the codes that cause the crosstalk
will never appear in the encoded sequence. Since all pairwise codes
have to be taken into consideration (i.e., one code that causes crosstalk
with another is not usable in the resultant code space), length b code is
expanded to b + n, and n (extra wires) becomes very large as such.

Victor and Keutzer [4] also proved theoretically that the maximum
number of wires for encoding n-bit bus is �log Fn+2�, where Fn is
the nth number of Fibonacci sequence. These bus-encoding methods
become impractical when the number of bus lines becomes large. For
example, a 128-b bus will be encoded with 171 wires in theory but with
213 wires in practice. For a high-performance processor like super-
scalar and very long instruction word (VLIW) architecture, the width
of a bus is usually wide (i.e., more than 64 b). Thus, using the methods
described previously is not appropriate. In this paper, we propose to
use a novel encoding scheme to produce crosstalk-free sequences.
The code (all 0s or all 1s) is used to prevent crosstalk sequences. A
single code (all 0s or all 1s) is considered instead of all pairs of codes.
Therefore, expanding the Boolean space is not necessary.

III. PRELIMINARY

A. Crosstalk Model

A single wire is associated with two types of capacitance. One is
the capacitance Cground between the wire and ground, and the other is
the coupling capacitance Ccouple between the wire and its neighboring
wires [15]. The coupling capacitance of a wire can be classified into
four types—1C, 2C, 3C, and 4C—according to the Ccouple of two
wires [5]. Let the crosstalk effect on a single wire (victim) depend
on the signal transition of its neighboring wires (aggressors). We use
a trituple (wi−1, wi, wi+1) to represent the wire signal pattern at a
certain time, where wi represents the victim, and wi−1 and wi+1 are
the aggressors. Table I shows the relationship between the crosstalk
and the wire signal transition at time Tt−1 and time Tt, where (b, b̄) ∈
{0, 1}, with b̄ being the complement of b.

Note that the transmission of a pattern (b, b, b) followed by any
other pattern will never cause signals on adjacent wires to switch
into a different direction since the signals in pattern (b, b, b) are the
same. Take the pattern (0-0-0) as an example. The signal on each
wire either switches from 1 to 0 or stays the same at 0, and hence,

0278-0070/$25.00 © 2007 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 12, DECEMBER 2007 2223

TABLE I
BIT PATTERN OF DIFFERENT CROSSTALK TYPES

TABLE II
PERCENTAGE OF UNDESIRABLE PATTERNS

the case where adjacent wires switch from 0 to 1 will never happen.
Therefore, transmission patterns with all 0s (or all 1s) followed by any
other pattern will never incur undesirable crosstalk.

B. Motivation

According to the bit pattern classification analyzed in the previ-
ous section, there are more 2C-type crosstalk patterns than others.
Therefore, it is difficult to eliminate all 2C-type crosstalk patterns.
Instead, we focus on eliminating undesirable patterns, as defined in
the following section.
Definition 1: An undesirable pattern is a pair of signals on adjacent

wires where one signal is rising while the other is falling and vice
versa.

By eliminating the undesirable patterns, all 4C, all 3C, and part
of 2C patterns are eliminated. This undesirable pattern is defined as
our target pattern for removal in this paper. In the following sections,
the terms no undesirable pattern and crosstalk-free pattern are used
interchangeably.

In order to verify that removing undesirable patterns is feasi-
ble, the percentage of undesirable patterns incurred on instruction
bus transmission is profiled. Experiments were performed by using
Simplescalar 3.0 [13], where out-of-order four-issue superscalar archi-
tecture is used with a DSPstone benchmark to simulate the speculative
fetching. Table II shows the profiling result. The column labeled as
bits of instruction gives the total bit number of fetched instructions,
and the column labeled as bits of undesirable shows the bit number of
undesirable patterns. The column labeled as ratio (%) shows the ratio
of the bits of undesirable patterns to the total fetched bits. The results
show that the ratio of undesirable patterns is very low.

Since the undesirable patterns take only a small portion of the total
transmitted data, but increase the length of transmission cycle period,
we propose a deassembler and assembler structure on both ends of a
bus to eliminate undesirable patterns.

Fig. 1. Ratio of instruction committed.

Fig. 2. Basic architecture.

Moreover, we observe that the instruction/data fetch rate is always
higher than the instruction/data commit rate in a prefetching process
where the instructions/data are fetched into a prefetch unit before they
are referenced in order to hide memory-access latency.

In order to verify this observation, the ratio of instruction/data
committed to instruction/data fetched is simulated by a superscalar
architecture. Fig. 1 shows the ratio of committed instructions to the
total fetched instructions for different examples in the benchmark
set. The figure shows that the number of committed instructions is
only about 30%–50% of the total number of fetched instructions
for all examples. In other words, the instruction fetch rate is much
higher than the instruction commit rate in bus transmission. We
can utilize this characteristic of the prefetching unit to reduce the
penalty in terms of dynamic instruction count in our proposed bus
architecture.

IV. DEASSEMBLER AND ASSEMBLER TECHNIQUES

A. Basic Scheme

The speed of a processor is always much faster than the speed
of accessing data from the memory. To hide memory latencies, a
common technique used in high-performance processors is to prefetch
instructions or data into buffers before they are used by the processors
[10]–[12].

Based on these observations, we develop a bus-encoding scheme for
deassembling/assembling data in the memory/prefetch module such
that the undesirable patterns are eliminated. Fig. 2 shows our basic
architecture. A deassembler is designed to deassemble b-bit data sent
by memory into b + n-bit crosstalk-free data. The b + n-bit crosstalk-
free data are then transmitted on the bus. At the receiving end of the
bus, an assembler is designed to assemble the b + n-bit data into the
original b-bit data. The b-bit data are collected in the prefetch unit
and sent to the processor on demand. Note that the deassembler is
in memory module and that the assembler is in the prefetch module.
We are to eliminate the crosstalk on the bus between the memory and
prefetch unit in the processor.

The details of our deassembler/assembler bus structure are de-
scribed as follows. First, a bus structure is partitioned into several
channels—channel1, channel2, . . . , channeln—as shown in Fig. 3.
The data transmitted on a channel are referred to as a data segment,
which are denoted as datat,i, where t is the time stamp, and i is
the channel-position index. Each data segment is regarded as a basic
data transmission unit. If undesirable patterns occur between two data
segments, it is an invalid transition. For example, the transition from

2224 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 12, DECEMBER 2007

Fig. 3. Partitioned bus structural.

Fig. 4. Sending end and the receiving end.

the data segment datat,i (0-1-0-1) to the data segment datat+1,i (1-0-
1-0) is invalid.

In order to remove the undesirable patterns, we propose a deassem-
bling and assembling mechanism shown in Fig. 4. Let data be sent in
cycle Tt. In Fig. 4, datat,1 represents the data segment to be sent on the
first channel position in the current cycle, whereas datat−1,1 represents
the data segment sent on the first channel position in the previous
cycle, which are stored in storage elements in the deassembler. Before
sending data, the deassembler checks for undesirable patterns occur-
ring between datat,i and datat−1,i. If no undesirable pattern is found,
then datat,i are transmitted on the channeli. Otherwise, the datat,i is
shifted to the next channel position channeli+1, and an all-0 (or all-1)
pattern called an NOP segment is inserted onto the channeli in order
to eliminate undesirable patterns. Note that an all-0 (or all-1) pattern
will not incur undesirable patterns with any other patterns.

Once datat,i is shifted to channeli+1, it is checked with datat−1,i+1

to see if any crosstalk occurs between them. The checking continues
until datat,i finds a position channelj , where datat,i incurs no crosstalk
with datat−1,j or when it reaches the last channel of the bus. Data
segments datat,i that are unable to be sent during the current cycle
Tt due to the NOP-segment insertion are shifted to the next cycle
Tt+1. For example, in Fig. 4, assume that datat,1 incurs undesirable
patterns with datat−1,1 and datat−1,2. Then, the datat,1 is shifted to
the two channel positions and will be sent at position channel3. Since
the data segments are shifted to the two channel positions, datat,n−1

and datat,n would be sent in the next transmission cycle Tt+1.
As to the assembler, it removes all the inserted NOP segments and

packs the valid data segments, as shown in Fig. 4. After the packing,
the assembler informs the processor of the number of completed
instructions at the current cycle. Data segments that cannot be packed
into a complete instruction will be stored in a buffer queue to wait for
the next assembling processing.

Note that the worst-case scenario of transmission time happens
when the undesirable patterns occur between datat,1 and every data
segment transmitted at cycle Tt−1. In this case, the bus is filled
with all NOP segments at current cycle transmission. However, since
the NOP segments do not result in a crosstalk with any other data
patterns in the next transmission cycle, all data segments can be sent
without incurring any undesirable patterns. Therefore, the worst case
is to double the transmission cycles, i.e., one cycle for data segments
transmission and one cycle for NOP segments alternately.

Fig. 5. Distinction wire insertion next to the separation wire.

Fig. 6. Two-bit-pattern transition.

B. Insertion of Separation and Distinction Wires

After applying the crosstalk detection and NOP-segment-insertion
mechanism described in the previous section, invalid transitions on
each channel can be avoided. However, the invalid transition may
occur across the boundary of two adjacent channels. Fig. 3 shows an
example of the crosstalk occurring between channeli and channeli+1.

In order to prevent the crosstalk from occurring across two adjacent
channels, we propose to insert shielding wires called separation wires
between every pair of channels, as shown in Fig. 5. A shielding wire
set to 0 (or 1) working as a stable ground (or Vdd) wire is sufficient to
ensure that a crosstalk never occurs between two adjacent wires.

Next, in order to address the problem of determining whether an
all-0 pattern (or all-1 pattern) transmitted on a channel is a data
segment or an NOP segment, an extra bit denoted as a distinction
wire is required for each channel. For n channels, n extra distinction
wires are required. If we place n wires together, a crosstalk may
occur on these n wires, and extra mechanism is needed to avoid a
crosstalk among these n wires. Consequently, our design is to put
each distinction wire next to a separation wire, as shown in Fig. 5. We
prove that, for this placement of distinction wires, no extra crosstalk-
avoidance mechanism is required.

Before we give the proof, we define the term crosstalk-free cyclic.
Definition 2: A crosstalk-free cyclic is a set of bit patterns where

any pair of the patterns in the set does not incur undesirable patterns.
Fig. 6 shows an example of a 2-b pattern graph in which each node

represents a 2-b pattern and an edge represents a transition between
two nodes. A dark line denotes that the transition between the two
nodes is not an undesirable pattern, whereas a thin line denotes that
the transition is an undesirable pattern. In this figure, we can see that
patterns 00, 01, and 11 form a crosstalk-free cyclic and that patterns
00, 10, and 11 also form a crosstalk-free cyclic.

If we can assure that the data transmitted on wires form a crosstalk-
free cyclic, then there will be no undesirable patterns transmitted on
the wires. Now, we prove that the placement of distinction wires
and separation wires, as shown in Fig. 5, will incur no undesirable
patterns.
Theorem: Let two wires Wd and Ws be inserted between two

channels channeli and channeli+1, where Wd and Ws are used
for distinction and shielding purposes, respectively. The last wire
of channeli denoted as α is adjacent to Wd, and the first wire of
channeli+1 denoted as β is adjacent to Ws. With this placement of
distinction and shielding wires, an encoding for Wd can always be
found such that there will be no undesirable patterns transmitted on the
four wires.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 12, DECEMBER 2007 2225

Fig. 7. Deassembler architecture.

Proof: We first consider wires Wd, Ws, and β. Since Ws is
a shielding wire, there will be no undesirable patterns transmitted
between wires Wd and Ws or between wires Ws and β.

Now, we consider wires α and Wd. Let NOP segment be an all-0
pattern. Then, we set Wd = 0 to denote NOP segment and Wd = 1
to denote data segment. With this assignment, all possible patterns
transmitted on α and Wd are 00 (α is the last bit of NOP segment),
01 (α is the last bit of data segment), and 11 (α is the last bit of data
segment). Since these three patterns form a crosstalk-free cyclic, there
will be no undesirable patterns transmitted on α and Wd. Similarly,
if an NOP segment is an all-1 pattern, we can set Wd = 1 to denote
NOP segment and Wd = 0 to denote data segment. Then, all possible
patterns transmitted on α and Wd are 11, 00, and 10. Since these
three patterns also form a crosstalk-free cyclic, there will be no
undesirable patterns transmitted on α and Wd. �

C. Deassembler and Assembler Architectures

In order to check if a crosstalk occurs between a data segment
to be sent at current cycle and a data segment already sent at a
previous cycle in parallel rather than in sequential, we need a parallel
checking architecture. In this section, we describe our deassembler
and assembler architectures. The deassembler architecture is shown
in Fig. 7. In this example, the width of the whole bus is 128 b, and
the width of each channel is set to 32 b. Hence, the bits from 127 to
96 are grouped as channel1, the bits from 95 to 64 are grouped as
channel2, . . ., etc., and the total number of channels is four.

To detect if a crosstalk occurs between the current data segment
datat,i and the data sent in channelj during a previous cycle, two logic
elements named data_reg and cross_detector are designed. For each
channeli, there is one data_regi and |i| cross_detectori,j , for j is from
1 to i. The data_regi is used to store the data segment sent on channeli
during a previous cycle. The cross_detectori,j , where j is from 1 to i,
is a combinational logic used to check if data_regi and datat,j induce
undesirable patterns. In other words, data_regi is checked with all data
segments datat,j to be sent, for j is from 1 to i, as shown in Fig. 7.

Next, all the output signals of the cross_detectori,j are sent to a
logic element named Sel_logici. With inputs from all cross_detectors,

Sel_logici will decide which data segment is to be sent on channeli.
Then, the output of Sel_logici is passed to the first-level multiplexor
MUX1i, where the inputs to MUX1i are datai,j , for j is from 1 to i,
and NOP segment. This multiplexor is used to select the data segment
or NOP segment to be sent. Finally, the outputs of cross_detectori,j
are also sent to the second-level multiplexor MUX2i, which is used to
select the distinction wires.

At the receiving end of the bus, an assembler is designed to remove
the NOP segments. The input of the assembler is a set of data segments
interleaved with distinction wires. A logic element is constructed
to determine whether the incoming data are data segment or NOP
segment. The inputs to this logic element include the distinction wires
that record the information to distinguish a data segment from an NOP
segment. The output of this logic element is the number of channel
positions to be left shifted for each data segment. After the NOP
segments are removed, the real data segments are pushed into the
prefetch unit.

V. EXPERIMENTAL RESULTS

A. Experiments on Delay

The first experiment studies the performance improvement that
can be obtained by eliminating the undesirable patterns. Since two
additional logic circuits are inserted, the performance improvement
includes the wire delay reduced by eliminating the undesirable patterns
and the extra circuit delays caused by deassembler/assembler insertion.
Since the crosstalk effect is only noticeable in deep-submicrometer
technology, we simulate the wire transition time in 90- and 65-nm
technologies by using Spice in [16].

The simulation of the deassembler and assembler delays in 65- and
90-nm technologies is performed as follows. Due to the unavailability
of 65- and 90-nm cell libraries, two logic circuits are first designed
using Verilog and are synthesized by the Synopsys Design Compiler
with the Taiwan Semiconductor Manufacturing Company (TSMC)
0.13-µm cell library. Then, the critical path is extracted and simulated
by using Spice in [16] with scale-sized transistors.

The case of 32 b/channel is taken as an example for analysis.
Table III shows the simulation results in picoseconds. The columns

2226 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 12, DECEMBER 2007

TABLE III
TIMING ANALYSIS OF WIRE AND THE DEASSEMBLER/ASSEMBLER

labeled as 3 and 5 mm are the wire lengths. The row labeled as w/o
undesirable pattern means the wire delay without undesirable patterns.
Since eliminating the undesirable patterns can only remove part of the
2C crosstalk patterns, the wire delay of the 2C crosstalk is reported
as such. The row labeled as deassembler + assembler reports the sum
of the critical path delays for the deassembler and assembler. The row
labeled as total is the total delay of summing the wire delay without
undesirable patterns, the deassembler delay, and the assember delay.
The last column reports the delay ratio of our design and of the original
design (4C wire delay) in [4].

The table shows that the wire delay with 4C crosstalk becomes
increasingly serious as the process technology is scaled down and
as the bus length increases. For example, the wire delay with the
4C crosstalk is about twice as that with only the 2C crosstalk (e.g.,
589.72 ps by 4C and 217.79 ps by 2C when a bus length is 3 mm
in the 90-nm technology). In addition, the extra delay caused by the
deassembler and assembler is less significant when the bus length is
increased. Summing the delay time for bus transmission, deassembler,
and assembler, the improvement rates are about 34% in the 90-nm
technology and 42% in the 65-nm technology when the bus length is
5 mm. Compared with the method used in [4], our method performs
less efficient when a short bus is used. However, when a long bus is
used and technology scales down, our method is comparable with the
method used in [4].

The second experiment on delay studies the number of extra
cycles required to execute a program. The ten largest examples in
DSPstone benchmark set [17] are selected as our test cases. We use
the sim-outorder simulator from Simplescalar 3.0 [13] incorporated
with our deassembler and assembler architectures to simulate the
out-of-order four-issue superscalar architecture without caches. In
the simulation, each instruction is 32 b long, and four instructions
are issued in parallel (the total bus width is 128 b). Two different
channel sizes of 16 and 32 b/channel are simulated. Note that the
occurrences of 2C, 3C, and 4C sequences are determined by the
program. In this experiment, the ratio of undesirable patterns is shown
in Table II.

Table IV shows the simulation results. The column labeled as inst
is the result for instruction bus. The columns labeled as TCC and pen
are the total cycle count of the original circuit and the extra number of
cycles (penalty) using our architecture, respectively. In the worst case,
the cycle-count overhead is only about 0.29% (n_com_updates when
channel size is 32 b).

A similar experiment is performed on data bus. In this experiment,
the data prefetch is implemented in the dispatch stage. We assume that
there are four memory ports—two for read ports and two for write
ports. Each data bus is 64 b long, and the total data bus width is 128 b.
The experimental result is also shown in Table IV where the col-
umn labeled as data is the result for data bus. It is shown in the
table that there is no cycle penalty. The main reason is that the
utility rate of the data bus is very low. On average, the memory

TABLE IV
CYCLE-COUNT OVERHEAD FOR CHANNEL SIZES 16 AND 32 B

Fig. 8. Improvement ratio for channel size 32 b.

reference instructions (load/store) are only about 40%–50% of the
total instructions. Hence, the NOP segments are inserted without
overhead.

The third experiment on delay studies the improvement rate of
the total transmission time for different technologies in the case
of 128-b bus width with 32 b/channel. The improvement on the
total transmission-time ratio is calculated as improvement_ratio =
(new_tcc × rate/orig_tcc) × 100%, where orig_tcc and new_tcc are
the total transmission cycle count of the ten programs on the orig-
inal circuit and the new circuit, respectively, and the rate is the
transmission-length reduction rate for different technologies. Fig. 8
shows that the improvement ratios of the total transmission time are
about 34% for the 90-nm technology and about 43% for the 65-nm
technology when the bus length is 5 mm. Since the cycle penalty is
very little, the improvement rate of the total transmission time is close
to the cycle-time reduction rate.

B. Experiments on Power

In this experiment, the channel size is set to 32 b, and the power
consumption on bus is estimated by a toggle count. Both coupling [18]
and transition toggle counts are computed. The coupling toggle count
represents the total number of undesirable patterns transmitted on the
bus, whereas the transition toggle count represents the total number
of bit switching. Table V gives the experimental results. The columns
labeled as ctoggle and ttoggle represent the coupling and the transition
toggle counts, respectively. The columns labeled as ratio show the ratio
of the transition toggle counts to the total toggle counts of the original
circuit. Since we removed all the undesirable patterns, there are no
coupling toggle counts in our method, as is in [4]. In average, our
method reduces the total toggle count to 70% of that in the original
circuit, and it is comparable with the total toggle count in [4].

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 12, DECEMBER 2007 2227

TABLE V
COUPLING TRANSITION TOGGLE COUNTS

TABLE VI
AREA OVERHEAD FOR 128-B BUS WIDTH

TABLE VII
NUMBER OF EXTRA WIRES

C. Experiment on Area Overhead

Finally, the last set of experiments compares the area overhead
of our proposed method and the method in [4] with memory-free
approach (practical case) where the minimum number of extra wires
inserted is proved. The area overhead includes the area of the de-
assembler/assembler and the extra wires required for separation flags.
Table VI gives the experimental results. The gate count is obtained
by synthesizing the circuits using only an NOR gate and an inverter.
The result shows that the deassembler in our design takes more area
than the encoder in [4]. In addition, storage bits are needed in our
approach because the data segments or the NOP segments transmitted
during the previous cycle must be stored. As to the required extra
wires, the numbers of extra wires used in our method are only 7
and 15 when the channel sizes are 32 and 16 b, respectively, as
compared to the 85 extra wires needed for the practical cases proposed
in [4].

For the number of extra wires inserted, Table VII shows the com-
parisons of our results to those in [4] with memory-free approach.
Four cases for different channel sizes using our method (4, 8, 16, and
32 b/channel) and two cases presented (theoretical and practical cases)
in [4] are shown. The results show that, as the bus width gets wider,
the effectiveness of our approach increases. For example, when the
bus width is 128 b and the channel size is 32 b, the number of extra
wires used in our method is only seven as compared to 59 and 85
extra wires needed for the theoretical and practical cases proposed

in [4], respectively. It can be seen that our method is particularly
suitable for a high-performance processor where the wide bus structure
is used.

VI. CONCLUSION

In this paper, we have proposed a new bus structure to eliminate
undesirable patterns which cause a crosstalk effect during data trans-
mission. By inserting a deassembler and assembler at the sending
and receiving ends of the bus, respectively, certain transmission pat-
terns that cause undesirable crosstalk can be eliminated. By taking
advantage of the prefetch process where the instruction/data fetch
rate is always higher than the instruction/data commit rate in a high-
performance processor, the proposed method incurs almost no penalty
in terms of dynamic instruction count. According to the experimental
results, our method achieved about 43% performance improvement
rate at the expense of a small number of wire increase as compared
with the original design in 65-nm technology.

REFERENCES

[1] S. P. Khatri, A. Mehrotra, R. K. Brayton, A. S. Vincentelli, and
R. H. J. M. Otten, “A novel VLSI layout fabric for deep sub-micron
application,” in Proc. Des. Autom. Conf., Jun. 1999, pp. 491–496.

[2] R. Arunachalam, E. Acar, and S. R. Nassif, “Optimal shielding/spacing
metrics for low power design,” in Proc. IEEE Comput. Soc. Annu. Symp.
VLSI, Feb. 2003, pp. 167–172.

[3] S. K. Wong and C. Y. Tsui, “Re-configurable bus encoding scheme
for reducing power consumption of the cross coupling capacitance for
deep sub-micron instruction bus,” in Proc. DATE, Nov. 2004, vol. 1,
pp. 130–135.

[4] B. Victor and K. Keutzer, “Bus encoding to prevent crosstalk delay,” in
Proc. ICCAD, Nov. 2001, pp. 57–63.

[5] C. Duan, A. Tirumala, and S. P. Khatri, “Analysis and avoidance of
crosstalk in on-chip buses,” in Proc. Hot Interconnects, Aug. 2001,
pp. 133–138.

[6] L. Li, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “A crosstalk aware
interconnect with variable cycle transmission,” in Proc. DATE, Feb. 2004,
vol. 1, pp. 102–107.

[7] C. Duan and S.P. Khatri, “Exploiting crosstalk to speed up on-chip buses,”
in Proc. DATE, Feb. 2004, pp. 778–783.

[8] W. A. Kuo, Y. L. Chiang, T. Hwang, and A. C. H. Wu, “Performance-
driven crosstalk elimination at post-compiler level,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 3, pp. 564–573,
Mar. 2007.

[9] T. K. Tien, S. C. Chang, and T. K. Tsai, “Crosstalk alleviation for dynamic
PLAs,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 21,
no. 12, pp. 1416–1424, Dec. 2002.

[10] S. P. Vanderwiel and D. J. Lilja, “Data prefetch mechanisms,” ACM
Comput. Surv., vol. 32, no. 2, pp. 174–199, Jun. 2000.

[11] V. Srinivasan, E. S. Davidson, and G. S. Tyson, “A prefetch taxonomy,”
IEEE Trans. Comput., vol. 53, no. 2, pp. 126–140, Feb. 2004.

[12] X. Zhuang and H. H. S. Lee, “Reducing cache pollution via dynamic
data prefetch filtering,” IEEE Trans. Comput., vol. 56, no. 1, pp. 18–31,
Jan. 2007.

[13] [Online]. Available: http://www.simplescalar.com/
[14] [Online]. Available: http://www-device.eecs.berkeley.edu/ ptm
[15] P. P. Sotiriadis and A. Chandrakasan, “Reducing bus delay in sub-

micron technology using coding,” in Proc. ASPDAC, Jan./Feb. 2001,
pp. 109–114.

[16] L. Nagel, “Spice: A computer program to simulate computer circuits,”UC
Berkeley UCBERL Memo M520, May 1995.

[17] V. Zivojnovic, J. M. Velarde, C. Schlager, and H. Meyr, “DSPstone: A
DSP-oriented benchmarking methodology,” in Proc. Int. Conf. Signal
Process. Appl. Technol., Oct. 1994, pp. 715–720.

[18] J. Liu, K. Sundaresan, and N. R. Mahapatra, “Efficient encoding for
address buses with temporal redundancy for simultaneous area and energy
reduction,” in Proc. 16th ACM Great Lakes Symp. VLSI, Apr.–May 2006,
pp. 111–114.

