
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 4, APRIL 2008 365

Novel Probabilistic Combinational
Equivalence Checking

Shih-Chieh Wu, Chun-Yao Wang, Member, IEEE, and Yung-Chih Chen

Abstract—Exact approaches to combinational equivalence
checking, such as automatic test pattern generation-based, bi-
nary decision diagrams (BDD)-based, satisfiability-based, and
hybrid approaches, have been proposed over the last two decades.
Recently, we proposed another exact approach using signal proba-
bility. This probability-based approach assigns probability values
to the primary inputs and compares the corresponding output
probability of two networks via a probability calculation process
to assert if they are equivalent. The shortcoming of all these exact
approaches is that if two networks are too complex to be handled,
their equivalence cannot be determined, even with tolerance. An
approximate approach, named the probabilistic approach, is a
suitable way to give such an answer for those large circuits. How-
ever, despite generally being more efficient than exact approaches,
the probabilistic approach faces a major concern of a non zero
aliasing rate, which is the possibility that two different networks
have the same output probability/signatures. Thus, minimizing
aliasing rate is substantial in this area. In this paper, we propose a
novel probabilistic approach based on the exact probability-based
approach. Our approach exploits proposed probabilistic equiva-
lence checking architecture to efficiently calculate the signature of
network with virtually zero aliasing rate. We conduct experiments
on a set of benchmark circuits, including large and complex
circuits, with our probabilistic approach. Experimental results
show that the aliasing rate is virtually-zero, e.g., 10 6013. Also, to
demonstrate the effectiveness of our approach on error detection,
we randomly inject errors into networks for comparison. As a
result, our approach more efficiently detects the error than a
commercial tool, Cadence LEC, does. Although our approach is
not exact, it is practically useful. Thus, it can effectively comple-
ment exact methods to improve the efficiency and effectiveness of
combination equivalence checking algorithms.

Index Terms—Aliasing-free assignment, aliasing rate, combina-
tion equivalence checking (CEC), error detection, probabilistic ap-
proach, probabilistic equivalence checking (PEACH).

I. INTRODUCTION

TRADITIONALLY, logic verification is carried out by
pattern simulation. However, to exhaustively simulate

all possible patterns is infeasible for practical designs with
numerous inputs. Thus, formal combinational equivalence
checking (CEC) methods are gaining popularity because they
make it possible to guarantee the equivalence of two networks.

Existing exact approaches for formally verifying the equiva-
lence of two networks can be classified into five categories [11]:

Manuscript received August 30, 2006. This work was supported in part
by the National Science Council of the Republic of China under Grant NSC
95-2220-E-007-020.

The authors are with the Department of Computer Science, Na-
tional TsingHua University, HsinChu 300, Taiwan, R.O.C. (e-mail:
wcyao@cs.nthu.edu.tw).

Digital Object Identifier 10.1109/TVLSI.2008.917397

Fig. 1. Miter.

1) automatic test pattern generation (ATPG)-based [3], [25];
2) binary decision diagrams (BDD)-based [7], [9], [15]; 3) satis-
fiability (SAT)-based [6], [23]; 4) hybrid [19], [20]; and 5) prob-
ability-based [26]. ATPG-based methods identify some internal
gates of two networks and use them to construct a miter struc-
ture [3], as shown in Fig. 1, using ATPG [8] to examine whether
or not the output of the miter stuck-at-0 fault is untestable. If
the fault is untestable, no pattern exists to distinguish the two
logic cones. Hence, these internal gates are equivalent, so one
internal gate can be replaced by its equivalent gate to simplify
the overall network. The efficiency of this approach relies on the
capability of ATPG. If the test generation of the fault at the miter
output is time-consuming or intractable, the approach becomes
inefficient.

Reduced ordered binary decision diagrams (ROBDDs) [4]
are a canonic representation of networks. Thus, two networks
are equivalent if and only if the ROBDDs are isomorphic [5],
[9]. BDD-based approaches encounter potential difficulties in
ROBDDs construction. Certain circuits, such as multipliers with
numerous inputs, cannot be represented by ROBDDs in any
variable ordering [4].

Recently, Boolean SAT has been successfully used as an effi-
cient and complete method for solving CEC problems [6], [23].
It transforms a combinational network to the conjunctive normal
form (CNF) formula, which can be viewed as a set of clauses.
The objective of the SAT-based approach is to prove proposi-
tional properties of the network [14]. However, the problem is
that the SAT-based approach sometimes requires a large amount
of time and backtracks to prove the network.

To improve the efficiency of CEC techniques, approaches
combining BDD and SAT techniques are proposed in [19] and
[20]. In general, these approaches partition the miter circuit into
many blocks. The SAT engine is used in each partition of cir-
cuit and BDD engine is used for each cutpoint. Although these
hybrid approaches are capable of solving verification instances
that neither of both techniques was capable to solve, the CPU
time needed is large.

Signal probability at the output of a network is considered as
a signature function [2], [10] for the CEC problem. Signature
functions are used to characterize properties of networks, e.g.,
the number of minterms in the onset of a network is a signature
function. The signal probability, however, can be exact as well

1063-8210/$25.00 © 2008 IEEE

366 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 4, APRIL 2008

if the input probability is an aliasing-free assignment [24]. The
exact probability-based approach [26] assigns aliasing-free as-
signments at all primary inputs (PIs) of networks, then derives
output probability by a probability calculation process from the
PIs towards the primary outputs (POs). Two networks are equiv-
alent if and only if their output probabilities are equal under the
aliasing-free assignments. However, the disadvantage of these
assignments is that they exponentially grow. Thus, this approach
is not applicable to large circuits either.

The problem that all these exact methods share is that de-
signers are unable to calculate the equivalence, even with toler-
ances, of any networks that are too complex for the methods to
handle. For example, a commercial tool Cadence LEC probably
returns abort after verification. From the viewpoint of verifica-
tion engineers, we hope that at least one error, if it exists, can
be quickly revealed for an effective verification process. Thus,
the probabilistic approach can be used under this situation. An
efficient probabilistic approach with virtually-zero aliasing rate
balances the concerns of accuracy with the demands of compu-
tational effort and is a practical technique for verification.

Several probabilistic approaches have been proposed in [10]
and [16]. Jain et al. [10] first propose an idea that simulates nu-
meric numbers instead of binary numbers to obtain a signature
of circuit for comparison. Although it considerably reduces the
aliasing rate, e.g., 10 for a 64-input circuit, a large amount of
complex multiplication operations are required when evaluating
output signature. Also, the approach cannot directly apply the
randomly generated numeric numbers into the circuit for simu-
lation if signal correlation exists. It needs an -transform ma-
nipulation to deal with the signal correlation issue. Meinel et
al. [16] exploit a space-efficient -OBDD structure for proba-
bilistic verification. Since -OBDD is not a canonical represen-
tation, two different functions with the same -OBDD repre-
sentation are considered as an equivalent function. Although the
aliasing rate is not large either, e.g., 10 for 100-input circuit
with 10 nodes in -OBDD, unfortunately, this approach still
faces memory explosion problem if verification instances are
complex or large. Also, arithmetic operations are also required.

In this paper, we propose a novel probabilistic approach with
probabilistic equivalence checking (PEACH) architecture for
CEC problem. We also provide quantitative and theoretical
analysis on aliasing rate based on this architecture. The vir-
tually-zero aliasing rate significantly rises the confidence on
our approach. Furthermore, our approach needs not complex
arithmetic operations and can well deal with signal correlation
issue such that numeric numbers can be directly applied into
the circuits with/without reconvergent fan-outs.

We conduct experiments on a set of benchmark circuits, in-
cluding large and complex circuits, with our probabilistic ap-
proach. Experimental results show that the aliasing rate is virtu-
ally zero, e.g., 10 . Also, to demonstrate the effectiveness
of our approach on error detection, we randomly inject errors
into networks for comparison. As a result, our approach more ef-
ficiently detects the error than a commercial tool, Cadence LEC,
does. Although our approach is not exact, it is practically useful.
Thus, it can effectively complement exact methods to improve
the efficiency and effectiveness of CEC algorithms.

Fig. 2. Probability formula for primitive gates.

Fig. 3. Calculation of probability expression with exponent suppression.

The rest of this paper is organized as follows. Section II
reviews the background of signal probability in a Boolean net-
work and an exact probability-based approach [26]. Section III
presents the PEACH architecture for CEC and analyzes the
aliasing rate. Section IV shows the experimental results.
Section V concludes this paper.

II. BACKGROUND

This section first reviews the background of signal proba-
bility in a network and introduces the exact probability-based
approach in Section II-B. It is the core technique of our proba-
bilistic approach as presented in more detail in Section III. Here,
we assume networks only consist of AND, OR, and NOT gates for
simplicity. Complex gates can be decomposed into these gates.

A. Probability Expression of a Network

In this paper, we denote a gate in the network by an upper
case letter and its probability of signal 1 by the corresponding
lower case letter. The known probability formula for 2-input
AND, OR, and NOT gates with independent signals are summa-
rized in Fig. 2. The formula for AND, OR gates with more than
two inputs can be extended from these formula.

Definition 1: Given gates and in the network, if more than
one disjoint path exists from to , is a reconvergent gate in
the network [13], [22].

The probability expression of a network can be straightfor-
wardly derived from the PIs to the POs by using these proba-
bility formula with an exponent suppression operation. The ex-
ponent suppression replaces the term with for every gate

in the expression [12], [18] due to a gate is fully correlated
with itself in the reconvergent gate.

For example, in Fig. 3, the probability expression at the output
is originally . After the exponent suppres-
sion, the probability expression becomes
(is replaced by). It is proven that the probability expression
after the exponent suppression is unique for a network [12], [18].
Namely, the probability expression is a canonic representation.

Although probability expression is a canonic representation,
deriving it for a large circuit is intractable. This is because

operations [12] are required to get the probability

WU et al.: NOVEL PROBABILISTIC COMBINATIONAL EQUIVALENCE CHECKING 367

Fig. 4. Probability of each minterm for 3-input functions assuming x = 1=3,
x = 1=5, and x = 1=17.

expression of an -input network. Also, the number of terms
in a probability expression is in the worst case [12].

B. Exact Probability-Based Approach

The exact probability-based approach [26] assigns numerical
probabilities to PIs and evaluates the probabilities at POs for
comparison where the assigned probability is aliasing-free [24].
Thus, it produces a unique output probability for each function.
This output probability can be seen as a unique signature of a
network.

Equation (1) is a recursive formula reported in [24] that pro-
duces aliasing-free probability assignments for an -input net-
work, where is the 1’s probability of input variable ,

and (1)

To minimize memory usage in representing the probability of a
gate, the assignment of is preferable. Thus, the aliasing-
free assignment uses as the first assignment throughout
this paper. The following example demonstrates why (1) results
in a unique output probability for each function.

For a 3-input function, there are 256 distinct functions.
If we set , ; , ; and ,

according to (1), the probability of each minterm
is shown in Fig. 4. The probability of each minterm acts as a
weight which is similar to the weight of binary numeral system.
The probability of each function is the summation of subset of
these weights. Thus, each function has a unique probability and
these probabilities are uniformly distributed among

.
Teslenko et al. [24] propose the aliasing-free assignments for

CEC problem. But the work concludes that the assignments are
of only theoretic interest. The corresponding CEC algorithm
using these assignments is not proposed in [24]. Wu et al. then
develop a CEC algorithm using these aliasing-free assignments
in [26]. We will describe the algorithm in detail in the following.

Take Fig. 5 as an example. We can derive the probability
expression of network_ori and network_opt. Both probability
expressions are ; thus, they are equiv-
alent networks. Next, instead of deriving probability expres-
sion, we introduce how to verify these two networks by using

Fig. 5. Output probability evaluation process.

Fig. 6. Alternative operations for primitive gates.

aliasing-free assignments and get the output probability in a
single-pass calculation. First, we assign the aliasing-free assign-
ments , , and , to PIs A, B, and C in
the network_ori and network_opt, respectively. As opposed to
the original probability formula, these aliasing-free assignments
use efficient alternative operations to calculate output proba-
bility, i.e., bitwise-AND () in an AND gate and bitwise-OR ()
in an OR gate. The probability evaluation process for these prim-
itive gates are shown in Fig. 6. After finding a lowest common
multiple denominator of two input probabilities in an AND/OR

gate, we transform these two input probabilities to their equiv-
alent probabilities with the same denominator. Then, the two
new numerators conduct a bitwise-AND/bitwise-OR operation to
obtain the numerator of output probability in an AND/OR gate.
For example, to get the output probability of the AND gate in
Fig. 6, we first transform 1/3 to and 1/5 to .
Then, the two new numerators conduct bitwise-AND operation,

, to obtain the output probability, .
The calculation for the other gates can also be seen in Fig. 6. Ap-
plying these rules in Fig. 6 to gates in the networks, we can ob-
tain correct output probabilities even though reconvergent gates
existing in the networks [26]. For example, Fig. 5 shows two
networks having the same output probability, ;
thus, we can know they are indeed equivalent as mentioned.

An inherent disadvantage of aliasing-free assignments is that
the assignments exponentially grow. The numerator of output
probability may become too large to be represented. Wu et al.
[26] report that the 24th assignment, ,

, within a single fan-in cone is the maximal value it can
support. Thus, this paper proposes an approximate approach for
those large circuits.

368 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 4, APRIL 2008

Fig. 7. PEACH architecture.

III. PROBABILISTIC CEC AND ITS ANALYSIS

This section first presents a verification architecture PEACH
that is used for CEC and can provide a feature of configurable
aliasing rates. Next, a detailed analysis on the aliasing rate with
the PEACH is presented.

A. PEACH Architecture

The PEACH architecture is shown in Fig. 7. It contains
three components: a random probability generator (RPG), a
golden network (), and a DUV (), and a comparator.
and are both -input -output networks, the RPG is an

-input -output circuit, and the comparator has inputs
and one output. To verify the equivalence of networks
and , we first apply aliasing-free assignments to RPG’s
PIs. Next, we randomly select output probabilities among

and assign them to the
PIs of and . Using the probability evaluation process men-
tioned in Section II-B, we can get the output probabilities of
and . Then, the comparator makes a pairwise comparison of
the output probabilities and reports if and are equivalent or
not. We use Example 3.1 to explain the process of equivalence
checking using the PEACH architecture.

1) Example 3.1: Two networks and as shown in Fig. 8
will be verified for equivalence. Assume the RPG has two PIs.
(Note that this number is determined by designers.) We apply
two aliasing-free assignments, 1/3 and 1/5, to the PIs of RPG.
Hence, there are () possible output
probabilities out from the RPG. Since and only have three
inputs, we randomly select three of them, e.g., 1/15, 7/15, and
10/15. As earlier mentioned, the aliasing-free assignments have
a property of uniqueness. Therefore, one output probability can
represent one function. For example, output probability 1/15
represents the 2-input AND function, output probability 7/15 rep-
resents the 2-input OR function, and so on. These functions are
also shown inside the RPG in Fig. 8. Next, we assign these se-
lected probabilities, 1/15, 7/15, and 10/15 to the PIs A, B, and
C of and , respectively. That is, , , and

. After the probability calculation, the output proba-
bility of is 3/15 and that of is 8/15. Thus, the comparator
reports that and are non-equivalent networks.

The PEACH architecture successfully verifies that networks
and are different in Example 3.1. However, if the ran-

domly selected output probabilities are 0/15, 6/15, and 0/15 (re-
peated probability is possible), an identical output probability
of and , 0/15, is obtained. This indicates that aliasing may
occur in performing equivalence checking using the PEACH
architecture.

Fig. 8. Illustration of example 3.1.

Definition 2: Aliasing is the situation where two non-equiv-
alent networks and have an identical output probability
under the same input assignments.

The manner for selecting the output probability of RPG con-
necting to the PIs of and affects the magnitude of aliasing
rate. Although a good selection of the output probability of RPG
can lead to a lower aliasing rate, it requires extra computational
effort. Thus, instead of carefully selecting the output probability
of RPG, we analyze the aliasing rate with random selection.

As we mentioned, a major disadvantage of aliasing-free as-
signments is that the assignments exponentially grow. Thus, in
practice the number of aliasing-free assignments is very limited
using the exact approach. However, using the approximate ap-
proach with PEACH, the number of assignments reach at least

, where is the number of PIs in RPG. If the RPG has
10 PIs, there are output probabilities that can
be chosen as input probabilities of and . Thus, this archi-
tecture makes verification possible on very large circuits. Al-
though PEACH architecture can cause aliasing, we observe that
if , the probability that aliasing occurs is virtually zero.
The detailed analysis is presented in Section II-B.

B. Aliasing Rate Analysis

To analyze the probability of aliasing occuring, we define
an -transformation for the PEACH architecture. The -trans-
formation can transform an -input -output function ()
into an -input -output function (). For example, net-
work in Fig. 9 is a 3-input 1-output network. Its function
is . The 2-input RPG in Fig. 9
performs -transformation on . Thus, is transformed into
a new network as shown in Fig. 9. The function of is

due to ,
, and . As a result, and within the

PEACH architecture are transformed into new networks and
by -transformation, respectively. Note that the original

objective is to determine the equivalence of and , but using
PEACH, we can only determine the equivalence of and .
Next, we clarify the effect of this transformation on our original
objective.

From the definition of aliasing in Definition 2, the aliasing
rate can be formally defined as follows.

Definition 3: Given two networks and , and are
transformed into and by -transformation. The aliasing

WU et al.: NOVEL PROBABILISTIC COMBINATIONAL EQUIVALENCE CHECKING 369

Fig. 9. An example of L-transformation.

rate () is defined as the probability of and , and
represented as .

Both and are -input -output networks. Since an
-input network has distinct functions, and and can

be any one of them,1 we have

(2)

Both and are -input -output networks. Since and
are transformed from and , the number of distinct func-

tions of and are not always . This number is determined
by the selection of the output probabilities of RPG. We use Ex-
ample 3.2 to explain this point.

1) Example 3.2: Assume the RPG is a 2-input 3-output
circuit, and aliasing-free assignments 1/3 and 1/5 are assigned
to RPG. We randomly select three output probabilities among

, e.g., 1/15, 2/15, and 3/15. Then, the probability
of each minterm in is as shown in Fig. 10. According to
Fig. 10, we observe that only four probability values 0/15, 1/15,
2/15, and 12/15 appear as shown in the last column. Thus, the
probabilities of networks are only these values or the summa-
tion of their subset. Consequently, some output probabilities
of this 3-input network would not happen, such as 4/15, 5/15,
6/15, 7/15, 8/15, 9/15, 10/15, and 11/15. This implies that these
2-input networks and can only have 8 distinct functions
rather than 16 () functions under these probability
selections, 1/15, 2/15, and 3/15.

We denote the number of non zero probability minterms as
. For example, the probability 1/15, 2/15, and 12/15 in Fig. 10

are non zero probabilities, and . Note that these non zero
probabilities will not repeat, since they come from minterms
with different phases. Therefore, there are distinct functions
of and rather than . This is stated in Theorem 1.

Theorem 1: Given two -input networks and , and
are transformed into -input networks and by -trans-

formation. If there are non-zero probability minterms, the
number of distinct functions of networks and is .

1Even with structure similarity between two DUVs, a single error or multiple
errors induced to S could be in everywhere and cause S be one of any possible
functions. It is a risk in verification if we exclude the possibility that certain
erroneous circuits occur. Thus, both previous probabilistic approaches [10], [16]
are based on the same principle to analyze the aliasing rate.

Fig. 10. Probability of each minterm for 3-input functions assuming
a = 1=15, b = 2=15, c = 3=15.

Fig. 11. Aliasing rate analysis.

Proof: Since there are non-zero probability minterms,
we can choose of them to form an output probability,

. Thus, there are combinations. This indicates that the
number of distinct functions of networks and is .

According to Theorem 1, there are distinct functions, and
and can be any one of them. Thus, we have

(3)

If the network is equivalent to the network , then the net-
work is definitely equivalent to the network . This equiva-
lence is asserted by observing the same output probability under
the aliasing-free assignments at RPG’s PIs and correct input/
output correspondences between and . This statement can
be rewritten as the following one by the contrapositive law; if
the network is not equivalent to the network , then the net-
work is not equivalent to the network . Thus, we obtain

(4)

Equation (4) means that the sample space of is within
that of . Their relation is illustrated in Fig. 11. The inner
circle represents . The outer circle represents ,
and completely covers .

370 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 4, APRIL 2008

Fig. 12. Best and average case of � for some R.

According to Fig. 11, the shadowed region represents the
events that aliasing occurs. Thus, the aliasing rate () defined
in Definition 3, , is obtained in

(5)

2) Example 3.3: Following Example 3.2, we get and
. Thus, and

. Next, we examine the distribution of
events in Fig. 11. The whole rectangle is the sample space and
has 65 536 events. There are 256
() events of and 8192 ()
events of . Thus, the shadowed region has
7936 events that represent aliasing.

In (5), if , ; if , ; and if
, . However, the last case will not occur. This is

because the maximal value of is determined by the values
of and . If , the maximal value of is due to
an -input network can have distinct functions at most. On
the other hand, if , the maximal value of is due
to an -input network can have at most minterms. Thus, we
have Theorem 2.

Theorem 2: Given two -input networks and , and
are transformed into -input networks and by -trans-

formation. Assume is the number of non-zero probability
minterms in the and networks, .

Proof:
(I) : Since the input of RPG is aliasing-free assign-

ment, the number of possible output probabilities (func-
tions) at and is . Thus, the number of non-zero
probability minterms is at most, i.e., . Note
that in this case, some different and functions share
the same output probability.

(II) : Since the and networks have inputs, the
number of minterms in and is . If each minterm’s
probability is not zero and unique, the number of non-
zero probability minterm is , i.e., .

By (I) and (II), .
3) Example 3.4: Assume and are 3-input networks and

the RPG in the PEACH has 2 PIs, i.e., . Since
2-input network can have 16 distinct functions
at most, the maximal value of is . On the other
hand, assume and are 2-input networks and the RPG in the
PEACH has three PIs, i.e., . Since 2-input

network can have minterms at most, the maximal
value of is .

From Theorem 2, the as shown in (5) is never negative.
Furthermore, suppose that the value of ,2 the term
is very close to zero and can be ignored. Thus, is only related to

. If , the is the least. We call this the best
case. If due to random selection on RPG’s
outputs, we call this the average case. Since is configurable
by designers, we show the value of these two cases for some

in Fig. 12. For example, if ,
in the best case, and is equal to .
Note that Fig. 12 is a sample result of theoretical analysis on
. The actual value of in the experiments will be reported in

Section IV.
Since the networks and have outputs, each output

has its own aliasing rate. Assume is the aliasing rate of the th
PO. The probability that aliasing does not occur in the whole
network is . Thus, we can
obtain the overall aliasing rate shown in

(6)

When , will approach to zero, and is even
smaller. Thus, (6) can be approximately rewritten as

(7)

Equation (7) takes the summation of as the aliasing rate and
this value will be reported in our experimental results.

Due to the manner of randomly selects RPG’s output proba-
bilities as the input probabilities of and , one may think our
approach is random simulation-like. This is true only to some
extent. The major difference between random simulation and
ours is that we apply a random circuit generated by RPG instead
of a random vector. This difference significantly enhances the
efficiency and effectiveness of our approach as seen in the ex-
perimental results.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Since previous probabilistic approaches [10], [16] report the
experimental results on BDD size rather than aliasing rate and
error detectability, we cannot compare with them directly. Thus,
we design five experiments to demonstrate the effectiveness and
efficiency of our probabilistic approach. The experiments are
conducted within SIS [21] environment based on a preliminary
implementation on a 1280 MHz Sun Blade 2500 workstation
with 4 GB memory. The benchmarks are in BLIF format. Since
we assume DUVs only consist of AND, OR, and NOT gates, we
decompose complex gates in the benchmark into these primitive
gates by mapping to the SIS library (22–1.genlib). We also use
a free library GMP3 to deal with the operation on large numbers
needed in the program.

1) Experiment I: This experiment verifies two equivalent
networks for a set of ISCAS’85 benchmarks. It is used to
demonstrate the efficiency of our approach. We apply two
restructuring methods on original circuits, script.rugged script
and red_removal command in SIS. We compare our approach

2When N < 25, the exact probability approach can be applied.
3[Online]. Available: http://www.swox.com/gmp/

WU et al.: NOVEL PROBABILISTIC COMBINATIONAL EQUIVALENCE CHECKING 371

TABLE I
COMPARISON AMONG [6], [20], AND OUR APPROACH FOR

SCRIPT.RUGGED CIRCUITS

TABLE II
COMPARISON AMONG [6], [20], AND OUR APPROACH FOR

IRREDUNDANT CIRCUITS

with two state-of-the-art approaches [6], [20]. The experiment
of the SAT-based approach [6] was conducted on a 167 MHz
Sun Ultra Sparc-1 workstation with 256 MB memory. The
experiment of SAT+BDD approach [20] was conducted on a
360 MHz Sun Ultra 10 workstation with 256 MB memory.
Since we do not have the same machine nor have the codes
used in [6] and [20], we conduct this experiment on a machine
with a similar performance, 360 MHz Sun Ultra-60 workstation
with 1 GB memory instead of Sun Blade 2500. The number of
inputs in our PEACH architecture is set to 15. The exper-
imental results are summarized in Tables I and II. Column 1
lists the benchmarks. Column 2 shows the number of gates in
a benchmark. Columns 3 and 4 show the aliasing rate () and
CPU time of our approach. The is calculated offline using (7)
described in Section III-B. Columns 5 and 6 show the CPU time
reported in [6] and [20]. For example, in Table I, the C6288
benchmark has 3540 gates, which our approach takes 0.729
second to verify with about 10 . However, [6] and [20]
spend 14.52 and 2582 s to verify them. Since the platforms are
different, a direct exact value-to-value comparison is neither
necessary nor intended. However, according to Tables I and II,
it can be seen that our approach indeed efficiently reaches a
virtually zero aliasing rate.

Next, we analyze CPU time among these three approaches. It
can be seen that the CPU time of [6] and [20], shown in Tables I
and II, strongly depend on the circuit’s functionality and struc-
ture. For example, in [6], C5315 requires more CPU time than
C3540 on the script.rugged network in Table I ().
But C5315 costs less CPU time than C3540 on the irredundant

Fig. 13. CPU time (seconds) versus circuit size in SAT [6] approach.

Fig. 14. CPU time (seconds) versus circuit size in SAT+BDD [20] approach.

version in Table II (). Similarly, [20] has the same
phenomenon. Thus, the CPU time varies from circuit to circuit
and cannot be well estimated using these state-of-the-art ap-
proaches. On the contrary, our approach is irrelevant to the cir-
cuit’s functionality and structure. The CPU time of our approach
is influenced by two factors. The first and the most important one
is the number of gates in a benchmark. Since our probability
calculation process is single-pass, more CPU time are needed
for circuits with more gates. Another factor is the selection of
the output probability from RPG. Since we randomly select the
output probability from RPG, more CPU time is required when
the numerator of the selected probability is larger. Nevertheless,
our CPU time is nearly proportional to the circuit size, as shown
in Tables I and II. Figs. 13–15 illustrate the CPU time against
circuit size for ISCAS’85 benchmarks by [6], [20], and our ap-
proach, respectively. The solid line represents the results using
the script.rugged version benchmark, while the dotted line rep-
resents the results using the irredundant version benchmark. It
can be seen that these two lines similarly behaved in Fig. 15.
On the contrary, in Figs. 13 and 14, these two lines have var-
ious traces, and the same benchmark with different structures
results in very large CPU time variance. These results obviously
indicate the CPU time of [6] and [20] strongly depends on the
circuit’s functionality and structure, and the CPU time of our
approach is more predictable than that of [6] and [20].

Furthermore, the aliasing rates reported in Tables I and II are
virtually zero. Refer to Fig. 16, the aliasing rate represents the

372 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 4, APRIL 2008

Fig. 15. CPU time (milliseconds) versus circuit size in our approach.

Fig. 16. Illustration that an induced error inS very often escapes fromS = S

to the outside of L = L .

proportion of the shadowed region to the whole rectangle. The
rectangle is the sample space, and the shadow (

) represents the events that aliasing occurs. The virtually-zero
aliasing rate in Tables I and II indicate that the shadowed region
relative to the rectangle is very insignificant. As a result, if an
error is induced to (), then it is highly likely that this
event will fall into the outside of and can be
easily detected. We will show this in Experiment II.

2) Experiment II: This experiment verifies two nonequiv-
alent but structurally similar networks where one network
contains a randomly injected error. This experiment is used
to demonstrate the effectiveness of our approach on error
detection. Since an erroneous network with multiple errors can
be more easily detected in practice than that with single error,
this experiment focuses on single error injection. We randomly
inject a single error into the original network with various
error types [1], [17], e.g., gate replacement, extra/missing wire,
extra/missing gate, and etc. These believed to be common error
types are divided into four categories in the experiment. We set

in our PEACH architecture and repeat the experiment
100 times for each benchmark. Table III summaries the exper-
imental results. Columns 2–5 show the number of cases with
various error categories in 100 experiments. Column 6 shows
the number of cases in which the injected error is detected.
Column 7 is the average CPU time measured in second for
one case. Take C432 as an example, the number of cases in

TABLE III
EXPERIMENTAL RESULTS OF OUR APPROACH ON ERROR DETECTION

TABLE IV
COMPARISON OF OUR APPROACH AND LEC [28] ON ERRONEOUS MULTIPLIERS

TABLE V
COMPARISON OF OUR APPROACH AND LEC [28] ON

STRUCTURALLY DISSIMILAR MULTIPLIERS

which randomly injected errors are WG, EW/MW, WI, and
EG/MG are 27, 21, 19, and 33, respectively. These erroneous
networks are all successfully detected and the average CPU
time is 0.026 s. For C2670, however, one erroneous case is
not detected by our approach, i.e., aliasing occurs. It is a
possible outcome due to probability nature of our approach.
Nevertheless, according to Table III, most of injected errors are
efficiently detected.

3) Experiment III: This experiment verifies two nonequiv-
alent networks without structural similarity, especially mul-
tipliers. In practice, CEC approaches are computationally
intensive on verifying two multiplier circuits. That means the
approaches are functionally sensitive. For BDD-based CEC
approach, it is especially so. Furthermore, structural similarity
between two networks is beneficial to performing equivalence
checking and was used in many CEC approaches. Thus, the
performance of known approaches strongly depend on the net-
work’s functionality and structure as being seen in Figs. 13 and
14 in Experiment I. However, if two networks are structurally
dissimilar, more computation is required and hence, down-
grades the performance or even fails to compare. Thus, this

WU et al.: NOVEL PROBABILISTIC COMBINATIONAL EQUIVALENCE CHECKING 373

TABLE VI
COMPARISON OF OUR APPROACH AND RANDOM SIMULATION ON ERRONEOUS CIRCUITS

TABLE VII
STATISTICS OF ALIASING IN ONE MILLION TRIALS USING DIFFERENT R

experiment would like to show the functional independence
and structural independence of our probabilistic approach.
We compare our approach with a commercial tool, Cadence
LEC [28], on two multiplier benchmarks, 32 32-bit and
64 64-bit multipliers. Given these two multipliers, m32 32
and m64 64, described in RT level, we create the netlist in
different ways such that their structures are dissimilar. We
use Synopsys DesignWare [27] to get the first network, the
second network is from a cascade multiplier generator.4 Then
we inject a random error into the fan-in cone of the last output
function, i.e., the 64th output in m32 32 and the 128th output
in m64 64, of the second network. We use a command com-
pare in LEC to verify these two networks with the argument
–noneq_stop 1. That makes LEC terminate the program when
detecting a pair of PO nonequivalent. Verification engineers
often set this argument for the efficiency of verification.

Then, these two networks (one contains an error) are also
translated from Verilog format to BLIF format using an internal
program for our approach. The experimental results are sum-
marized in Table IV. For each multiplier, we repeat the ex-
periment six times with various error injection. According to
Table IV, both LEC and our approach successfully determine
the nonequivalence of these two networks. But our approach
costs less CPU time. The ratio of average CPU time Ours/LEC
are 18.7% and 41.4% for m32 32 and m64 64, respectively.

Next, we demonstrate that LEC is very sensitive to the struc-
ture of networks being compared while our approach is not. We
use functionally equivalent 16 16-bit multipliers, C6288 and
m16 16 as benchmarks. For C6288, the second network is re-
structured using script.rugged script in SIS. For m16 16, the
first network is obtained by DesignWare, and the second net-
work is obtained by a cascade multiplier generator. It can be
seen that in Table V, the CPU time in the LEC column for these
two cases are very different, C6288 only needs 4.99 s, while

4[Online]. Available: http://www.bearcave.com/cae/cascade_mult.html/

m16 16 needs 456.74 s. For our approach setting ,
however, the CPU time are very close.

4) Experiment IV: As mentioned in Section III-B, our prob-
abilistic approach randomly select RPG’s output probabilities
as the input probabilities of DUVs. Thus, the nature of our
approach includes randomness. In this experiment, we would
like to demonstrate our enhancement on steadiness of general
random simulation algorithms, i.e., the probabilistic approach
is useful to most circuits while random simulation is only
suitable for smaller circuits.

We implement a general random simulation program by mod-
ifying our probabilistic implementation. The benchmarks are
ISCAS’85 with a randomly injected single error (wrong gate).
The probabilistic approach () and random simulation ap-
proach will be terminated if CPU time exceeds 1 hr (abort) or
successfully detect the error. The experimental results are sum-
marized in Table VI. Column 2 shows the number of gates in
a benchmark. Column 3 is the number of PIs in a benchmark.
Columns 4 and 6 show the number of simulations for detecting
the error in probabilistic approach and random simulation ap-
proach, respectively. Columns 5 and 7 are the corresponding
CPU time measured in seconds. According to Table VI, we can
see that for the benchmarks with smaller , the random sim-
ulation is efficient to detect the error. But for the benchmarks
with larger , e.g., C2670, C5315, and C7552, the CPU time
exceeds 1 hr. Thus, random simulation is favorable for smaller
circuits. On the contrary, the probabilistic approach detects the
errors in one probability simulation for all benchmarks and the
CPU time is less than 1 s. Thus, probabilistic approach is better
at detecting errors than random simulation.

5) Experiment V: Equation (7) shows a theoretical analysis
on aliasing rate of our approach. Although the reported aliasing
rate is virtually-zero, designers may still hesitate to use this ap-
proach for CEC problem. Thus, in this experiment, we would
like to show the statistics of aliasing from the aspect of ex-
periment. The benchmarks are certain output functions from

374 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 4, APRIL 2008

some sample circuits. For example, the first benchmark shown
in Table VII is the 138th output of C2670 circuit. We inject
a random error into the function. Then, we repeat one million
trials under a predefined in the PEACH architecture, and
record the number of trials that aliasing occurs. For example,
in C2670 circuit, when is set to 10, 1182 out of one million
trials cause aliasing. When is set to 11, none of trials results
in aliasing. For other benchmarks in Table VII, similar results
are obtained. We observe that for these four sample functions,
they reach 0 aliasing in different values. The factor influences
this result is the magnitude of signal correlation in a network. If
signal correlation is strong in a network, smaller is able to
reach 0 aliasing. If signal correlation is weak in a network,
could be higher for reaching 0 aliasing. In general, if is set
larger, the aliasing is infrequent. Note that the benchmark cir-
cuits in Table VII are single output functions, for multiple output
functions, the error effect could be propagated to more POs and
thus could reduce the number of aliasing cases. According to
the statistics in Table VII, we suggest that should be set to
more than or equal to 15 for minimizing aliasing. This sugges-
tion also explains why we set in Experiment I III,
and the injected errors are successfully detected for most cases.

In summary, our approach has the following features learned
from the experiments.

1) It is a functionally and structurally independent approach.
2) It is a more efficient approach than the state-of-the-art ap-

proach, LEC, and random simulation. The CPU time is
nearly proportional to the circuit size.

3) The aliasing rate is virtually-zero and hence it has a good
detectability on errors.

4) The number of input in the PEACH, , influences the oc-
currence of aliasing. Large minimizes the possibility of
aliasing. is our recommendation.

As compared to exact approaches, our approach has a short-
coming that it cannot guarantee the absence of errors when the
output probabilities of two networks are identical.

V. CONCLUSION

Non-zero aliasing rate is a major concern in probabilistic
combinational equivalence checking, leading to the limited
application of the method in the last decade. In this paper, we
present a novel verification architecture PEACH, such that
equivalence checking is efficiently performed with a virtually
zero aliasing rate. The approach can be applied in two scenarios
based on its features. First, since it is very efficient and has a
good detectability on errors, we can use it as a preprocess for
error detection. If no error is detected, we then further apply
exact methods for equivalence checking. Second, for complex
circuits that cannot be solved by exact methods, we can apply
our approach to them. It is possible that our approach can report
the inequivalence of DUVs, or give a positive answer with a
very high confidence level. Thus, our probabilistic approach
can efficiently complement exact methods to improve the
efficiency and effectiveness of CEC algorithms.

REFERENCES

[1] M. S. Abadir, J. Ferguson, and T. E. Kirkland, “Logic design verifi-
cation via test generation,” IEEE Trans. Computers, vol. 7, no. 1, pp.
138–148, Jan. 1988.

[2] V. D. Agrawal and D. Lee, “Characteristic polynomial method for ver-
ification and test of combinational circuits,” in Proc. Int. Conf. VLSI
Des., 1996, pp. 341–342.

[3] D. Brand, “Verification of large synthesized designs,” in Proc. Int.
Conf. Comput.-Aided Des., 1993, pp. 534–537.

[4] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Computers, vol. 35, no. 8, pp. 677–691, Aug. 1986.

[5] R. E. Bryant, “Binary decision diagrams and beyond: Enabling tech-
nologies for formal verification,” in Proc. Int. Conf. Comput.-Aided
Des., 1995, pp. 236–243.

[6] E. I. Goldberg, M. R. Prasad, and R. K. Brayton, “Using SAT for
combinational equivalence checking,” in Proc. Des., Autom. Test Euro.
Conf., 2001, pp. 114–121.

[7] A. Hett, R. Drechsler, and B. Becker, “Fast and efficient construction
of BDDs,” in Proc. Des., Autom. Test Euro. Conf., 1997, pp. 677–691.

[8] I. Hamzaoglu and J. H. Patel, “New techniques for deterministic test
pattern generation,” in Proc. VLSI Test Symp., 1998, pp. 446–452.

[9] A. J. Hu, “Formal hardware verification with BDDs: An introduction,”
in Proc. Pacific Rim Conf. Commun., Comput., Signal Process., 1997,
pp. 677–682.

[10] J. Jain, J. Bitner, D. S. Fussell, and J. A. Abraham, “Probabilistic de-
sign verification,” in Proc. Int. Conf. Comput.-Aided Des., 1991, pp.
468–471.

[11] J. Jain, A. Narayan, M. Fujita, and A. Sangiovanni-Vincentelli, “Formal
verification of combinational circuits,” in Proc. Int. Conf. VLSI Des.,
1997, pp. 218–225.

[12] S. K. Kumar and M. A. Breuer, “Probabilistic aspects of Boolean
switching functions via a new transform,” J. ACM, pp. 502–520, Jul.
1981.

[13] T. Kutzschebauch and L. Stok, “Congestion aware layout driven logic
synthesis,” in Proc. Int. Conf. Comput.-Aided Des., 2001, pp. 216–223.

[14] T. Larrabee, “Test pattern generation using Boolean satisfiability,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 11, no. 1,
pp. 4–15, Jan. 1992.

[15] S. Malik, A. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Logic verification using binary decision diagrams in a logic synthesis
environment,” in Proc. Int. Conf. Comput.-Aided Des., 1988, pp. 6–9.

[16] C. Meinel and H. Sack, “�-OBDDs – A BDD structure for proba-
bilistic verification,” in Proc. Workshop Probab. Methods Verif., 1998,
pp. 141–151.

[17] D. Nayak and D. M. H. Walker, “Simulation-based design error diag-
nosis and correction in combinational digital circuits,” in Proc. VLSI
Test Symp., 1999, pp. 70–78.

[18] K. P. Parker and E. J. McCluskey, “Probabilistic treatment of general
combinational networks,” IEEE Trans. Comput., vol. C-24, no. 6, pp.
668–670, Jun. 1975.

[19] V. Paruthi and A. Kuehlmann, “Equivalence checking combining
a structural SAT-solver, BDD, and simulation,” in Proc. Int. Conf.
Comput. Des., 2000, pp. 459–464.

[20] S. Reda and A. Salem, “Combinational equivalence checking using
Boolean satisfiability and binary decision diagrams,” in Proc. Des.,
Autom. Test Euro. Conf., 2001, pp. 122–126.

[21] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vin-
centelli, “SIS: A system for sequential circuit synthesis,” Electronics
Research Lab, Univ. of California, Berkeley, Tech. Rep. UCB/ERL
M92/41, 1992.

[22] S. C. Seth and V. D. Agrawal, “A new model for computation of prob-
abilistic testability in combinational circuits,” Integr., VLSI J., vol. 7,
pp. 49–75, 1989.

[23] P. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Com-
binational test generation using satisfiability,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 15, no. 9, pp. 1167–1176, Sep.
1996.

[24] M. Teslenko, E. Dubrova, and H. Tenhunen, “Computing a perfect
input assignment for probabilistic verification,” in Proc. SPIE, 2005,
pp. 929–936.

[25] A. Veneris, A. Smith, and M. S. Abadir, “Logic verification based on
diagnosis technique,” in Proc. Asia South Pacific Des. Autom. Conf.,
2003, pp. 538–543.

[26] S.-C. Wu, C.-Y. Wang, and J.-A. Hsieh, “The potential and limitation
of probability-based equivalence checking,” in Proc. Asian Test Symp.,
2006, pp. 103–108.

[27] Synopsys, Mountain View, CA, “DesignWare,” 2004 [Online]. Avail-
able: http://www.synopsys.com/

[28] Cadence, San Jose, CA, “LEC 5.1,” [Online]. Available: http://www.
cadence.com/

WU et al.: NOVEL PROBABILISTIC COMBINATIONAL EQUIVALENCE CHECKING 375

Shih-Chieh Wu received the B.S. degree in
computer science and engineering from Yuan Ze
University, Taiwan, R.O.C., in 2004, and the M.S.
degree in computer science from National TsingHua
University, Taiwan, R.O.C., in 2006.

He is currently a Military Police with the Ministry
of National Defense, R.O.C. His research interests in-
clude logic synthesis, design verification, and VLSI
testing.

Chun-Yao Wang (S’00-M’03) received the B.S. de-
gree in electronics engineering from National Taipei
University of Technology, Taiwan, R.O.C., in 1994,
and the Ph.D. degree in electronics engineering from
National Chiao Tung University, Taiwan, R.O.C., in
2002.

Since 2003, he has been an Assistant Professor
with the Computer Science Department, National
TsingHua University, Taiwan, R.O.C. His research
interests include logic synthesis, design verification,
and VLSI testing.

Yung-Chih Chen received the B.S. and M.S. degrees
in computer science from National TsingHua Univer-
sity, Taiwan, R.O.C., in 2003 and 2005, respectively,
where he is currently pursuing the Ph.D. degree in
computer science.

His research interests include logic synthesis and
design verification.

