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&TRADITIONAL INTERCONNECT TESTING of multichip

modules and PCBs detects and diagnoses the exis-

tence of physical defects on an interconnect network.

Physical defects can cause open, short, and stuck-at

faults. Many researchers have developed test sets for

detecting and diagnosing these faults in interconnect

networks. Using boundary scan or physical probes,

designers apply test patterns at drivers and observe

response patterns at receivers on the interconnects.1

By analyzing the observed patterns, they can detect or

diagnose faults, depending on the quality of the

applied test patterns.

In this article, we address a slightly different

scenario from traditional interconnect testing: verify-

ing the correctness of interconnections for all compo-

nents in a design coded with a hardware description

language (HDL). Whereas traditional interconnect

testing verifies interconnections formed by physical

wiring networks, we verify interconnections formed by

port specifications. Instead of detecting faults caused

by defects introduced in manufacturing, we try to find

errors caused by EDA tools or designers at higher

design abstraction levels.

After deciding on the design’s specification and

architecture, designers determine which IP blocks will

be integrated in the design. Designers must refine

these IP blocks with pin-accurate interfaces. Before

verifying the system through simulation, designers

connect all necessary IP blocks, either

manually or automatically. Either way,

incautious EDA tool use, careless man-

ual HDL coding, or misunderstanding

of IP port definitions can result in

misconnected components. Connect-

ing ports among IP blocks is error-

prone, especially for IP blocks integrat-

ed manually.

We present a method that verifies the correctness of

port connections between IP blocks and thus reduces

the verification effort for the entire system. Our main

contributions are

& a port connection model for designs with pin-

accurate interfaces at higher abstraction levels,

& an algorithm for generating the minimum num-

ber of verification patterns,

& an algorithm for resolving the response patterns

to achieve high diagnostic resolution, and

& a verification flow for port connections.

Preliminaries
For convenience, we use the Verilog HDL for our

examples. However, our work also applies to all other

HDLs that allow bit-precision descriptions of port

connections. Figure 1 shows a simple example of such

a description. In this example, all ports in U_IP1 are

output ports (drivers d1 through d4), and all ports in

U_IP2 are input ports (receivers r1 through r4).

Figure 1a shows the correct port connections, and

Figure 1b is a case of possible misconnected port

connections. Port connection errors (PCEs) are errors

that lead to misconnections.

Assume we apply the patterns shown in Figure 1c

to the ports in U_IP1. Figure 1d shows the patterns
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Before verifying the functionality of SoCs, designers must ensure the

correctness of the pin-accurate interfaces of up to hundreds of integrated

IP blocks. This article presents a new connection model and a corresponding

error model for pin-accurate port connections, along with an algorithm for

generating the minimum pattern set, a methodology for diagnosing errors,

and a port connection verification flow.
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observed at the ports in U_IP2 after simulation for

Figure 1a, and Figure 1e shows them for Figure 1b.

Because the port connections in Figure 1a are error

free, the observed patterns in Figure 1d are the golden

responses. By comparing the observed patterns in

Figure 1e with those in Figure 1d, we easily determine

that r3 and r4 must be involved with PCEs because they

have different responses from the golden ones. Also,

the response patterns in Figure 1e show that we can

observe an unknown logic value (X) at the receivers,

assuming we are using a four-valued HDL simulator.

This four-valued simulation approach is considerably

different from traditional interconnect testing, and we

take advantage of it in our work.

Comparison with previous work

Because the problem to be solved in this article is

similar to that of interconnect testing, we first discuss

previous work on that problem. Many researchers

have tried to find the optimal test set for diagnosing an

interconnect network.2–9 For example, Lien and Breuer

and Shi and Fuchs define different diagnostic resolu-

tion levels to assess a test pattern set’s diagnosability.2,3

These levels range from the lowest resolution (deter-

mining whether an interconnect network is fault free)

to the highest resolution (identifying all faults).

Previous work on interconnect testing primarily uses

one of three fault models: short fault only; short and

stuck-at faults; or short, stuck-at, and open faults.

The methods of diagnosing an interconnect net-

work are nonadaptive or adaptive. Nonadaptive (or

one-step) diagnosis starts only after all patterns are

applied.7 Adaptive (or two-step) diagnosis starts after a

group of leading patterns is applied, and the

corresponding responses can affect the succeeding

patterns applied.2,3 Adaptive diagnosis methods re-

quire more computations but can usually reduce the

number of test patterns. The most popular and well-

defined structure for applying patterns and retrieving

responses in interconnect testing is boundary scan.10,11

Most previous research on interconnect testing

focused on finding the minimum set of test patterns to

diagnose an interconnect network. In contrast, Wang,

Tung, and Jou propose verifying port connections

only, using a port-order fault model.12 We also verify

port connections, but we use a more general error

model that represents all possible connection errors,

including those identical to port-order faults.

Interconnect testing versus port

connection verification

Rather than trying to detect and diagnose faults on

physical interconnects, port connection verification

tries to verify interconnects formed by port connec-

tions in designs coded with HDL that have pin-

accurate interfaces. The following are the main

differences between interconnect testing and port

connection verification:

& Pattern application and response observation. In

interconnect testing, engineers apply patterns

and observe responses either through boundary

scan or physical signal probes. Port connection

verification requires an HDL simulator. We apply

patterns through an HDL-coded testbench pro-
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Figure 1. Example port connection error in

Verilog: error-free port connections and the

corresponding HDL code (a); erroneous port

connections, and the HDL code shown in bold

indicating errors (b); patterns applied at U_IP1

(c); observed patterns at U_IP2 in error-free port

connections (d); observed patterns at U_IP2 in

erroneous port connections, with bold items

indicating the differences (e). (d1 … d4: drivers; r1

… r4: receivers; U_IP1, U_IP2: modules; w1 … w4:

wires, X: unknown logic value.)
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cess, and we observe responses through another

such process or dump them into a file.

& Logic values. In interconnect testing, all signal

values are either logic 1 or logic 0. However,

because we use a four-valued HDL simulator in

port connection verification, we can have two

additional signal values, X (unknown) and Z

(high impedance). We take advantage of this

feature to further reduce verification patterns

and enhance their diagnosability.

& Faults and errors. In interconnect testing, possi-

ble faults include a broken wire, an extra wire

bridging two wires, or a combination of these

physical defects. In port connection verification,

errors are induced by designers or tools at higher

abstraction levels. Because both types of prob-

lems occur on interconnections, the error model

in port connection verification shares some

properties with the interconnect-testing fault

model. ( To prevent confusion with the word

fault used in testing, we use error, commonly

used in the verification field, to denote incorrect

connections.)

Further simplifying previous work, we define only

two levels of diagnostic resolution: DR1 (determining

if port connections are error free) and DR2 (identifying

all errors in port connections).

Assumptions

Because designers use various kinds of EDA tools

and environments, we make several assumptions to

make our methodology viable:

& The simulation environment allows four-valued

(0, 1, X, Z) logic simulation.

& Output ports that should not be connected to

anything are discarded.

& A net simultaneously driven by logic values 0

and 1 should have logic value X.

& Inout ports must be specified before verification

as either input or output, but not both, and are

not changeable during the verification process.

& For multiple-drive and multiple-fan-out nets, we

make three assumptions: repeaters or bus

keepers used to hold logic values on nets are

removed; there is no wired-logic behavior; and

there is no driving strength.

& A net that is not connected to any driver in the

driver set has a fixed logic value (0, 1, X, or Z)

during the verification process.

Designs at abstraction levels higher than gate level

usually satisfy these assumptions in most EDA

environments.

Port connection model and definitions

We categorize all connection ports into two disjoint

sets: drivers and receivers. The output ports of all design

blocks are drivers, and the input ports are receivers.

Ports that can be either input or output ports can be

either drivers or receivers, but not both. To generalize

all port connections, we use a port connection model

(PCM) that models port connections between drivers

and receivers. Figure 2 shows the general model and

an example design that demonstrates our definitions.

Let Imn(D, R, W ) represent m-port to n-port

connections for driver set D, receiver set R, and net

(wire) set W, which we define as follows:

& Driver set D: D 5 {d1, d2, …, dm}, |D| 5 m, the

number of drivers in the driver set.

& Receiver set R: R 5 {r1, r2 … rn}, |R| 5 n, the

number of receivers in the receiver set.
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Figure 2. Port connection model (a), and an example design

and its HDL code (b). (d1 … d4: drivers; r1 … r5: receivers; U_IP1,

U_IP2: modules; w1, w3: simple nets; w2: complex net.)
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& Net (wire) set W: W 5 {w1, w2, …, wt}, |W | 5 t,

the number of nets in the connection network, t

# min (m, n).

We also define the following terms:

& R(di): receivers of driver di, R(di) 5 {ri1, ri2, …, rij |

ri1, ri2, …, rij M R, j $ 1}, |R(di)| 5 j, the number of

receivers driven by di.

& D(ri): drivers of receiver ri, D(ri) 5 {di1, di2, …, dik

| di1, di2, …, dik M D, k $ 1}, |D(ri)| 5 k, the

number of drivers driving ri.

& R(wi): receivers on net wi, R(wi) 5 {ri1, ri2, …, riy |

ri1, ri2, …, riy M R, y $ 1}, |R(wi)| 5 y, the number

of receivers on wi.

& D(wi): drivers on net wi, D(wi) 5 {di1, di2, …, dix |

di1, di2, …, dix M D, x $ 1}, |D(wi)| 5 x, the

number of drivers on wi.

& C(wi): drivers and receivers on net wi, C(wi) 5

D(wi) < R(wi).

For each net on Imn(D, R, W ), we also have C(w1)

< C(w2) < … < C(wl) 5 D < R, and C(wi) > C(wj) 5

w; wi, wj M W, i ? j.

We call wi a simple net if |D(wi)| 5 1 and |R(wi)| 5

1; that is, exactly one driver and one receiver are

connected to it. We call wi a complex net if |D(wi)| . 1

or |R(wi)| . 1; that is, more than one driver and

receiver are connected to it. A complex net wi is a

multiple-drive net if |D(wi)| . 1, and it is a multiple-fan-

out net if |R(wi)| . 1. Thus, a complex net can be

multiple drive, multiple fan-out, or both. Nc is the

number of complex nets, Ns is the number of

simple nets in a connection network, and |W | 5 t 5

Nc + Ns.

If a port is connected to more than one other port,

at least one complex net must exist. This is usually the

case if a design contains multiple-fan-out ports or

tristate buses.

For convenience, we use the following notations

and definitions established by Shi and Fuchs.3

& parallel test vector (PTV): vector applied to all

drivers in parallel at the same time.

& sequential test vector (STV ): vector applied to a

driver in serial throughout the verification

process.

& verification pattern set (S): collection of all STVs.

S 5 {STV1, STV2, …, STVm}. Each STV can have a

different bit length, and the bit length of the

longest STV is the number of PTV patterns

required.

& sequential response vector (SRV): response vec-

tor observed at receivers. An SRV can be a vector

contributed by one or more STVs. For any SRV

contributed by multiple STVs, the value in its

vector is a result of certain logic operations of all

contributing STVs.

& response pattern set (S9): collection of all SRVs. S9

5 {SRV1, SRV2, …, SRVn}.

& syndrome: SRV of a connection error.

& aliasing syndrome: syndrome resulting from a set

of erroneous nets. It is the same as a correct SRV

of a net not in the set.

& confounding syndromes: identical syndromes that

result from different sets of multiple independent

errors.

PCE model

While forming port connections in HDL, we

categorize two types of PCEs:

& Floating errors. Because unnecessary ports

should be removed before verification, all

remaining ports must be connected. Driver di M
D is floating if no receiver receives its value, and

a receiver is floating if no driver drives it. Any

floating drivers or receivers are regarded as

floating errors.

& Connection errors. Driver di M D is misconnected

if it is connected to any receiver rj such that rj 1
R(di). Receiver ri M R is misconnected if it is

connected to any driver dj such that dj 1 D(ri).

That is, a port that is not connected as specified

in the port description file is regarded as a

connection error.

A floating error is analogous to an open fault in

testing, and a connection error is analogous to a short

fault or a combination of several short and open faults

among ports.

Verification pattern generation
We have developed methods for generating the

minimum number of patterns with DR2 capability for

port connection verification. Our methods generate

verification patterns for fundamental n-to-n port

connections and more generalized m-to-n port con-

nections.
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Fundamental n-to-n port connections

Inn(D, R, W ) of error-free port connections is

simplified from the PCM with two extra constraints:

m 5 n and d(wi) 5 r(wi) 5 1, for all wi M W. That is, all

nets are simple nets.

Shi and Fuchs proved qlog2(n + 2)r test patterns to

be necessary and sufficient for reaching the lowest

diagnosis resolution, DR1. It is also the lower bound of

the number of required patterns in interconnect

testing.

Theorem 1. To diagnose all errors in Inn(D, R, W )—

that is, to reach DR2—qlog2(n + 1)r + 1 verification

patterns are necessary and sufficient.

Proof of necessity:

1. To identify each and every driver, a unique bit

string (STV) is required for each and every

driver. This implies that qlog2(n)r patterns are

required.

2. To detect any receiver that receives fixed logic

value 0 or 1, neither an all-0 nor an all-1 STV is

allowed. A receiver that receives a fixed logic

value is identified as a floating error. This

implies that qlog2(n + 2)r patterns are required.

3. To avoid confounding syndromes in which all

receivers are floating and all ports are tied

together (both cases lead to an all-X value in

SRVs), an extra all-0 or all-1 PTV is required. This

pattern can further reduce qlog2(n + 2)r to

qlog2(n + 1)r in item 2, because an all-0 PTV can

avoid all-1 STVs, and an all-1 PTV can avoid all-0

STVs.

Summarizing these items, qlog2(n + 1)r + 1 patterns

are necessary.

Proof of sufficiency: After simulation, if receiver ri

receives erroneous response SRVif ? SRVi, an error is

detected and we can further identify errors by

analyzing SRVif as follows.

1. SRVif is all X: Receiver ri is floating. If not, the all-

0 or all-1 PTV guarantees that at least one bit of

SRVif is not X.

2. One or more bits in SRVif are X: Since each STV

is unique, only cases in which two or more

drivers drive receiver ri would generate X in

SRVif. Furthermore, we can identify which

drivers are involved in the errors by analyzing

bit positions of value X in SRVif.

3. No bit in SRVif is X: Receiver ri is misconnected

to a wrong driver. Also, we can diagnose a

floating driver dj by analyzing the verification

pattern set, because we can find no contribution

by the corresponding STVj.

Neither aliasing syndromes nor confounding syn-

dromes can occur, because a receiver would receive

SRVif ? SRVi if there were any PCEs in Inn(D, R, W ).

Generalized m-to-n port connections

Imn(D, R, W ) of error-free port connections, which

has no additional constraints, represents a more

realistic and more general case of port connections.

We divide verification of Imn(D, R, W ) into two phases,

each verifying a different type of net. The first phase

verifies connections as n-to-n port connections without

complex nets, and the second phase ensures that all

complex nets are properly connected.

Phase 1. We regard all complex nets in Imn(D, R, W)

as simple nets, and Imn(D, R, W ) effectively becomes

x-port to x-port, where x 5 |W|. Using the verification

patterns described earlier to verify n-to-n port

connections with all simple nets, we need (qlog2(|W |

+ 1)r 5 (qlog2(Ns + Nc + 1)r + 1) patterns. For a

complex net wi, all drivers in D(wi) are regarded as a

single driver and drive the same STV. Meanwhile, all

receivers in R(wi) are regarded as a single receiver and

should receive the same SRV.

Phase 1 can diagnose all PCEs except those in

which not all drivers on a complex net are floating.

Because all drivers on a complex net are driving the

same STV, the responses are not distinguishable. For

example, for complex net w1 in which C(w1) 5 {d1, d2,

d3, r1}, if only d1 is floating, it cannot be detected,

because r1 still receives a correct SRV. Phase 1 detects

and diagnoses all floating and connection errors on all

receivers, and all connection errors on all drivers.

Phase 2. In this phase, we verify the connectivity of

drivers on all complex nets. Note that for complex net

wi, Phase 1 ensures the connectivity of all receivers in

R(wi) if they all receive the same SRV. Ensuring the

connectivity of all drivers in D(wi) requires |D(wi)|

patterns generated by the walking-one or walking-zero

method. Therefore, to verify Imn(D, R, W) in Phase 2,

the number of verification patterns required is

max(|D(wi)|), where {wi M W, i 5 1, 2, …, |W |}. Thus,

all receivers on complex nets will receive the all-X SRV.
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Phase 2 detects and diagnoses all floating errors on all

drivers.

Theorem 2. To verify the connectivity of n drivers on

a complex net, a pattern set must have at least n

different patterns of one-hot or one-cold vectors.

Proof: A one-hot vector has only one bit of value 1

and all other bits of value 0; a one-cold vector has only

one bit of value 0 and all other bits of value 1. For

pattern set S 5 {PTV1, PTV2, …, PTVx}, which we use to

verify the connectivity of drivers {d1, d2, …, dn} on a

complex net, we apply each PTV of value {v1, v2, …,

vn} to all drivers in the manner of {v1 R d1, v2 R d2, …,

vn R dn}. To verify that driver di is properly connected

to the complex net, we must apply a PTV to all drivers

such that the bit value of vi applied at di is different

from all other bits. That is, the PTV must be a vector in

which vi 5 0 and all others are 1 s (one-cold vector),

or vi 5 1 and all others are 0 s (one-hot vector), so that

only di can possibly contribute the X value to receivers.

Therefore, n drivers on a complex net require at least n

different patterns of one-hot or one-cold vectors to

verify connectivity—to ensure that all drivers are

indeed connected to the complex net.

Theorem 2 makes it obvious that the minimum

number of patterns required to verify the connectivity

of drivers on a complex net is the number of drivers on

it. Therefore, the complex net that has the most drivers

determines the number of patterns required to verify

all complex nets in Phase 2. The simplest way to

generate such one-hot and one-cold patterns is to

apply walking-one or walking-zero sequences.

In summary, to verify Imn(D, R, W ), we need a total

of (qlog2(|W | + 1)r + 1 + max|D(wi)|) to reach DR2.

Because the term (max|D(wi)|) is the number of

additional patterns required for m-to-n port connec-

tions compared with n-to-n port connections, we can

reduce the number of verification patterns by reducing

(max|D(wi)|). Therefore, for a complex net with ports

that can be either drivers or receivers—that is, I/O

ports—we can minimize patterns by configuring as

many as possible I/O ports as input ports (receivers).

But at least one driver must be left on a complex net

for pattern application.

Table 1 shows five verification patterns derived for

the example shown in Figure 2b. In Phase 1, d2 and d3

apply the same STV because they are on the same

complex net (w2).

Table 2 lists the expected response patterns at the

receiver side after the verification patterns are applied

at the driver side for the example in Figure 4. The SRVs

in Phase 2 should contain all-X values.

Response pattern resolution
By inspecting response patterns, we can easily

determine whether connections are erroneous (DR1).

We propose a methodology for resolving response

patterns to achieve DR2 for m-to-n port connections,

and it can easily be adapted to n-to-n port connections

as well. Assume we have a golden response pattern set

S9gold 5 {SRV1, SRV2, …, SRVn} initially, and a simulated

response pattern set S9sim 5 {SRV91, SRV92, …, SRV9n} after

simulation. Let SRVi-Phase1 be the p-bit Phase 1 part of

the receiver ri response vector SRVi, and let SRVi-Phase2

be the q-bit Phase 2 part if |D(ri)| . 1. Then we can

write SRVi as {SRVi-Phase1, SRVi-Phase2}, the concatena-

tion of the two vectors; or as {SRVi[0], SRVi[1], …,

SRVi[p + q 2 1]}, the composition of individual bits.

For each SRVi, let SRVi[0] correspond to the all-1 or all-

0 PTV used to detect floating errors. If we use SRV9i[0]

5 X, we detect port ri as floating. SRVi[1] , SRVi[p 2

1] bits are used to detect connection errors in Phase 1;

the remaining bits, if any, are used to detect

connection errors in Phase 2.

In addition, we use a connection matrix (CM) to

represent the relationships between drivers and

receivers. A CM is an |R | 3 |W | (that is, n 3 t ) matrix

in which each element cxy, where x 5 1 , n, y 5 1 , t,

is a binary value indicating the connection relation-
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Table 1. Verification patterns for the example in Figure 2b.

Driver

Verification pattern (STV)

Phase 1 Phase 2

d1 001

d2 010 01

d3 010 10

d4 011

Table 2. Expected response patterns for the example in Figure 4.

Receiver

Response pattern set (S9)

Phase 1 Phase 2

r1 001

r2 010 XX

r3 010 XX

r4 011

r5 011

September/October 2008

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 27, 2008 at 02:04 from IEEE Xplore.  Restrictions apply.



ship between receiver rx and a group of drivers on the

same net wy. If a connection exists between receiver

rx and driver group D(wy), then cxy 51; otherwise,

cxy 5 0.

Figure 3 shows the procedure for resolving S9sim.

After necessary initialization, we mark ri as floating if its

SRV9i[0] 5 X in line 7. In

line 9, connection relation-

ships between ri and driver

groups are updated in

the CM by analyzing

SRV9i-Phase1. In lines 10 to

12, ri is marked as a Phase

1 error if its SRV9i-Phase1

contains any X value, and

it is categorized in set Sx.

In lines 14 and 15, ri is

categorized in set Sx9 if

SRV9i-Phase1 contains no X

value and the value of

SRV9i-Phase1 is possibly driv-

en only by a driver group

that has exactly one driver.

We can use the informa-

tion of Sx and Sx9 later to

eliminate impossible con-

nections in the CM. In lines

16 and 17, ri is marked as a

Phase 1 error if its response

vector is not as expected.

Lines 19 to 23 analyze

Phase 2 response patterns

only if they have passed

Phase 1.

In Phase 2, we add ri to

Sx9 if it is error free; other-

wise, we mark it as a Phase 2 error. In lines 25 and 26,

we use the connection information in Sx9 to identify

impossible connections Sx. That is, the drivers

involved with the receivers in Sx9 are not possibly

involved with those in Sx; otherwise, the receivers in

Sx9 would also receive an SRV with some X values.

(This is trivial and not proved here.) Finally, in lines 28

to 34, we print out erroneous receivers.

Figure 4 shows an example of erroneous port

connections for Figure 2b. We use this example to

demonstrate the procedure of pattern resolution.

Table 3 shows the simulated response patterns ob-

served at the receivers after we apply the verification

patterns shown in Table 1.

Figure 5 shows golden and erroneous CMs. All the

receivers are free-floating, since all SRV9i[0] 5 0. We

analyze SRV9i[1] and SRV9i[2] to mark possible

connections in the CM. For example, {SRV91[1],

SRV91[2]} 5 {XX}, and thus r1 is possibly connected

to driver groups D(w1), D(w2), and D(w3), which
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Figure 3. Pseudocode for resolving response patterns.

Figure 4. Erroneous port connections, and the corresponding

erroneous HDL code shown in bold.
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apply patterns of 01, 10, and 11, respectively. In this

example, r1, r2, and r3 are in Sx, and r4 and r5 are in Sx9.

After inspecting Sx and Sx9, we can remove the

connections between D(w3) and r1, r2, and r3

(Figure 5c), to reduce the number of error candidates

for inspection. As a result, we mark r1, r2, and r3 as

erroneous and r4 and r5 as error free. In addition, we

can easily identify misconnected receivers r1, r2, and r3

by comparing the CM in Figure 5c with the golden one

in Figure 5a.

Port connection verification flow
The verification flow we propose requires two port

connection formats. One format can be a description

written in any HDL. The other format describes the

connections of all ports according to the specification

and can be as simple as a two-column table—one

column listing the drivers, and the other listing the

corresponding receivers.

Figure 6 shows our verification flow. Once design-

ers write the design specification and refine all

interfaces to pin accuracy, they integrate necessary

IP blocks and code in HDL code. Meanwhile, the

system maintains a file for port connection descrip-

tions. Processes in the shaded area in Figure 6 are

automatic. Verification and expected response pat-

terns are generated from the port connection descrip-

tion file. A testbench automatically generated from the

HDL design will be used for simulation later. All

modules in the testbench are stub models

containing only the port interface infor-

mation extracted from the HDL design.

An additional process written in HDL

applies verification patterns. Response

patterns are resolved by another process

written in HDL, or are dumped into a file

and resolved by other programs offline.

After simulation, a pass signal is

asserted if port connections are correct.

Otherwise, a fail signal is asserted, and all

PCEs are reported. Designers can verify

the port connections on the basis of the

reported information. They should use

the verification flow again whenever the

port connections are modified.

ALTHOUGH MANUAL VERIFICATION of port

connections is not a complex task, it is

extremely time-consuming, tedious, and

error-prone when there are many ports.
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Table 3. Response patterns for the example in Figure 4.

Receiver

Response pattern set (S9sim)

Phase 1 {SRV9i [0],

SRV9i [1], SRV9i [2]}

Phase 2 {SRV9i [3],

SRV9i [4]}

r1(SRV91) 0XX

r2(SRV92) 0XX XX

r3(SRV93) 0XX XX

r4(SRV94) 011

r5(SRV95) 011

Figure 5. Golden and erroneous connection matrices (CMs):

golden (a); erroneous (b); and erroneous with the connections

between driver group D(w3) and receivers r1, r2, and r3 removed

(c), with bold items indicating the differences between (a)

and (c).

Figure 6. Port connection verification flow.
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This is especially true now that SoC designs are more

complex and contain more IP blocks with tens of

thousands of ports. Also, design configurations some-

times change to accommodate different performance

and cost requirements during the design exploration

process. This augmentation, exchange, or removal of

IP blocks leads to repeated modification of port

connections. Thus, port connection errors can occur

repeatedly, and must be verified whenever port

connections are modified. Designers can start the

verification flow we propose as soon as all the IP

interfaces in the system are refined to pin accuracy, and

they can detect and diagnose multiple errors. With our

methodology, designers can save considerable time

compared with verifying port connections manually.&
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