
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009 1113

Dependent-Latch Identification
in Reachable State Space

Chen-Hsuan Lin, Chun-Yao Wang, Member, IEEE, and Yung-Chih Chen

Abstract—The large number of latches in current digital designs
increases the complexity of formal verification and logic synthesis,
since an increase in latch numbers leads to an exponential expan-
sion of the state space. One solution to this problem is to find the
functional dependences among these latches. With the information
of functional dependences, these latches can be identified as depen-
dent or essential latches, and the state space can be constructed
using only the essential latches. Although much research has been
devoted to exploring the functional dependences among latches
using binary-decision-diagram (BDD)-based symbolic algorithms,
this issue is still unresolved for large sequential circuits. In this
paper, we propose a heuristic to identify the dependent latches
based on the state-of-the-art work. In addition, our proposed
approach detects sequential functional dependences existing in the
reachable state space only. The sequential functional dependences
can identify additional dependent latches after a specific time
frame in order to achieve additional reduction of the state space.
Experimental results show that this approach can deal with large
sequential circuits with up to 9000 latches in a reasonable time
while simultaneously identifying their combinational and sequen-
tial dependent latches. For instance, with s13207 in ISCAS’89,
23% of the latches are identified as combinational dependent
latches, and an additional 13% of the latches are identified as se-
quential dependent latches. For the reachability analysis of s13207,
with the benefits of dependent-latch identification, 70.70% of the
BDD size and 73.32% of the CPU time can be reduced within
the same time frame. Furthermore, 2890.76% more states can be
reached under the 600 000-s run-time limit.

Index Terms—Dependent-latch identification, reachability
analysis.

I. INTRODUCTION

IN THE FORMAL verification of sequential systems, a main
task—called sequential equivalence checking (SEC)—is to

test the equivalence of two given sequential circuits. Examining
two sequential circuits, S1 and S2, for equivalence can be re-
duced to a reachability analysis by building a product machine
of the two sequential circuits (called a miter in [4]). To build
a product machine, two sequential circuits S1 and S2 are com-
bined with XOR gates at each pair of primary outputs. There-
fore, if these two sequential circuits have many latches, the
corresponding product machine will have more latches. Since

Manuscript received August 29, 2008; revised January 13, 2009. Current
version published July 17, 2009. This work was supported in part by the
National Science Council of R.O.C. under Grants NSC 97-2220-E-007-042 and
NSC 97-2220-E-007-034. This paper was recommended by Associate Editor
W. Kunz.

The authors are with the Department of Computer Science, National Tsing
Hua University, Hsinchu 300, Taiwan (e-mail: Adonis@nthucad.cs.nthu.
edu.tw; wcyao@cs.nthu.edu.tw; ycchen@cs.nthu.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2009.2020720

the state space of a product machine is the Cartesian product
of the state space of S1 and S2 and it grows exponentially with
the increase of the number of latches in it, the corresponding
reachability analysis of the machine will become more difficult.
Furthermore, the performance of SEC strongly depends on the
reachability analysis [5] of the product machine. In addition to
SEC, many other tasks for sequential circuits, such as property
checking and model checking [21], can also be reduced to
a reachability analysis. Hence, reachability analysis plays an
important role in the formal verification of sequential systems,
and its efficiency dramatically influences the performance of
formal verification for sequential circuits.

To improve the efficiency of reachability analysis, re-
searchers have proposed many approaches, such as early quan-
tification [13], approximative state-space traversal [8], [10],
[22], and functional dependences [11], [27]. Early quantifica-
tion is a method for quantifying the binary-decision-diagram
(BDD) [2] variables of primary inputs (PIs) and pseudo-
primary inputs (PPIs) earlier to alleviate the effort of transition
relation construction, which is the bottleneck of reachabil-
ity analysis. Approximative state-space traversal is proposed
to perform under- or overapproximation on BDDs to reduce
the BDD size and the complexity of BDD operations during
reachability analysis. Functional dependences, which this paper
focuses on, are used to identify dependent latches in a machine.
Since some latches in a system might functionally depend on
the other latches, it is possible that not all latches in a system
have to be considered during reachability analysis. Therefore,
the identification of dependent latches, which depend on the
other latches within the system for their functionality, plays an
important role in reducing the state space of a product machine.
It also helps to minimize the number of latches in a sequential
circuit.

To identify the dependent latches in a sequential circuit,
the functional dependences between these latches must be
identified. In this paper, the functional dependences are the
relationships between these latches, and their corresponding
Boolean functions are called dependence functions. With in-
formation about dependence functions obtained, dependent
latches can be replaced by other latches. Hence, a sequential
circuit can be optimized by removing these dependent latches
without changing the circuit’s functionality [18]. In addition,
disregarding dependent latches can alleviate the problem of
explosive BDD size expansion during BDD-based reachability
analysis [11]. The dependence function also has a wide range
of electronic-design-automation applications, such as register-
transfer-level synthesis [18], [24], BDD minimization [11], and
logic synthesis [16].

0278-0070/$25.00 © 2009 IEEE

Authorized licensed use limited to: National Tsing Hua University. Downloaded on August 12, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

1114 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

Equivalence relation (Fi ≡ Fj) and opposition relation
(Fi = ¬Fj) are examples of some typical functional depen-
dences. References [12] and [27] have proposed algorithms
to identify them. However, there may exist many other rela-
tions among these latches. For instance, AND relation (Fi =
Fj • Fk) is another relation. An approximate approach in [14]
directly extracts dependence functions from the latches’ tran-
sition functions by using BDDs. However, the scalability of
the approach is still restricted to the BDD size. As a result,
this approach might not efficiently identify all functional de-
pendences among latches. Therefore, another approach [17]
detects the functional dependence by using a SAT solver with
the Craig interpolation theorem [7]. With the recent great
advances in SAT solvers [9], [19], this approach can identify
more functional dependences among latches.

Although [17] exploited a SAT solver to find more func-
tional dependences among latches, the identified dependence
functions may not be precise enough because of using maximal
input support candidates. Furthermore, it only reports which
latches have dependence functions but does not explicitly indi-
cate the dependent latches. Thus, the identified results cannot be
used directly for further applications. On the other hand, since
[17] extracts the functional dependence from the latches’ tran-
sition functions, its functional dependence is a combinational
functional dependence, which holds in the whole state space.
As for the sequential functional dependence, which holds only
in reachable state space, [17] cannot explore it. The sequential
functional dependence is capable of identifying additional de-
pendent latches in a circuit after a specific time frame. Since
the initial state is unrestricted in this paper, the sequential
functional dependences identified are held in the overapprox-
imated reachable state space. For ease of reading, the term
“overapproximated” is omitted in the succeeding discussion.

The contributions of this paper are as follows: 1) An ordered
destroyed cost heuristic is derived to minimize the input support
candidates such that as many dependent latches are identified
as possible. The corresponding dependent functions among
the latches are derived as well. 2) An efficient method for
discovering sequential functional dependences among latches
by exploiting the incremental SAT technique and the early
detection of dependent latches is proposed. As a result, more
dependent latches can be identified within each time frame.

The rest of this paper is organized as follows: Section II
introduces the preliminaries. Section III uses simple examples
to demonstrate the effect of the input support candidate se-
lection and to describe the limitations of the state-of-the-art.
Section IV introduces the proposed heuristic to find combina-
tional functional dependences as well as sequential functional
dependences with greater precision. The experimental results of
dependent-latch identification and its application to reachability
analysis are reported in Section V. Section VI concludes this
paper.

II. PRELIMINARIES

This section introduces the fundamental concepts of func-
tional dependence and the basic components of this work [7],
[14], [17].

A. Functional Dependence of Latches

First, the dependence function of a latch is introduced.
Definition 1: A latch’s transition function is a Boolean func-

tion f(X) whose input domain X consists of the PIs and PPIs.
It determines the next state value of this latch. A PPI is the
output signal of a latch, and a pseudo-primary output (PPO) is
the input signal of a latch.

Definition 2: Given a latch’s transition function r(X) :
Bm → B, B = {0, 1}, and a vector of other latches’ transition
functions S(X) = 〈s1(X), . . . , sn(X)〉, where si(X) : Bm →
B for i = 1, . . . , n over the same input domain {X ∈ Bm|X =
〈x1, . . . , xm〉}, the total number of PIs and PPIs (latches) is
m. r combinationally functionally depends on S if there is a
Boolean function d : Bn → B, called the dependence function,
such that r(X) = d(s1(X), . . . , sn(X)). The latch r is called
a dependent latch, and the latches in vector S are called base
latches.

Note that the dependent latch might depend only on a subset
of the base latch set {s1(X), . . . , sn(X)} when the dependence
function is written as r(X) = d(s1(X), . . . , sn(X)).

B. Existence of Functional Dependence

A necessary and sufficient condition to examining the exis-
tence of functional dependence among latches is described as
follows.

Theorem 1 [14]: Given the transition function of a depen-
dent latch r and the transition functions of base latches S,
let d0 = {Y ∈ Bn|Y = S(X) and r(X) = 0,X ∈ Bm} and
d1 = {Y ∈ Bn|Y = S(X) and r(X) = 1,X ∈ Bm}. The de-
pendence function d exists if and only if d0 ∩ d1 is empty.
Therefore, d0, d1, and Bn \ (d0 ∪ d1) could be considered as
the off, on, and don’t-care sets of d, respectively. In brief, when
d0 ∩ d1 = φ, r(X) = d(S(X)) is always true for all input
combinations of X .

Theorem 1 can be used to examine whether the dependence
function d exists or not.

C. Exploration of Functional Dependence by SAT Solvers

Before using SAT solvers, the circuit netlist needs to be
transformed to the conjunctive normal form (CNF), which is
the input format of SAT solvers [9], [19]. The following para-
graphs will introduce the dependence function network, which
is used to examine the existence of functional dependence in
the circuit and explore the corresponding dependence function.
The meaning of the network will then be explained. Finally,
there will be an illustration of how to transform this network
into a SAT problem.

1) Dependence Function Network: Lee et al. [17] define a
general network, as seen in Fig. 1, to establish whether the
dependence function exists by using a SAT solver. This method
will extract the combinational part of a sequential circuit with l
latches. This combinational part includes each latch’s transition
function with the PIs, PPIs, and PPOs as the signals (the
primary outputs will be ignored in this paper). xi, i = 1, . . . ,m,
is one of PIs or PPIs, and yj , j = 1, . . . , l, is the function of

Authorized licensed use limited to: National Tsing Hua University. Downloaded on August 12, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

LIN et al.: DEPENDENT-LATCH IDENTIFICATION IN REACHABLE STATE SPACE 1115

Fig. 1. Dependence function network for SAT solvers [17].

the PPO. Each yj represents the next state transition function of
latch j; therefore, this latch’s next state value is yj(x1, . . . , xm).
The combinational part of the circuit is instantiated into two
copies called Combon and Comboff to form the circuit part
of the network. For every variable v in Combon, there is a
counterpart v∗ in Comboff . The constraint part of the network
selects (n + 1) out of l latches that are considered in the circuit,
(n + 1) ≤ l. With yj and y∗

j , j = 0, . . . , n, in the constraint
part, y0 = 1 is set as the constraint in Combon, and y∗

0 = 0 is
set in Comboff . This action results in the domain of X (respec-
tively X∗) being restricted to the subdomain leading y0 = 1
(respectively y∗

0 = 0). Similarly, the domain of 〈y1, . . . , yn〉
(respectively 〈y∗

1, . . . , y
∗
n〉) is restricted to the subdomain based

on the constrained domain of X (respectively X∗).
2) Dependence Function Network Operation: To check

whether a dependence function d exists among a dependent
latch r and the base latches 〈s1, . . . , sn〉, y0 and 〈y1, . . . , yn〉
in this network can be regarded as the dependent latch r and the
base latches 〈s1, . . . , sn〉, respectively. Then, the constrained
subdomain of 〈y1, . . . , yn〉 can be taken as the on set d1 and
the constrained subdomain of 〈y∗

1, . . . , y
∗
n〉 as the off set d0.

Therefore, if the subdomain of 〈y1, . . . , yn〉 and the subdomain
of 〈y∗

1, . . . , y
∗
n〉 overlap, it indicates that d0 ∩ d1 is not empty

and the dependence function d does not exist, according to
Theorem 1.

3) Dependence Function Network Transformation to a SAT
Problem: The circuit parts Combon and Comboff of the net-
work in Fig. 1 can be converted to the CNFs Con and Coff , re-
spectively [1]. Similarly, the constraint part can be converted to
the following CNF: y0 ∧ ¬y∗

0 ∧ (y1 ≡ y∗
1) ∧ · · · ∧ (yn ≡ y∗

n).
Therefore, the complete CNF of the dependence function net-
work is

Cnetwork =Con ∧ Coff ∧ y0 ∧ ¬y∗
0 ∧ (y1≡y∗

1) ∧· · ·∧ (yn≡y∗
n)

where (yj ≡ y∗
j) stands for (yj ∨ ¬y∗

j) ∧ (¬yj ∨ y∗
j).

Finally, SAT solvers can be used to examine whether
Cnetwork is satisfiable or unsatisfiable.

1) Satisfiable: There exists one assignment of 〈y1, . . . , yn〉
and 〈y∗

1, . . . , y
∗
n〉 such that (y0 = 1) and (y∗

0 = 0) are both

true. That is, d0 ∩ d1 is not empty, and the dependence
function d does not exist.

2) Unsatisfiable: No assignment of 〈y1, . . . , yn〉 and
〈y∗

1, . . . , y
∗
n〉 can be found; therefore, d0 ∩ d1 is empty,

and the dependence function d exists.
The aforementioned summaries are based on the following

theorem proposed in [17].
Theorem 2 [17]: Given the transition function r(X) of a de-

pendent latch and the transition functions 〈s1(X), . . . , sn(X)〉
of base latches, a dependence function d exists between the de-
pendent latch and base latches if and only if the corresponding
Cnetwork is unsatisfiable.

D. Determination of Dependence Function
by Craig Interpolation

Theorem 3 [7]: Craig Interpolation Theorem. In the two
CNFs Ca and Cb with the common input variables 〈v0, . . . , vn〉,
if Ca ∧ Cb is unsatisfiable, there exists a Boolean formula I
only referring to the common input variables 〈v0, . . . , vn〉 with
the property that Ca ⇒ I and I ⇒ ¬Cb.

This Boolean formula I is called the interpolant of Ca and
Cb. The interpolant can be constructed in linear time from the
refutation proof [15], [20], [23], and current SAT solvers [9],
[19] can easily produce it from an unsatisfiable instance.

Theorem 4 [17]: If the CNF Cnetwork = Con ∧ Coff ∧ y0 ∧
¬y∗

0 ∧ (y1 ≡ y∗
1) ∧ · · · ∧ (yn ≡ y∗

n) is unsatisfiable, we par-
tition Cnetwork into Ca and Cb (i.e., Cnetwork = Ca ∧ Cb)
with Ca = Con ∧ y0 and Cb = Coff ∧ ¬y∗

0 ∧ (y1 ≡ y∗
1) ∧ · · · ∧

(yn ≡ y∗
n). The common input variables of Ca and Cb are Y =

〈y1, . . . , yn〉. Because Cnetwork is unsatisfiable, there exists an
interpolant formula I only referring to the common variables
Y , and I(Y) can be taken as the dependence function d.

The detailed proof of [17, Th. 4] shows that I(Y) must be an
overapproximation of d1(Y) and must be disjoint from d0(Y).
Therefore, I(Y) is the valid dependence function such that r =
I(s1, . . . , sn) is always true.

III. LIMITATIONS OF THE STATE-OF-THE-ART

This section discusses the limitations of the state-of-the-art
[17] using several examples.

A. Difference Between Functional Dependences
and Dependent Latches

Previous work [17] explored dependence functions among
latches, but the study failed to adequately address dependent-
latch identification. Therefore, additional processes are neces-
sary to identify the dependent latches.

B. Effect of Input Support Candidate Selection

To identify all functional dependences in a sequential circuit,
the previous work takes all the other latches as input support
candidates—referred to as maximal input support candidates in
this paper—to explore the dependence function of a latch. How-
ever, with maximal input support candidates, the dependence
functions obtained in the previous work may contain some

Authorized licensed use limited to: National Tsing Hua University. Downloaded on August 12, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

1116 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

Fig. 2. Example demonstrating that maximal input support candidates lead
dependence functions to contain redundant input supports.

Fig. 3. Example demonstrating that maximal input support candidates lead
dependence functions to rely on dependent latches.

redundant input supports and be reliant on dependent latches.
These results do not benefit dependent-latch maximization.
Two simple examples, shown in Figs. 2 and 3, are used to
demonstrate the effects of input support candidate selection.

1) Dependence Functions Containing Redundant Input Sup-
ports: Fig. 2 shows a sequential circuit. In order to examine
whether f3’s functional dependence exists, [17] takes {f1, f2},
the maximal input support candidates, as its input support
candidates. As a result, it will get a dependence function f3 =
f1 • f2, as can be observed from Fig. 2. However, if f3’s input
support candidates are restricted to {f1}, a more simplified
but not intuited dependence function f3 = f1 is found. This is
because f3 = f1 • f2 = (ab) • (b + c) = ab + abc = ab = f1.

2) Dependence Functions Relying on Dependent Latches:
Fig. 3 shows a sequential circuit. In order to examine whether
f3’s functional dependence exists using the method proposed
in [17], {f1, f2, f4} are taken as input support candidates. The
results give a dependence function f3 = f4. Dealing in the
same way with f1, f2, and f4, f1 and f2 are regarded as
independent latches and will also give the result of f4 = f3.
According to the dependence functions of f3 and f4 explored
by [17], only one of them can be identified as a dependent
latch; therefore, the other one should be an essential latch.
In this paper, however, the input support candidates of f3

and f4 will be restricted to {f1, f2}, and their corresponding
dependence functions f3 = f1 • f2 and f4 = f1 • f2 will be
obtained. According to these dependence functions, f3 and f4

can be simultaneously identified as dependent latches.

C. Dependent-Latch Identification by the Results of [17]

Another example, shown in Fig. 4, can be used to expose the
problems that may occur when using the results of [17] to iden-
tify dependent latches in the circuits. This example will also

Fig. 4. Demonstrating example.

Fig. 5. Previous work [17] uses the maximal input support candidates to
explore the dependence functions.

be used to describe the proposed heuristic in the next section.
Fig. 4 shows a sequential circuit with ten latches {L1, . . . , L10}
and four PIs {a, b, c, d}. To identify dependent latches, each
latch’s dependence function must be explored first, if it ex-
ists. In this example, only five latches {L1, L2, L3, L9, L10}
have functional dependences.1 These dependence functions’
input support candidates are shown in Fig. 5. Although these
five latches can be replaced by their base latches according
to the dependence functions, they cannot be simultaneously
regarded as dependent latches due to their circular dependences.
Therefore, some of these five latches have to be selected as
essential latches such that the circular dependences can be
broken. This selection will influence the number of dependent
latches identified. Nevertheless, since [17] always includes all
other latches as the input support candidates, the dependence
functions explored might have redundant input supports or rely
on dependent latches. In this example, the exact input support
set of L1, L2, and L3 are {L3, L5}, {L3, L4}, and {L1, L2},
respectively. With the independent latches {L4, L5}, L3 can
be chosen as an essential latch, and then, {L1, L2} can be
identified as dependent latches. However, if L1’s dependence
function includes a redundant input L2 and L2’s dependence
function includes a redundant input L1, their input support sets
become L1 = {L2, L3, L5} and L2 = {L1, L3, L4}. In this sit-
uation, no matter how essential latches are chosen, only one de-
pendent latch can be identified. In addition, L9’s input support
candidate set includes L10, and L10’s input support candidate
set includes L9; thus, [17] explores their corresponding depen-
dence functions, L9 = ¬L10 and L10 = ¬L9. In this situation,
only one of L9 and L10 can be regarded as a dependent latch.
As a result, [17] identifies fewer redundant latches. Therefore,

1Referring to Fig. 7, five of ten latches in this example are independent
latches. The remaining five latches have functional dependences.

Authorized licensed use limited to: National Tsing Hua University. Downloaded on August 12, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

LIN et al.: DEPENDENT-LATCH IDENTIFICATION IN REACHABLE STATE SPACE 1117

the next section will propose a heuristic to minimize the input
support candidates in the dependence function exploration and
maximize redundant latch identification.

IV. OUR ORDERED DESTROYED COST HEURISTIC

In this section, Fig. 4 is used again to demonstrate the heuris-
tic for dependent-latch identification in sequential circuits. At
first, the dependence function network is used to determine
which latch’s dependence function exists with maximal input
support candidates through the consideration of all other latches
as input support candidates. However, its dependence function
will not be derived immediately due to inaccuracy. Thus, two
sets of latches P : {L1, L2, L3, L9, L10} and I : {L4, . . . , L8}
are distinguished, where P is the set of possibly dependent
latches in which functional dependences exist and I is the set
of independent latches.

A. Refinement of the Set P by the Set I

The latches in I are the essential latches of the circuit and
can be used as the base latches to replace the latches in P . We
can determine whether the latches in P : {L1, L2, L3, L9, L10}
depend solely on the latches in I : {L4, . . . , L8}. In addition,
constant latches in a circuit will also be identified in this step
since constant latches can be presented as having functional
dependences over any input support candidates. For example, to
examine whether L1 depends only on the set I or is a constant
latch using the dependence function network, n is set to 5 in
the constraint part of the network, and y0 and 〈y1, . . . , y5〉
are regarded as the dependent latch L1 and the base latches
〈L4, . . . , L8〉, respectively. The other latches in P can also be
examined in the same manner. Fig. 4 shows that L9 and L10 are
the latches dependent on I , and their input support candidate
sets are refined from {L1, . . . , L8, L10} and {L1, . . . , L9} to
{L4, . . . , L8}. As a result, L9 and L10 are put into the set
R, which collects the dependent latches depending on I and
the constant latches. Following this, set P is updated from
{L1, L2, L3, L9, L10} to {L1, L2, L3}.

B. Refinement of the Set P Using the Ordered Destroyed Cost

After the refinement by I , the latches in P either depend on
some of the latches in P itself or some of the latches in P and
I . That is, each latch Li in P has a dependence function with
input support candidates P \ {Li} or (P \ {Li}) ∪ I . Next, P
is divided into two disjoint sets PR and PI . PR and PI are both
subsets of P , and PR is a set of latches that collects the latch
which depends on the latches in PI ∪ I . For a latch in P , if it is
not in PI , it is in PR. The goal is to maximize the PR set and
minimize the PI set, because the more latches there are in PR,
the more latches can be identified as dependent latches.

Definition 3: For the latches in set P where P is the set of
possibly dependent latches, if a latch L is removed from the
input support candidates of the other latches in P , the number
of functional dependences that would be destroyed is defined as
the destroyed cost of L.

An ordered destroyed cost is proposed as the guide for the
heuristic to move latches from P to PI . Each latch in set P has

Fig. 6. Pseudocode of EvaluateDestroyedCost function.

a destroyed cost. The method for evaluating the destroyed cost
of a latch Li in set P , denoted as dci, is to count the number
of functional dependences of other latches in P that would be
destroyed by removing Li from their input support candidates.
If the functional dependence of Lj is destroyed by Li, it means
that Lj’s functional dependence does not exist if Li is removed
from Lj’s input support candidates. In other words, for Lj to be
selected as a dependent latch, Li must be a base latch for it.

With the destroyed cost of all latches in P , latches with
higher destroyed cost will be dealt with first, and set P will
finally be partitioned into sets PR and PI . According to the
descending order of the destroyed cost, the Li with the highest
dci is removed to PI , and we determine whether the remaining
latches in P depend solely on the updated PI ∪ I . If a latch
in P satisfies this dependence condition, it can be moved to
PR. If P is not empty, the Li with the next highest dci can
be further moved to PI , and the aforementioned operations
can be iterated. The same example in Section IV-A is used to
demonstrate how to evaluate and use the destroyed cost. The
physical meaning of the destroyed cost will be discussed at the
end of this section. The pseudocode of evaluating the destroyed
cost of latches in P is shown in Fig. 6.

To evaluate the destroyed cost of L3, denoted as dc3, L3 is re-
moved from the input support candidates of latches L1 and L2,
and the dependence function network is used to examine how
many functional dependences would not exist without L3. That
is, we count the number of Lj’s functional dependences with
candidates (P \ {L3, Lj}) ∪ I that are destroyed by removing
L3. In this example, both L1’s functional dependence with
input support candidates {L2, L4, . . . , L8} and L2’s functional
dependence with input support candidates {L1, L4, . . . , L8}
would be destroyed without L3, according to the dependence
function network. This results in a destroyed cost of L3 = 2.

After all calculations, we obtain the destroyed cost dc1 = 1,
dc2 = 1, and dc3 = 2. According to the descending order of
the destroyed cost, L3 with dc3 = 2 is first moved to PI ,
and the remaining latches {L1, L2} in P are checked to see
if they functionally depend on the updated PI ∪ I (updated
PI : {L3}) using the dependence function network. In this iter-
ation, {L1, L2} have dependence functions with input support
candidates PI ∪ I . Thus, they are moved to PR. Finally, P
is empty, and the heuristic has partitioned P into PI : {L3}
and PR : {L1, L2}. All latches in PR functionally depend on
PI ∪ I .

Authorized licensed use limited to: National Tsing Hua University. Downloaded on August 12, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

1118 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

Fig. 7. Combinational dependent latches identified by this heuristic.

Fig. 7 shows the results of this example using the proposed
heuristic. In this example, the approach can identify four latches
(PR : {L1, L2}, R : {L9, L10}) as the combinational depen-
dent latches by selecting (PI : {L3}, I : {L4, . . . , L8}) as the
essential (base) latches. In addition, the dependence functions
of dependent latches can be explored with more accurate input
support candidates as compared with Fig. 5 used in [17]. Ac-
cording to Theorem 4, the Boolean formula of each dependence
function can also be derived, as shown in the bottom of Fig. 7,
by this heuristic.

Next, the meaning of the ordered destroyed cost is explained.
Latches with similar behavior would have the same destroyed
cost. Therefore, grouping the latches by their destroyed costs
and consecutively moving Li from the same group to PI until
the group becomes empty speeds up the identification process.
Furthermore, dealing with groups with a higher destroyed
cost first might help to identify more dependent latches, since
latches in the higher cost group might have a higher proba-
bility of replacing more dependent latches. In this example,
if L3 (dc3 = 2) is moved to PI , it can replace two latches
L1 and L2 with the independent latches {L4, L5}. However,
if L1 (dc1 = 1) is moved to PI , only one latch could be
replaced—L2 or L3—since the exact input support sets of L2

and L3 are L2 = {L3, L4} and L3 = {L1, L2}, respectively.
This example reveals that the order in which latches are moved
from P to PI influences the results obtained. In Section V, the
experimental results of using different orderings will be pre-
sented. These results strongly support the proposed ordering.

C. Sequential Functional Dependence
in Reachable State Space

To find more functional dependences existing in the reach-
able state space but not in the whole state space, a dependence
function network with t time frames is proposed, as shown in
Fig. 8. To build this dependence function network, (0, . . . , t −
1) circuit parts of the network in Fig. 1 are expanded by wiring
internal PPOs and PPIs and then connecting the same constraint
part as that in Fig. 1 at the end of the network. This network can
detect dependence for multiple time frames. In this paper, this
functional dependence across multiple time frames is called the
sequential functional dependence.

Definition 4: A functional dependence existing in the whole
state space is called a combinational functional dependence.

Fig. 8. Multi-time-frame dependence function network for sequential func-
tional dependences.

Functional dependences existing in the reachable state space
but not in the whole state space are named sequential functional
dependences.

The sequential dependence defined in [14] is literally sim-
ilar to the sequential functional dependence defined in this
paper, but actually, the two are very different. The BDD-based
approach to sequential dependence in [14] cannot extract the
functional dependence results from the transition functions at
a time due to BDD size limitations. Therefore, two heuristics
are proposed to collect new functional dependences iteratively.
At each iteration, the new functional dependences explored are
called sequential dependences. After all iterations, the obtained
functional dependence results are equivalent to the combi-
national functional dependences of this work. However, the
sequential functional dependences in this work are identified
by unfolding time frames.

To find the functional dependence at time frame t, the depen-
dence function network is first constructed as shown in Fig. 8.
Then, the same method mentioned in Section II is used to detect
the dependences in the constraint part of Fig. 8. In addition,
given that a sequential system begins with an unrestricted
initial state S0, the reachable state space at each time frame
is monotonically reduced, and a fixed point of reachable state
space is reached. That is, Sj ⊆ Si if j > i (St is the reachable
state space at the tth time frame). Therefore, with the property
of state-space-size reduction, if the functional dependence of
Li does not exist at time frame t, it might exist at time frame
k (k > t). However, the functional dependence of Li found
at time frame t must still hold at the succeeding time frame
k (k > t).

This approach will feed PI ∪ I , which is found at the current
time frame, to the next time-frame network to get more depen-
dences until the run-time limit is reached. That is, at time frame
t, all the latches that are to be dealt with are only the latches
in PI ∪ I at time frame (t − 1). Therefore, if latches in PI ∪ I
identified at time frame (t − 1) have functional dependences
at time frame t, some additional dependent latches can be
identified with the same heuristic, ordered destroyed cost. If that
is found, the previous dependence functions will be updated.
Before feeding PI ∪ I to the next time-frame network, a refined
process is conducted to examine whether latches in PI are
actually used by a dependent latch’s dependence function at the

Authorized licensed use limited to: National Tsing Hua University. Downloaded on August 12, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

LIN et al.: DEPENDENT-LATCH IDENTIFICATION IN REACHABLE STATE SPACE 1119

Fig. 9. Dependent latches identified at different time frames by this approach.

current time frame. Since the heuristic might not obtain the op-
timal results every time, this process is used to refine the results.
If some latches in PI are not used, they will be removed from
PI to P , and the aforementioned operations will be iterated. For
the last example, PI ∪ I = {L3} ∪ {L4, L5, L6, L7, L8} is fed
into the next time-frame network. Since L3 in PI is actually
used by the derived dependence functions of L1 and L2, the re-
fined process will be terminated. At the next time frame, a new
sequential dependence function (L6 = ¬L7 • L8) is found.
Hence, there is another dependent latch L6 after time frame 2.
The previous dependent latches’ dependence functions, which
depend on L6, must also be updated. In this example, the depen-
dence function of L9 is updated from (L9 = L6 + L7 + L8) to
(L9 = ¬L7 • L8 + L7 + L8 = L7 + L8), and the dependence
function of L10 is updated from (L10 = ¬(L6 + L7 + L8))
to (L10 = ¬(¬L7 • L8 + L7 + L8) = ¬(L7 + L8)) if L6 is
considered as a dependent latch after time frame 2. The com-
binational and sequential dependent latches of this example
identified by this approach are shown in Fig. 9.

The following paragraphs will explain an accelerated tech-
nique used in sequential-dependent-latch identification and will
introduce an application of the identified sequential functional
dependences.

1) Accelerated Technique for Identification of Sequential
Dependent Latches: The accelerated technique for identifying
sequential dependent latches consists of two parts, the incre-
mental technique [28] of SAT solvers and the early detection
of dependent latches. To find the sequential functional depen-
dence at time frame t using SAT solvers, it needs to set the
variables in the CNFs of circuit parts belonging to time frame
(0, . . . , t − 1). Since these variables have been processed at
time frame (0, . . . , t − 1), much useful information is available
to speed up the process at time frame t. Thus, the heuristic uses
the incremental technique of SAT solvers to reuse the learned
clauses at time frame (0, . . . , t − 1). Furthermore, dependent
latches existing at time frame t′ (t′ ≥ 1) must also exist at time
frame t (t > t′). That is, sequential dependent latches existing
at time frame t (t > 1) may have already existed at time frame
t′ (1 ≤ t′ ≤ t − 1). Therefore, these dependent latches detected
earlier at time frame t′ (1 ≤ t′ ≤ t − 1) are recorded, and the
run time for identifying all sequential dependent latches at
time frame t (t > 1) can be reduced a lot. In other words, to

Fig. 10. Flowchart of the proposed algorithm.

identify dependent latches at time frame t, our approach seeks
to identify dependent latches from time frame 1 to t, and only
latches in PI ∪ I at the current time frame are needed for the
next time frame.

2) Application of Sequential Functional Dependence: This
heuristic can find the combinational functional dependence
existing in the whole state space, as well as the sequential func-
tional dependence only existing in the reachable state space.
Therefore, an application of this work is to reduce the efforts
of reachability analysis. With information about the sequential
functional dependence at each time frame, the reachability
analysis engine that traverses the reachable state space of a
sequential circuit can ignore some dependent latches after a
certain time frame. Hence, the search space is significantly
reduced. Furthermore, for a sequential circuit that allows t
don’t-care initializing cycles to run from unrestricted initial
states before entering the normal operation states, only the
state space in time frame t is considered (also known as
delay replaceability in [26]). Thus, the sequential functional
dependences found at time frame t could be used to further
optimize the design under this situation.

D. Overall Algorithm

The complete flowchart of this approach is shown in Fig. 10.
At first, all latches of a circuit are put into a global set G,
and the time-frame variable t is set to 1 to identify dependent
latches at time frame 1 with the unrestricted initial states.
Considering all other latches in G as input support candidates
to examine the existence of each latch’s dependence function,
G can be partitioned into the possibly dependent latch set P
and the independent latch set I . If P is empty, it means that no

Authorized licensed use limited to: National Tsing Hua University. Downloaded on August 12, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

1120 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

TABLE I
COMBINATIONAL-DEPENDENT-LATCH IDENTIFICATION FOR STANDARD

BENCHMARKS IN ALL STATE SPACES

functional dependence exists at time frame t. Therefore, G is
then updated with I at the current time frame and proceeds to
the next time-frame iteration. Otherwise, P is first refined by
using I , and we obtain the latch set R where latches depend
only on I or have constant values. The dependence functions
of latches in R with the input support candidate set I are also
explored. Next, the ordered destroyed cost are evaluated and
used to partition P into PR and PI , and the latches’ dependence
functions in PR with the input support candidate set PI ∪ I are
also explored. After exploring the dependence functions of PR,
it is established whether any latch in PI has not been used by
PR’s dependence functions. Any unused latch is then removed
from PI to P , and the partition is refined again based on the
ordered destroyed cost. When all latches in PI are actually used
by the dependent latches in PR, dependent latches in R ∪ PR

are returned along with their dependence functions. G is then
updated with PI ∪ I at the current time frame, and the next
time-frame iteration proceeds. The algorithm terminates after
reaching a predefined time limit.

V. EXPERIMENTAL RESULTS

The proposed heuristic was implemented within SIS [25]
environment, and MiniSAT [9] was used as the SAT solver.
The experiments were conducted on a Linux platform (CentOS
4.4) with a 2.194-GHz machine and 8 GB of memory. To
show the scalability of the algorithm, a set of larger sequential
circuits [more flip-flops (FFs)] were selected from ISCAS’89
and ITC’99 benchmarks.

The experimental results are shown in two sections.
Section V-A shows our approach’s capability of identifying
dependent latches. Section V-B shows how dependent-latch
identification quantitatively improves reachability analysis.

A. Dependent-Latch Identification Using
the Proposed Approach

This section provides the experimental results of the pro-
posed approach in dependent-latch identification.

1) Combinational-Dependent-Latch Identification: Table I
shows the results of combinational dependent latches identified
by this approach. Column 1 lists the benchmarks. Columns 2

TABLE II
COMBINATIONAL-DEPENDENT-LATCH IDENTIFICATION FOR RETIMED

BENCHMARKS IN ALL STATE SPACES

and 3 list the number of nodes and the number of FFs (also
called latches), respectively. The combinational-dependent-
latch results of the proposed approach are listed in Columns
4–7. |Dep. latch| represents the number of identified dependent
latches. |Ess. latch| represents the number of essential latches
which can be considered as base latches to replace the depen-
dent latches. The next two columns show the percentage of FFs
that are identified as dependent latches (i.e., |Dep. latch|/|FF|)
and the CPU time measured in seconds.

For example, the s15850 circuit has 9786 nodes and 597
FFs. This approach can identify 22 (8 + 14) dependent latches
and 575 (568 + 7) essential latches within 11.27 s. Therefore,
3.69% of latches are identified as combinational dependent
latches by the proposed approach.

In this experiment, we observed that the proposed approach
identifies more dependent latches with the ISCAS benchmarks
than with the ITC benchmarks. This indicates that fewer depen-
dent latches exist in the ITC benchmarks with the unrestricted
initial states. Therefore, the results of the retimed version of the
same benchmarks, which may have more dependent latches, are
shown in the next experiment to demonstrate the capabilities of
the proposed approach.

The experimental results of combinational dependent latches
identified by this approach for retimed benchmarks are shown
in Table II. Column 1 lists the benchmarks after the retim-
ing (using ABC [6] command, “most forward retiming”). For
example, the retimed version of the s13207 circuit has 8144
nodes and 1533 FFs, in which this approach can identify 554
(6 + 548) dependent latches and 979 (814 + 165) essential
latches. Therefore, in the retimed version of the s13207 circuit,
36.14% of the latches in the circuit are identified as combi-
national dependent latches. As demonstrated in Table II, this
approach can recognize a large number of dependent latches,
so that fewer latches have to be considered in reachability
analysis. However, the time expenditure may be a concern in
the dependent-latch identification of benchmarks which have
a high ratio of dependent latches. We observed that the run
time of the proposed approach also increases for this version
of benchmarks. This is because the run time of the approach
strongly depends on the number of nodes and the number
of dependent latches in it. Fortunately, compared with the

Authorized licensed use limited to: National Tsing Hua University. Downloaded on August 12, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

LIN et al.: DEPENDENT-LATCH IDENTIFICATION IN REACHABLE STATE SPACE 1121

TABLE III
INFLUENCE OF ORDERED DESTROYED COST HEURISTIC ON DEPENDENT-LATCH IDENTIFICATION

TABLE IV
DEPENDENT-LATCH IDENTIFICATION WITHOUT OR WITH THE REFINED PROCESS

time saved through reachability analysis due to dependent-latch
identification, it is worth spending the extra run time on this
component.

2) Distinct Orders of Destroyed Cost: For the experiment
in Table I, the dependent-latch identification is performed in
descending order of destroyed cost. For this section, we repeat
the experiment using another three distinct orders of destroyed
cost: ascending, middle, and random orders.

1) Ascending order: The latch Li with the lowest dci in P is
moved to PI first.

2) Middle order: The latch Li with a middle value dci in P
is moved to PI first.

3) Random order: A latch Li in P is randomly moved to PI .

The comparisons of the results among the experiments in
these four orders are shown in Table III.

Column 1 lists the benchmarks that have nonempty P (PR +
PI) in Table I. Column 2 lists the number of latches in P . The
set P , which is divided into two disjoint sets PR and PI by
our algorithm, with respect to the four orders of the destroyed
cost are listed in Columns 3–6, respectively. The ratios of PR

obtained with the descending order and the other orders of the
destroyed cost are shown in the final three columns. Note that
the results of random order are averagely obtained by repeating
the experiments ten times.

The experimental results show that the heuristic done using
these four orders have the same results for some benchmarks.
However, for s5378 and s38417, descending order is a better
choice. For example, s38417 has 95 latches in P , and P is par-
titioned into PR and PI by the heuristic. The heuristic with the
descending order of destroyed cost can identify 70 dependent

latches in PR, but merely 62–65 dependent latches in PR are
identified by the experiments done with the other three orders.
For s13207, however, random order is a better choice. The
reason that our heuristic obtained the same results with these
four orders in some cases is as follows: For circuits that only
have equivalence relation or circular functional dependences
among latches, there is no difference among using any orders.
Since the results with the descending order are often better than
that of the other orders, we choose the descending order of
destroyed cost as our heuristic.

3) Dependent-Latch Maximization With the Refined
Process: This section demonstrates the results of running the
additional refined PROCESS on PR and PI for maximizing the
PR set and minimizing the PI set. Table IV shows the results
of the combinational-dependent-latch identification with or
without the refined process. Column 1 lists the benchmarks
which have different results with or without the refined process.
Column 2 shows their corresponding number of latches in
P . Column 3 shows the order of the destroyed cost in the
experiment. Des. represents the descending order, and Asc.
represents the ascending order. Columns 4 and 5 list the results
without and with the use of the refined process, respectively.
The ratio of PR obtained with the refined process and without
the refined process is shown in the final column.

According to Table IV, the ratios of PR in these benchmarks
are greater or equal to 1, regardless of destroyed cost order.
Therefore, the refined process is shown as an effective proce-
dure to improve the results. Take s13207 with the descending
order as an example: 15 more latches are recognized in the PR

set when we apply the refined process.
4) Sequential-Dependent-Latch Identification: The experi-

mental results on the sequential functional dependence in the

Authorized licensed use limited to: National Tsing Hua University. Downloaded on August 12, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

1122 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

TABLE V
SEQUENTIAL-DEPENDENT-LATCH IDENTIFICATION IN THE REACHABLE STATE SPACE FOR 10 000-S RUN-TIME LIMIT

TABLE VI
CPU TIME COMPARISON FOR DEPENDENT-LATCH IDENTIFICATION IN S38417 WITH OR WITHOUT ACCELERATED TECHNIQUE

reachable state space are shown in Table V. The CPU time limit
is set to 10 000 s. Column 3 lists the number of identified de-
pendent latches considered in all state spaces (i.e., at time frame
1). The results of sequential functional dependence are listed
in Columns 4–6. Column 4 shows the number of dependent
latches identified after the time frame in Column 5. Column 6
shows the ratio of additionally identified sequential dependent
latches as compared with the total FFs in Column 2 (i.e.,
((|Dep.|in Column4) − (|Dep.|in Column3))/|FF|). Column 7
lists the number of time frames unfolded and examined within
the 10 000-s run-time limit. The ratio of the number of overall
dependent latches identified after the time frame in Column 5
is shown in the final column.

The experimental results show that sequential functional
dependences may exist in the circuit, which can be used for
reachability analysis and sequential circuit optimization. Take
s5378 as an example: The state space is reduced from 2164 to
2156 by ignoring the combinational dependent latches. Further-
more, the state space is shrunk from 2156 to 2111 by ignoring
sequential dependent latches after time frame 14. However,
from time frame 14 to 106, there are no additional sequential
dependent latches that can be identified. The reasons for it are
that the state space might have shrunk to a fixed point or some
sequential dependent latches may exist after time frame 107.
However, we cannot identify them within the time limit.

5) Implementation With the Accelerated Technique: The
proposed accelerated technique, consisting of an incremental
method and early detection, is used to enhance the performance
of this approach. The performance comparison between the
approaches with or without the accelerated technique while
identifying dependent latches is also shown in Table VI, where
a large sequential circuit s38417 is used as the benchmark.

Rows 1 and 2 show the time used for dependent-latch iden-
tification at each time frame with and without employing the
accelerated technique, respectively. The approach without using
the accelerated technique has to build a new SAT instance and
deal with all latches in a benchmark at each time frame. The
final column lists the percentage of identified dependent latches
for these two approaches at the fifth time frame, T5.

According to Table VI, except T1, the CPU time can be
significantly reduced with the proposed accelerated technique.
It saves 56.97%, 78.89%, 90.66%, and 93.92% of CPU time at
T2, T3, T4, and T5, respectively. The reason for the time saving
is that the clauses learned at time frame 0 ∼ (t − 1) could be
reused in the multi-time-frame network of time frame t, i.e.,
these clauses could reduce the search space at time frame t as
in the concept of branch-and-bound algorithms. Another reason
is that this approach only delivers the PI ∪ I latch set obtained
at the current time frame to the next time frame. Hence, the
network in the next time frame focuses only on the latches in
PI ∪ I , rather than all latches. With this additional information,
the approach with the accelerated technique identifies 1.16%
more dependent latches (8.56% − 7.40% = 1.16%) than that
not using this technique.

B. Reachability Analysis Enhancement With the
Dependent-Latch Identification

This section provides the experimental results of the reach-
ability analysis with and without using the results of the
dependent-latch identification within VIS [3] environment, the
state-of-the-art academic formal verification tool. The sequen-
tial circuits in ISCAS’89 which have dependent latches identi-
fied in Section V-A are selected as the benchmarks.

Authorized licensed use limited to: National Tsing Hua University. Downloaded on August 12, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

LIN et al.: DEPENDENT-LATCH IDENTIFICATION IN REACHABLE STATE SPACE 1123

TABLE VII
EXPERIMENTAL RESULTS OF REACHABILITY ANALYSIS FOR REACHING THE SAME TIME-FRAME WITHIN 60 000-S RUN-TIME LIMIT

IN THE ORIGINAL AND THE OPTIMIZED CIRCUITS OF THE STANDARD ISCAS’89 BENCHMARKS

TABLE VIII
EXPERIMENTAL RESULTS OF REACHABILITY ANALYSIS WITHIN A RUN-TIME LIMIT IN THE ORIGINAL

AND THE OPTIMIZED CIRCUITS OF THE STANDARD ISCAS’89 BENCHMARKS

Although both the combinational and sequential dependent
latches in a sequential circuit can be identified by our approach,
this experiment only considers the combinational ones since
VIS does not allow setting the sequential dependent latches
during the reachability analysis. The optimized version of one
benchmark is the one that completely removes out the combina-
tional dependent latches of the original circuit and reconnects
the circuit based on the corresponding dependence functions.
The reachability analysis are performed on these two versions
of circuits. The initial states of all latches in the optimized
circuits are set to 0. However, for the original circuits, only the
essential latches are set to 0. The dependent latches in the orig-
inal circuits are set to the values with respect to the dependence
functions under the essential latches’ setting. The dynamic
variable ordering technique in BDD, sift algorithm, is used
in the experiments (VIS command, “dynamic_var_ordering -e
sift”). To clearly demonstrate the improvement of reachability
analysis with the identified combinational dependent latches,
two sets of benchmarks are used. One is the standard ISCAS’89
benchmark, and the other is the retimed ISCAS’89 benchmark.
Furthermore, we also conduct two experiments with different
terminating conditions, one is time-frame limit and the other is
run-time limit, and compare the results in terms of the number
of reached states, CPU time, and BDD size, respectively. Note
that the time for computing the latch dependence is excluded.
The following sections present detailed experimental descrip-
tions and result comparisons.

1) Standard ISCAS’89 Benchmark:
a) Time-frame limit: Table VII shows the experimental

results of the reachability analysis done on the original and the
optimized circuits with the same time-frame limit. Columns 2
and 3 list the reached time-frame limit and the number of

reached states in this limited time frame within a 60 000-s run
time. The results of the original and optimized benchmarks are
listed in Columns 4–9. |FF| represents the number of FFs. The
next two columns show the BDD size and the CPU time needed
at the time frame. Columns 10 and 11 list the reduction ratio
of the optimized circuit to the original one in BDD size and
run time.

Take s5378 as an example: The original circuit has 164 FFs,
and the optimized circuit has 156 FFs through the removal
of eight combinational dependent latches (R + PR = 1 + 7).
While both reached the same number of states (1.24393e + 16)
at the fifth time frame, the original circuit built a BDD with
size 1 653 300 and required 57 248 s of run time, while the
optimized circuit needed a 270 723 BDD size and 49 869 s
of run time. The reduction ratio of BDD size and run time
are 83.63% and 12.89%, respectively. For s38584 and s38417,
however, the run time for the reachability analysis of the
optimized circuits is more than that of the original circuits,
although the optimized circuit still saves 7.63% and 30.85%
in BDD size, respectively. The reason for the longer run time
could be the dynamic ordering heuristic in VIS. This heuristic
is triggered automatically and, unfortunately, is an uncertainty
in the experiments. It is time consuming but does not always
result in significant BDD size reduction. Nevertheless, we still
apply this technique in the experiments since BDD size is the
key factor for reaching deeper time frames.

b) Run-time limit: Table VIII shows the experimental re-
sults of the reachability analysis of the original and the opti-
mized circuits with the same run-time limit. Columns 1 and 2
list the benchmarks and the corresponding run-time limit.
Longer run-time limits are for more complicated circuits. The
results of the original and the optimized benchmarks are listed

Authorized licensed use limited to: National Tsing Hua University. Downloaded on August 12, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

1124 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

Fig. 11. BDD size of the original and optimized circuit during the reachability
analysis for the standard s9234 benchmark.

in Columns 3–10. The Timeframe column shows the time frame
reached within the run-time limit. The number of reached states
and the corresponding BDD size are listed in the next two col-
umns. Column 11 lists the improvement ratio of the optimized
circuit to the original one in terms of the number of reached states.
The final column lists the ratio of the BDD size reduction.

Take s13207 as an example; the original circuit has 669 FFs,
while the optimized circuit has 510 FFs after removing
159 combinational dependent latches (R + PR = 5 + 154).
Within the 600 000-s run-time limit, the original circuit reaches
4.82309e + 15 states in the 43rd time frame while the opti-
mized circuit reaches 1.44247e + 17 states in the 60th time
frame. The fewer FFs in the optimized circuits allowed 17
additional time frames to proceed and 2890.76% (2990.76 −
100) more states to be reached with a 29.64% BDD size
overhead. In addition, the optimized s5378 circuit also reached
140.98% (240.98 − 100) more states than the original one and
had a 71.09% BDD size reduction. For the circuits with the
same state numbers—s9234, s15850, s38584, and s38417—the
optimized versions still saved 26.10%, 25.67%, 34.67%, and
30.85% of BDD size, respectively. The BDD size savings allow
the reachability analysis to possibly proceed further if the time
limit is loosened.

The detailed analyses on BDD size at each time frame of the
reachability analysis for the original circuits and the optimized
ones are shown in Figs. 11–14 for circuits reached beyond ten
time frames.

According to Figs. 11 and 12, the required BDD size for the
reachability analysis of the optimized circuit is smaller than
that of the original circuit in s9234 and s13207. In addition, the
curves from s15850 and s38584 in Figs. 13 and 14 intersect at
later time frames, which indicates that the optimized circuits
potentially consume less memory and possibly proceed to
deeper time frames.

2) Retimed ISCAS’89 Benchmark: The experiments in this
section are the same with that in Section V-B-1, but for the
retimed ISCAS’89 benchmark. The experimental results with
the time-frame and run-time limits are summarized in Tables IX
and X, respectively. Take s13207 in Table IX as an example; the
optimized circuit saves 91.87% BDD size and 96.67% run time
when reaching the same time frame as the original circuit. From
Table X, the optimized s13207 reaches more than two orders of

Fig. 12. BDD size of the original and optimized circuit during the reachability
analysis for the standard s13207 benchmark.

Fig. 13. BDD size of the original and optimized circuit during the reachability
analysis for the standard s15850 benchmark.

Fig. 14. BDD size of the original and optimized circuit during the reachability
analysis for the standard s38584 benchmark.

magnitude states than that of the original one within the same
run-time limit. Furthermore, the BDD size also has a 38.14%
reduction. These results strongly support our heuristic of iden-
tifying much more dependent latches. Figs. 15–17 also show
the BDD size comparison between the original and optimized
circuits at each time frame for the retimed circuits reached
beyond ten time frames. They reveal the same message that
optimized circuits consume less memory for BDD construction
and could proceed to deeper time frames.

Authorized licensed use limited to: National Tsing Hua University. Downloaded on August 12, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

LIN et al.: DEPENDENT-LATCH IDENTIFICATION IN REACHABLE STATE SPACE 1125

TABLE IX
EXPERIMENTAL RESULTS OF REACHABILITY ANALYSIS FOR REACHING THE SAME TIME-FRAME WITHIN 60 000-S RUN-TIME LIMIT

IN THE ORIGINAL AND THE OPTIMIZED CIRCUITS OF THE RETIMED ISCAS’89 BENCHMARKS

TABLE X
EXPERIMENTAL RESULTS OF REACHABILITY ANALYSIS WITHIN A RUN-TIME LIMIT IN THE ORIGINAL

AND THE OPTIMIZED CIRCUITS OF THE RETIMED ISCAS’89 BENCHMARKS

Fig. 15. BDD size of the original and optimized circuit during the reachability
analysis for the retimed s9234 benchmark.

Fig. 16. BDD size of the original and optimized circuit during the reachability
analysis for the retimed s13207 benchmark.

VI. CONCLUSION

This paper has proposed an algorithm to efficiently and
precisely identify combinational dependent latches and explore

Fig. 17. BDD size of the original and optimized circuit during the reachability
analysis for the retimed s15850 benchmark.

their dependence functions with the more accurate input sup-
port candidates. Furthermore, identifying dependent latches
without exploring dependence functions first could also ben-
efit the identification results. In addition, a new multi-time-
frame dependence function network has been proposed to
identify additional sequential dependent latches existing in the
reachable state space. With the information about sequential
dependent latches, the state space of sequential circuits can
be further reduced, and the circuits can be further optimized.
With the dependent latches identified, the complexity of per-
forming reachability analysis can be reduced by disregarding
these dependent latches as seen in the presented experimental
results.

REFERENCES

[1] F. A. Aloul, I. L. Markov, and K. A. Sakallah, “Faster SAT and smaller
BDDs via common function structure,” Univ. Michigan, Ann Arbor, MI,
Dec. 12, 2001. Tech. Rep.

[2] R. Bryant, “Graph-based algorithms for Boolean function manipulation,”
IEEE Trans. Comput., vol. C-35, no. 8, pp. 677–691, Aug. 1986.

Authorized licensed use limited to: National Tsing Hua University. Downloaded on August 12, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

1126 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

[3] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi,
A. Aziz, S.-T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo,
S. Qadeer, R. K. Ranjan, S. Sarwary, T. R. Shiple, G. Swamy, and
T. Villa, “VIS: A system for verification and synthesis,” in Proc. Comput.-
Aided Verification Conf., 1996, pp. 423–427.

[4] D. Brand, “Verification of large synthesized designs,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Des., 1993, pp. 534–537.

[5] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and
D. L. Dill, “Symbolic model checking for sequential circuit verification,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 13, no. 4,
pp. 401–424, Apr. 1994.

[6] Berkeley Logic Synthesis and Verification Group, ABC: A System
for Sequential Synthesis and Verification. Release 70930. [Online].
Available: http://www.eecs.berkeley.edu/ alanmi/abc/

[7] W. Craig, “Linear reasoning: A new form of the Herbrand–Gentzen theo-
rem,” J. Symb. Log., vol. 22, no. 3, pp. 250–268, 1957.

[8] H. Cho, G. D. Hatchel, E. Macii, B. Plessier, and F. Somenzi, “Algorithms
for approximate FSM traversal based on state space decomposition,” in
Proc. ACM/IEEE Des. Autom. Conf., 1993, pp. 25–30.

[9] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Proc. Int. Conf.
Theory Appl. Satisfiability Test., 2003, pp. 502–518.

[10] S. G. Govindaraju, D. L. Dill, A. Hu, and M. A. Horowitz, “Approximate
reachability analysis with BDDs using overlapping projections,” in Proc.
ACM/IEEE Des. Autom. Conf., 1998, pp. 451–456.

[11] A.-J. Hu and D. L. Dill, “Reducing BDD size by exploiting func-
tional dependencies,” in Proc. ACM/IEEE Des. Autom. Conf., 1993,
pp. 266–271.

[12] S.-Y. Huang, K.-T. Cheng, and K.-C. Chen, “AQUILA: An equivalence
verifier for large sequential circuits,” in Proc. Asian South Pacific Des.
Autom. Conf., 1997, pp. 455–460.

[13] R. Hojati, S. Krishnan, and R. K. Brayton, “Heuristic algorithms for early
quantification and partial product minimization,” UC Berkeley, Berkeley,
CA, Tech. Rep. M94/11, 1994.

[14] J.-H. R. Jiang and R. K. Brayton, “Functional dependency for verifi-
cation reduction,” in Proc. Comput.-Aided Verification Conf., 2004,
pp. 268–280.

[15] J. Krajicek, “Interpolation theorems, lower bounds for proof systems,
and independence results for bounded arithmetic,” J. Symb. Log., vol. 62,
no. 2, pp. 457–486, Jun. 1997.

[16] V. Kravets and P. Kudva, “Implicit enumeration of structural changes
in circuit optimization,” in Proc. ACM/IEEE Des. Autom. Conf., 2004,
pp. 438–441.

[17] C.-C. Lee, J.-H. R. Jiang, C.-Y. Huang, and A. Mishchenko, “Scalable
exploration of functional dependency by interpolation and incremental
SAT solving,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., 2007,
pp. 227–233.

[18] B. Lin and A. R. Newton, “Exact redundant state registers removal based
on binary decision diagrams,” in Proc. Int. Conf. Very Large Scale Integr.,
1991, pp. 277–286.

[19] M. Moskewicz, C. Madigan, L. Zhang, and S. Malik, “Chaff: Engineering
an efficient SAT solver,” in Proc. ACM/IEEE Des. Autom. Conf., 2001,
pp. 530–535.

[20] K. L. McMillan, “Interpolation and SAT-based model checking,” in Proc.
Comput.-Aided Verification Conf., 2003, pp. 1–13.

[21] K. L. McMillan, Symbolic Model Checking. Norwell, MA: Kluwer,
1993.

[22] I.-H. Moon, J. Kukula, T. Shiple, and F. Somenzi, “Least fixpoint ap-
proximations for reachability analysis,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des., 1999, pp. 41–49.

[23] P. Pudlak, “Lower bounds for resolution and cutting plane proofs and
monotone computations,” J. Symb. Log., vol. 62, no. 3, pp. 981–998,
Sep. 1997.

[24] E. Sentovich, H. Toma, and G. Berry, “Latch optimization in circuits
generated from high-level descriptions,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des., 1996, pp. 428–435.

[25] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai,
A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “SIS: A system for sequential circuit synthesis,” Electron.
Res. Lab, Univ. California, Berkeley, CA, Tech. Rep. UCB/ERL M92/41,
May 1992.

[26] M. Syal and M. S. Hsiao, “VERISEC: Verifying equivalence of sequential
circuits using SAT,” in Proc. High-Level Des. Validation Test Workshop,
2005, pp. 52–59.

[27] C. A. J. van Eijk and J. A. G. Jess, “Exploiting functional dependencies
in finite state machine verification,” in Proc. Eur. Des. Test Conf., 1996,
pp. 9–14.

[28] J. Whittemore, J. Kim, and K. Sakallah, “SATIRE: A new incremental
satisfiability engine,” in Proc. ACM/IEEE Des. Autom. Conf., 2001,
pp. 542–545.

Chen-Hsuan Lin received the B.S. and M.S. de-
grees in computer science from National Tsing Hua
University, Hsinchu, Taiwan, in 2006 and 2008,
respectively.

He is currently a Second Lieutenant with the
Marine Corps, Taiwan. His research interests include
logic synthesis and design verification.

Mr. Lin is a member of Phi Tau Phi.

Chun-Yao Wang (S’00–M’03) received the B.S.
degree from the Department of Electronics Engi-
neering, National Taipei University of Technology,
Taipei, Taiwan, in 1994 and the Ph.D. degree from
the Department of Electronics Engineering, National
Chiao Tung University, Hsinchu, Taiwan, in 2002.

He is currently an Associate Professor with the
Department of Computer Science, National Tsing
Hua University, Hsinchu. His research interests in-
clude logic synthesis, design verification, and very
large scale integration testing.

Yung-Chih Chen received the B.S. and M.S. de-
grees in computer science from National Tsing Hua
University, Hsinchu, Taiwan, in 2003 and 2005, re-
spectively, where he is currently working toward
the Ph.D. degree in the Department of Computer
Science.

His research interests include logic synthesis and
design verification.

Authorized licensed use limited to: National Tsing Hua University. Downloaded on August 12, 2009 at 21:43 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

