
MajorSat: A SAT Solver to Majority Logic

Yu-Min Chou Yung-Chih Chen Chun-Yao Wang, Ching-Yi Huang
Computer Science Computer Science & Engineering Computer Science

National Tsing Hua University Yuan Ze University National Tsing Hua University

Hsinchu, Taiwan, R.O.C. Taoyuan, Taiwan, R.O.C. Hsinchu, Taiwan, R.O.C.

gogomyjet@yahoo.com.tw ycchen.cse@saturn.yzu.edu.tw wcyao@cs.nthu.edu.tw, s9862516@m98.nthu.edu.tw

Abstract—A majority function can be represented as sum-of-

product (SOP) form or product-of-sum (POS) form. However, a

Boolean expression including majority functions could be more

compact compared to SOP or POS forms. Hence, majority logic

provides a new viewpoint for manipulating the Boolean logic. Re-

cently, majority logic attracts more attentions than before and

some synthesis algorithms and axiomatic system for majority

logic have been proposed. On the other hand, solvers for satis-

fiability (SAT) problem have a tremendous progress in the past

decades. The format of instances for the SAT solvers is the Con-

junctive Normal Form (CNF). For the instances that are not ex-

pressed as CNF, we have to transform them into CNF before run-

ning the SAT-solving process. However, for the instances includ-

ing majority functions, this transformation might be not scalable

and time-consuming due to the exponential growth in the number

of clauses in the resultant CNF. As a result, this paper presents a

new SAT solver—MajorSat, which is for solving a SAT instance

containing majority functions without any transformation. Some

techniques for speeding up the solver are also proposed. Besides,

we also propose a transformation method that can generate the

characteristic function of a majority logic gate. The experimental

results show that the MajorSat solver can efficiently solve random

instances containing majority functions that CNF SAT solvers,

like MiniSat or Lingeling, cannot.

I. INTRODUCTION

The majority function is a concise way to represent a

Boolean expression. A Boolean expression sometimes can be

more compact by containing majority functions in it rather than

being expressed as sum-of-product (SOP) form or product-

of-sum (POS) form [1]. Recently, majority logic attracts

more attentions than before and some synthesis algorithms

and axiomatic system for majority logic have been proposed

[1][2][14]. In [14], the SOP expression is transformed into ma-

jority logic for reducing hardware cost in quantum cellular au-

tomata devices. In [2], a synthesis method on majority-inverter

graphs was developed to optimize the area, depth, and power

of logic circuits. In [1], a two-level majority representation is

presented for expressing Boolean functions.

On the other hand, in the past decades, the conjunctive-

normal-form (CNF) solvers [3][4][6][7][16][17][18] for the

This work is supported in part by the Ministry of Science and Technol-

ogy of Taiwan under Grant MOST 103-2221-E-007-125-MY3, MOST 103-

2221-E-155-069, NSC 100-2628-E-007-031-MY3, NSC 101-2221-E-155-

077, NSC 101-2628-E-007-005, NSC 102-2221-E-007-140-MY3, and NSC

102-2221-E-155-087.

Boolean satisfiability (SAT) problem have had a remarkable

achievement and have been widely used in the domains of syn-

thesis and verification of logic circuit. Despite the fact that

these traditional solvers are quite efficient and mature, they

are not applicable to the instances that are not represented as

CNF. That is, we have to transform the non-CNF instances into

CNF ones before running the SAT-solving process. However,

for the instances containing majority functions, this transfor-

mation might be not scalable and time-consuming due to the

exponential growth in the number of clauses of the resultant

CNF.

To address this issue, we propose a new solver, MajorSat,

which can directly solve instances with majority functions in-

stead of converting majority functions into clauses and feeding

to the CNF SAT solvers. The conciseness of majority functions

in representation also alleviates memory consumption required

to store a large number of clauses in the implementation.

The proposed MajorSat consists of three parts, and they are

conflict analysis, conflict-driven learning, and variable deci-

sion order heuristic. First, the conflict analysis quickly detects

conflicts within or among the majority functions if they exist.

Then the conflict-driven learning process accelerates the solver

by effectively pruning the search space. Finally, a variable de-

cision order heuristic selects the next variable to be evaluated

based on the current state of solving.

We also propose a transformation method to generate the

characteristic function of a majority logic gate in the format of

majority function. As a result, the SAT problem in majority

logic networks can be solved accordingly.

We conducted two experiments in this work. In the first ex-

periment, we would like to show the correctness of the pro-

posed solver. We randomly selected 3-SAT benchmarks from

SATLIB [19] and transformed them into the conjunction of

majority functions by adding n− 1 constant 1 into a clause of

size n. Then we applied the MajorSat to solve these bench-

marks and compared the results. The experimental results

show that the MajorSat obtained the correct results.

In the second experiment, we generated random benchmarks

in the format of the conjunction of majority functions for eval-

uating the efficiency of MajorSat due to no existing bench-

marks in the format of conjunction of majority functions. The

experimental results show that the MajorSat solved all the

benchmarks, while CNF SAT solvers, MiniSat and Lingeling,

run out of time limit, 1000 seconds.

The main contributions of this work are three-fold:

1. This is a SAT solver for solving the instances containing

978-1-4673-9569-4/16/$31.00 ©2016 IEEE

5C-3

480

majority functions directly.

2. Some properties about majority functions for analyzing

conflicts are presented.

3. An implication method and a variable decision order

heuristic are presented.

The rest of this paper is organized as follows. Section II

gives the background of the majority logic and the satisfiabil-

ity problem. Section III presents the proposed MajorSat solver.

Section IV presents the transformation method for majority

logic gates. Section V shows the experimental results. Sec-

tion VI concludes this work.

II. PRELIMINARIES

In this section, we give the background of the majority logic

and SAT problem.

A. Majority function

A literal is a variable a or its negation ā. A clause is a dis-

junction (OR) of literals. A majority function is a function with

an odd number of literals and constants 0, 1 as the inputs, and

its logic value is evaluated as 1 if and only if more than half

of inputs are 1. A majority function is denoted as M() and the

number of inputs in a majority function represents its size.

Example 1: A majority function M(a, b̄, 1) of size 3 is evalu-

ated to logic value 1 if and only if 2 or 3 inputs of a, b̄ and 1
are 1.

B. Satisfiability

The Boolean SAT problem is to determine if there exists

an assignment to the variables so that the Boolean formula is

1. Transforming a majority function into a CNF requires an

exponential number of operations with respect to the size of a

majority function.

Example 2: A majority function M(a, b, c, d, e) of size 5 is

logically equivalent to a CNF (a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (a ∨
b ∨ e) ∧ (a ∨ c ∨ d) ∧ (a ∨ c ∨ e) ∧ (a ∨ d ∨ e) ∧ (b ∨ c ∨ d)

∧ (b ∨ c ∨ e) ∧ (b ∨ d ∨ e) ∧ (c ∨ d ∨ e). This CNF contains(
n

�n/2�

)
clauses, where n is the size of the majority function.

According to Example 2, we realize that a majority function

can represent a CNF with a lot of clauses and thus reduces the

complexity of space and time required in representation.

Definition 1: A majority expression, denoted as ME, is a con-

junction of majority functions.

Example 3: M(a, b, c̄) ∧ M(d̄, ē, 0, f , g) is an ME.

III. MAJORSAT

This section presents the proposed MajorSat solver to ma-

jority logic. Its overall flow is shown in Fig. 1. The con-

flict analysis is performed first for quickly detecting conflicts

within or among the majority functions if they exist. Then the

conflict-driven learning with a variable decision order heuristic

accelerates the solver by effectively pruning the search space.

��

��

�����

���	
���
���
����

���	
���
�������
���

�����

���	
����������
��������
����

������
�
 �������
!����
"�#������

$���
��
������%����

���
���

Fig. 1. The overall flow of MajorSat.

A. Conflict Analysis

This subsection presents several properties for analyzing

conflicts among majority functions in an ME.

Unlike a clause in CNF, the size of a majority function

within an ME can be reduced without altering the result of the

ME. Property 1 states this observation.

Property 1: A majority function with size n can be simplified

to a majority function with size (n−2) by removing two inputs

that are either the same variable but with different phases, or 0

and 1, while preserving the same result.

Example 4: M(a, a, b, c, ā, 0, 1) can be reduced to M(a, b, c,
0, 1) since a and ā are opposite to each other in their phases.

M(a, b, c, 0, 1) can be further reduced to M(a, b, c).

Conflicts could exist among majority functions in an ME.

Property 2 states an observation about this.

Property 2: Given an ME, it is UNSAT if it satisfies the fol-

lowing conditions simultaneously.

(1) There exists a majority function of size n with an input x
∈ {a, ā, 0, 1} appearing more than �n/2� times.

(2) There exists another majority function of size m with an

input y ∈ {a, ā, 0, 1} appearing more than �m/2� times.

(3) x = ȳ.

Example 5: An ME: M(b, b, b, c, d) ∧ M(d, e, f , b̄, b̄, b̄, b̄) is

UNSAT since the input b appears 3 > �5/2� times in the first

majority function, the input b̄ appears 4 > �7/2� times in the

second majority function, and b = ¯̄b.

Definition 2: Given a majority function s, the minimum num-

ber of variables required to be assigned such that s is 1 is de-

noted as MinVs.

Example 6: For a majority function s: M(a, a, b, c, d̄), MinVs

is 2 since it requires at least two variables to be assigned to

make s = 1. The choices of these variables are (a, b) = (1, 1),

(a, c) = (1, 1), or (a, d) = (1, 0).

When two majority functions in an ME have the same vari-

able set, there is a property for detecting UNSAT of the ME as

follows.

5C-3

481

Property 3: Given two majority functions s and t, the ME =
s ∧ t is UNSAT if both of the following conditions hold.

(1) s and t have the same variable set with size w, and the phase

of each variable in s is opposite to the phase of each variable

in t.
(2) Both MinVs and MinVt > �w/2�.

Example 7: A trivial case is that M(a, b, c) ∧ M(ā, b̄, c̄) is

UNSAT. Given an ME = s ∧ t = M(a, b, c̄) ∧ M(ā, b̄, b̄, b̄, c,
c, c), the size w of the variable set {a, b, c} is 3. This ME is

UNSAT since both MinVs = 2 and MinVt = 2 are larger than

�w/2� = 1.

In addition to the above properties, we can also extract

conflicts from an ME through the implications among the

related literals in majority functions. By analyzing implica-

tions existing in majority functions of an ME, we can build an

implication graph such that the unsatisfiability of the original

ME could be earlier determined by the implication graph. That

is, if there exists a conflict among the literals in the implication

graph, we can realize that the original ME is UNSAT. Note

that all the majority functions of size larger than or equal to

3, except for tautology and contradiction, bring implications.

The rule of implications for a general majority function of size

n is stated as follows.

Property 4: Given a majority function of size n, resolving a

literal a (assigning 0 to the literal a) that occurs k times in the

function implies all the other literals that occur greater than or

equal to �n/2� - k times for satisfying the majority function.

Example 8: Given a majority function M(a, a, b, b, c̄, c̄, d)

of size 7, resolving (assigning 0 to) the literal a implies both

literals b and c̄ to 1 for satisfying the majority function. This is

because the literal a occurs k = 2 times, and both literals b and

c̄ occur two times, which is equal to �7/2� - 2 = 2. However,

d cannot be implied by ā due to dissatisfaction of Property 4.

Next, let us introduce how to build an implication graph

from the implication relationship obtained by resolving the

majority functions. In an implication graph, a node repre-

sents a literal, and a directed edge between nodes represents

the implication between them. Given two variables a and b,
if assigning a = 0 implies b = 1, denoted as ā → b, a di-

rected edge from node ā to node b is formed in the implication

graph. Note that ā → (b ∧ c) is equivalent to (ā → b) ∧ (ā →
c). After extracting all the implications based on Property 4, a

complete implication graph can be built. Then we start to find

the strongly-connected components (SCCs) [11] in the graph.

If there exists an SCC that contains a variable with opposite

phases, we can assert that the original ME is UNSAT.

Example 9: Given an ME: M(a, b, c) ∧ M(b̄, c̄, d) ∧ M(ā, c̄,
d̄). According to Property 4, we can extract the implications as

follows:

M(a, b, c): ā → (b ∧ c), b̄→ (a ∧ c), c̄ → (a ∧ b).
M(b̄, c̄, d): b→ (c̄ ∧ d), c → (b̄ ∧ d), d̄ → (b̄ ∧ c̄).
M(ā, c̄, d̄): a → (c̄ ∧ d̄), c → (ā ∧ d̄), d → (ā ∧ c̄).

The implication graph can be built from these implications as

� ��

� ��

�

�

��

��

Fig. 2. The implication graph containing all the implications extracted from

the original ME in Example 9.

� ��

� ��

�

�

��

��

Fig. 3. Literals a and ā are identified in the same SCC, which causes a

conflict in ME of Example 9.

shown in Fig. 2. Then we identify the implication graph itself

is an SCC that contains literals a and ā as shown in Fig. 3.

Thus, the ME is UNSAT.

B. Conflict-driven Learning

If the conflict analysis cannot detect the dissatisfaction of

an ME, we proceed to solve the ME by searching the input

space. The SAT-solving process is to determine a truth value

of each variable until every majority function in an ME is sat-

isfied. The SAT-solving process will return SAT if a satisfying

assignment of variables is found, or UNSAT after the entire

search space is traversed without finding a satisfying assign-

ment.

During the searching, the conflict-driven learning technique

can record the reasons of conflicts before traversing the space

completely. It helps in avoiding assigning variables leading to

a conflict branch repeatedly, and accelerates the solving speed

of a solver. The reasons of conflicts are usually recorded in the

format of clauses and added to the original problem.

In CNF SAT solvers, the conflict-driven learning procedure

is invoked when there is a logic implication derived from the

unit propagation [13]. The unit propagation states that the

only unassigned literal in a clause will be implied to 1 if all the

other literals have been assigned as 0. However, for majority

functions, this implication method is quite different from the

unit propagation used in CNF SAT solvers. Specifically, in the

MajorSat, we have to cope with all the possible implication

conditions during the SAT-solving process. In the following

property, we propose a new implication method — Majority

Propagation, which uses a similar concept of Property 4, to

analyze the implications.

Property 5 (Majority Propagation): Given a majority function

s of size n with k inputs that have been assigned as 0, any

5C-3

482

���	
��� &

	
'
(� '
(

�
'
)

�
'
(

� '
(

� '
)

�
'
(

�
'
)

� '
(

���
*
)
���
*
+
���
*
,

������
�
�������

������
�
�%-
���

Fig. 4. The implication process of Example 12.

unassigned literal in s that occurs equal to or more than

�n/2� − k times will be implied to 1 for satisfying s.

Example 10: In a majority function M(a, a, a, b, c, e, e, f ,

g) of size 9, if the literals e and g have been assigned as 0, k
is equal to 3. The literal a will be implied to 1 since a occurs

three times, which is greater than �9/2� − 3 = 2.

Example 11: In a majority function M(a, a, a, b, b, b, c), if the

literal c is assigned as 0, k is equal to 1. The literals a and b
are both implied to 1 since they both occur three times, which

is equal to �7/2� − 1 = 3.

For each variable x in an ME, its decision level is recorded

for conflict-driven learning. The decision level of a variable

x is the level of search tree at which the variable is either de-

cided or implied. The smaller value of decision level means

the variable is decided or implied earlier.

We use Example 12 to demonstrate how a conflict happens

during the SAT-solving procedure on an ME.

Example 12: Given an ME with three majority functions:

M(a, a, a, a, b, c, e, 1, 1) ∧ M(ā, b̄, c, e, 1) ∧ M(d, ē, f ,

g, h). Assume that the variables f and g are decided as 0 at the

decision level of 1 and 2, respectively. Then d = 1, e = 0,

and h = 1 can be implied from the last majority function as

shown in the level 2 of Fig. 4. After deciding c = 0, we can

have a = 0, b = 0 from the second majority function. Also,

we have a = 1 from the first majority function. As a result, we

find that a = 1, and a = 0 are both implied from the implica-

tion process. Therefore, a conflict is detected. The complete

implication process is shown in Fig. 4.

To speed up the SAT-solving process, we can add a learned

clause from the conflict to the original ME. In Example 12,

since we have known that the assignment of f = 0, g = 0 and

c = 0 causes a conflict, we can add a clause (f ∨ g ∨ c) to

the ME intuitively, which means that one of f , g, and c will

be assigned as 1 at least in the future for satisfying the original

ME. However, the learned clause (f ∨ g ∨ c) could be further

minimized. Next, we use a learning method in [15] to obtain a

smaller learned clause.

In the implication process of assigning variables, a node

represents a variable which has been decided or implied at a

certain decision level. When a conflict happens between two

���	
��� &

	
'
(� '
(

�
'
)

�
'
(

� '
(

� '
)

�
'
(

�
'
)

� '
(

���
*
)
���
*
+
���
*
,

������
�
�������

������
�
�%-
���

Fig. 5. The learned clause (e ∨ c) is generated from the implication process.

nodes, e.g., v = 0 and v = 1, we can identify a set s of nodes

that are in the fanin cones of both conflict nodes. We then re-

move the nodes from s which are dominated by the other nodes

in s. A node y is dominated by a node x if and only if all paths

from node y to the fanout of node x must pass through node

x. In Example 12, as shown in Fig. 5, the set s of nodes in the

fanin cones of both conflict nodes a = 0 and a = 1 is {f = 0,

g = 0, e = 0, c = 0}. Since f = 0 and g = 0 are dominated

by e = 0, they are removed from s, and s becomes {e = 0,

c = 0}. Then the learned clause is formulated by disjuncting

the negation of nodes in s, and it is (e ∨ c). The resultant ex-

pression becomes M(a, a, a, a, b, c, e, 1, 1) ∧ M(ā, b̄, c, e, 1)

∧ M(d, ē, f , g, h) ∧ (e ∨ c).
Since the learned clause is added to the original ME during

the conflict-driven learning process, the expression to be dealt

with is not an ME. This scenario extends the format that the

proposed MajorSat can solve. That is, the input format of Ma-

jorSat is generalized as the conjunction of majority functions

and clauses.

C. Variable Decision Order Heuristic

In modern CNF SAT solvers, variable decision heuristics

[8][10] significantly influence the efficiency of solving pro-

cess. The order of variables is computed based on the appear-

ance times of variables among all clauses. A good order of

variable decision increases the probability of reaching a satis-

fiable branch in the searching process. However, for an ME,

the scenario that a literal occurs multiple times within a single

majority function makes the variable decision order more com-

plex. Thus, for the MajorSat, we also propose a variable de-

cision order method, which is different from that of CNF SAT

solvers, to steer the solving direction to a satisfiable branch.

Definition 3: thresholdm and weightm(x) are defined as

�n/2� and the appearance time of the variable x in a major-

ity function m, respectively, where n is the size of majority

function m.

Since the input format of MajorSat is extended to the con-

junction of majority functions and clauses, we denote the

score function of a variable x in a Majority function m as

scoreMm(x), and that in a Clause c as scoreCc(x).
Definition 4: Given a majority function m and a variable x,

scoreMm(x) is 0 if x is absent in m; otherwise, scoreMm(x)
is defined as

5C-3

483

1−
thresholdm − weightm(x)

size of m

In Definition 4, when the appearance time of a variable in

a majority function m is more, the higher value scoreMm(x)
will be. When the scoreMm(x) is higher, the probability that

the decision of x leading to the satisfaction of m is higher.

Definition 5: Given a clause c, and a variable x, scoreCc(x)
is 1 if x is in c; otherwise, scoreCc(x) is 0.

Definition 5 implies that satisfying a variable in a clause can

lead to the satisfaction of the clause.

The score for a variable x, denoted as score(x), is used to

steer the branching direction in the searching process. It is

computed by the summation of score functions of the majority

functions and the clauses as follows:

score(x) =
∑

m∈M

scoreMm(x) +
∑

c∈C

scoreCc(x)

where M and C denote majority functions and clauses. The

score(x) value reflects the influence of assigning the variable

x to satisfy the majority functions and clauses. This score(x)
value increases when the appearance time of the variable x in

the majority functions increases or the variable x exists in the

clauses. Therefore, we determine the variable decision order

by the value of score(x) in a descending order.

Example 13: Given an expression F containing majority func-

tions and clauses: M(a, a, a, b, b, c̄, d) ∧ M(b̄, c̄, d̄) ∧ (ā ∨ b
∨ c), the score calculation of each variable in F is shown as

follows:

score(a) = (1− (4− 3)/7) + 0 + 1 = 13/7 = 39/21
score(b) = (1− (4− 2)/7) + (1− (2− 1)/3) + 1 = 50/21
score(c) = (1− (4− 1)/7) + (1− (2− 1)/3) + 1 = 47/21
score(d) = (1− (4− 1)/7) + (1− (2− 1)/3) + 0 = 26/21

since score(b) > score(c) > score(a) > score(d), the vari-

able decision order is determined as b > c > a > d.

The scores of some variables will be updated when the

conflict happens. That is, after the conflict happens, the scores

of variables that appear on the paths from conflict nodes to

decision nodes are added by 1. Then, the variable decision

order is recomputed based on the newly updated scores.

Example 14: In Example 12, after assigning f = 0, g = 0,

and c = 0, the conflict happens in the variable a. According

to the implication process in Fig. 4, the paths from conflict

nodes, (a = 0, a = 1), to decision nodes, (c = 0, f = 0, g =

0) include nodes of a = 0, a = 1, c = 0, e = 0, f = 0 and g =

0. Therefore, score(a), score(c), score(e), score(f), and

score(g) are added by 1.

The reason of this score updating is as follows: When a

conflict happens, increasing the scores of variables that ap-

pear on the paths from the conflict nodes to the decision nodes

can increase the possibility of these variables to be chosen

next. Choosing these variables could likely lead the search to

unsatisfiable branches, which helps in learning more conflict

clauses.

IV. MAJORITY GATE TRANSFORMATION

In circuit verifications, CNF is widely used to generates the

characteristic function of a circuit. Given a Boolean network,

its CNF is achieved by applying Tseitin transformation [12].

However, if there is a Boolean network composed of many ma-

jority gates, it would be time-consuming to compute the CNF

of that network through Tseitin transformation due to a large

number of resultant AND, OR gates as shown in Example 2.

Therefore, we propose the Majority transformation that gen-

erates the characteristic function of a majority gate. As a re-

sult, the satisfiability of a Boolean network containing major-

ity gates can be obtained by first encoding the network into an

ME and then solving the ME by the MajorSat solver. Property

6 states this transformation rule.

Property 6 (Majority Transformation): Given a majority gate

f = M(x1, x2, ..., xn−1, xn) of size n, its characteristic func-

tion can be expressed as M(x1, x2, ..., xn−1, xn, f̄n, 1n) ∧
M(x̄1, x̄2, ..., x̄n−1, x̄n, fn, 1n), where vn means that the vari-

able v appears n times in the majority function.

Proof: For a majority gate f = M(x1, x2, ..., xn−1, xn), its

characteristic function is (f → M(x1, x2, ..., xn−1, xn)) ∧ (f̄
→ M(x1, x2, ..., xn−1, xn)) = (f → M(x1, x2, ..., xn−1, xn))

∧ (f̄ → M(x̄1, x̄2, ..., x̄n−1, x̄n)). By the rule of inference, this

formula can be rewritten as (f̄ ∨ M(x1, x2, ..., xn−1, xn)) ∧
(f ∨ M(x̄1, x̄2, ..., x̄n−1, x̄n)). For the first clause (f̄ ∨ M(x1,

x2, ..., xn−1, xn)), we can transform it to an equivalent form

M(x1, x2, ..., xn−1, xn, f̄n, 1n). This is because when f̄ = 1,

both forms are 1s; when more than half of x1, x2, ..., xn are

1s, both forms are 1s; otherwise, both forms are 0s. Similarly,

the second clause (f ∨ M(x̄1, x̄2, ..., x̄n−1, x̄n)) can be trans-

formed into a majority function M(x̄1, x̄2, ..., x̄n−1, x̄n, fn,

1n) by using the same method. Therefore, the characteristic

function of the gate f = M(x1, x2, ..., xn−1, xn) can be ex-

pressed as M(x1, x2, ..., xn−1, xn, f̄n, 1n) ∧ M(x̄1, x̄2, ...,

x̄n−1, x̄n, fn, 1n).

Example 15: Given a majority gate m: f = M(a, b, c), the

characteristic function of m is M(a, b, c, f̄ , f̄ , f̄ , 1, 1, 1) ∧
M(ā, b̄, c̄, f , f , f , 1, 1, 1).

V. EXPERIMENTAL RESULTS

We implemented the proposed MajorSat in C++ language.

We conducted two experiments on an Intel Xeon R© E5530

2.40GHz CentOS 4.6 platform with 64GB memory. The first

one shows the correctness of our solver through the CNF

benchmarks of random 3-SAT in SATLIB [19]. In the sec-

ond experiment, we demonstrate the solving ability of Major-

Sat on different scales of randomly generated benchmarks in

ME format. We randomly generated these benchmarks for the

experiment due to no existing benchmark in the format of ME.

Furthermore, these benchmarks will be solved by MiniSat [16]

and Lingeling [18] after been converted into CNF for compar-

ing the efficiency among MajorSat and these CNF solvers.

Table I summarizes the experimental results of the first ex-

periment. Columns 1-3 list the information about the CNF

benchmarks including name, the number of variables, and the

5C-3

484

TABLE I

THE EXPERIMENTAL RESULTS ON SATLIB BENCHMARKS.

Solving Result

Benchmarks |variable| |clause| Golden Result CNF ME

uf20-91 20 91 SAT SAT SAT

uf50-218 50 218 SAT SAT SAT

uf75-325 75 325 SAT SAT SAT

uf100-430 100 430 SAT SAT SAT

uf125-538 125 538 SAT SAT SAT

uf150-645 150 645 SAT SAT SAT

uuf50-218 50 218 UNSAT UNSAT UNSAT

uuf75-325 75 325 UNSAT UNSAT UNSAT

uuf100-430 100 430 UNSAT UNSAT UNSAT

uuf125-538 125 538 UNSAT UNSAT UNSAT

uuf150-645 150 645 UNSAT UNSAT UNSAT

number of clauses. Column 4 lists the satisfiability of the

benchmark. Columns 5-6 list the result of MajorSat in the two

formats: CNF, or ME. The CNF benchmarks were converted

to ME by converting each clause into a majority function as

follows: A clause of size n is converted to a majority function

by adding n − 1 constant 1s in it. For example, (a ∨ b ∨ c)
was converted to M(a, b, c, 1, 1). The experimental results

show that the results of MajorSat in these two formats match

the golden results of the benchmarks.

In the second experiment, the scale of randomly generated

benchmarks is expressed as (the number of variables the num-

ber of majority functions the size of each majority function).

We generated benchmarks (75 75 17∼29), (100 100 11∼21),

and (125 125 11∼15) for the MajorSat. Then we converted

them into CNF for MiniSat and Lingeling solvers.

Table II summarizes the experimental results of the second

experiment. Column 1 lists the benchmarks. Column 2 lists the

solving time of MajorSat measured in second. Column 3 lists

the time for conversion from MEs to CNFs. Columns 4-5 list

the time for MiniSat in solving CNFs and the total time mea-

sured in second. Columns 6-7 list the corresponding results for

Lingeling.

According to Table II, we can see that the conversion from

an ME to the corresponding CNF is time-consuming. For the

benchmarks 75 75 21∼29, this conversion time even exceeds

the solving time of MajorSat. The total time required in Ma-

jorSat is less than that in MiniSat and Lingeling for all the

benchmarks, which demonstrates a solver targeting at majority

functions is important.

In summary, MajorSat provides efficient solving perfor-

mance for majority logic. An exponential growth in the num-

ber of clauses when converting an ME to its corresponding

CNF increases the solving difficulty for CNF solvers.

VI. CONCLUSION

In this paper, we propose a new SAT solver for solving ma-

jority logic. Several properties about majority functions are

also investigated to increase the efficiency of MajorSat. The

experimental results show that MajorSat is more efficient in

solving majority expressions than CNF solvers.

REFERENCES

[1] L. Amarú, P.-E. Gaillardon, and G. De. Micheli, “Majority Logic Rep-

resentation and Satisfiability,” in Proc. International Workshop on Logic

TABLE II

THE COMPARISON OF EXPERIMENTAL RESULTS OF MAJORSAT, MINISAT,

AND LINGELING ON RANDOMLY GENERATED MES AND THE

CORRESPONDING CNFS.

MajorSat MiniSat Lingeling

Benchmarks tsol(s) tconv(s) tsol(s) total(s) tsol(s) total(s)
75 75 17 2.37 1.37 > 1000 > 1000 > 1000 > 1000

75 75 19 9.51 5.53 > 1000 > 1000 > 1000 > 1000

75 75 21 12.38 22.80 > 1000 > 1000 > 1000 > 1000

75 75 23 20.16 97.58 > 1000 > 1000 > 1000 > 1000

75 75 25 42.37 410.07 > 1000 > 1000 > 1000 > 1000

75 75 27 118.14 > 1000 − > 1000 − > 1000

75 75 29 158.01 > 1000 − > 1000 − > 1000

100 100 11 0.15 0.04 3.55 3.59 10.70 10.74

100 100 13 2.81 0.14 475.10 475.24 404.40 404.54

100 100 15 12.94 0.43 > 1000 > 1000 > 1000 > 1000

100 100 17 59.59 2.10 > 1000 > 1000 > 1000 > 1000

100 100 19 140.05 8.10 > 1000 > 1000 > 1000 > 1000

100 100 21 894.18 30.36 > 1000 > 1000 > 1000 > 1000

125 125 11 2.88 0.04 895.80 895.84 237.60 237.64

125 125 13 11.08 0.17 > 1000 > 1000 > 1000 > 1000

125 125 15 152.87 0.59 > 1000 > 1000 > 1000 > 1000

& Synthesis, 2014.

[2] L. Amarú, P.-E. Gaillardon, and G. De. Micheli, “Majority-Inverter

Graph: A Novel Data-Structure and Algorithms for Efficient Logic Op-

timization,” in Proc. Design Automation Conference, pp. 1-6, 2014.

[3] G. Audemard and L. Simon, “Predicting Learnt Clauses Quality in

Modern SAT Solvers,” in Proc. International Joint Conference on Arti-

ficial Intelligence, pp. 399-404, 2009.

[4] A. Biere, “Lingeling, Plingeling and Treengeling Entering the SAT

Competition 2013,” SAT Competition, 2013.

[5] M. Davis and H. Putnam, “A Computing Procedure for Quantification

Theory,” Journal of the ACM, 7:201-215, July 1960.

[6] N. Een and N. Sorensson, “An Extensible SAT-Solver,” in Proc. Inter-

national Conference on Theory and Applications of Satisfiability Test-

ing, pp 502-518, 2003.

[7] N. Een and N. Sorensson, “MiniSat v1.13 — A SAT Solver with

Conflict-Clause Minimization,” SAT Competition, 2005.

[8] E. Goldberg and Y. Novikov. BerkMin, “A Fast and Robust SAT

Solver,” in Proc. Design, Automation and Test in Europe, pp. 142-149,

2002.

[9] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A Search Algo-

rithm for Propositional Satisfiability,” IEEE Transaction on Computers,

vol. 48, pp. 506-521, 1999.

[10] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Engi-

neering an Efficient SAT Solver,” in Proc. Design Automation Confer-

ence, pp. 530-535, June 2001.

[11] R. E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM

Journal on Computing, pp. 146-160, 1972.

[12] G. Tseitin, “On the complexity of derivation in propositional calculus,”

Studies in Constr. Math. and Math. Logic, 1968.

[13] R. Zabih and D. A. McAllester, “A Rearrangement Search Strategy for

Determining Propositional Satisfiability,” in Proc. National Conference

on Artificial Intelligence, pp. 155-160, 1988.

[14] R. Zhang, K. Walus, W. Wang, and G.A. Jullien, “A Method of Majority

Logic Reduction for Quantum Cellular Automata,” IEEE Transaction

on Nanotechnology, vol. 3, no. 4, pp. 443-450, Dec. 2004.

[15] L. Zhang, C.F Madigan, M.H Moskewicz, and S. Malik, “Efficient Con-

flict Driven Learning in a Boolean Satisfiability Solver,” in Proc. Inter-

national Conference on Computer Aided Design, pp. 279-285, 2001.

[16] http://minisat.se/

[17] http://www.labri.fr/perso/lsimon/glucose/

[18] http://fmv.jku.at/lingeling/

[19] http://www.cs.ubc.ca/∼hoos/SATLIB/benchm.html

5C-3

485

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /CarbonBlock
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /HelveticaNarrow
 /HelveticaNarrowBold
 /HelveticaNarrowBoldLefty
 /HelveticaNarrowBoldOblique
 /HelveticaNarrowLefty
 /HelveticaNarrowOblique
 /Helvetica-Oblique
 /HGGothicE
 /HGGothicM
 /HGGyoshotai
 /HGKyokashotai
 /HGMaruGothicMPRO
 /HGMinchoB
 /HGMinchoE
 /HGPGothicE
 /HGPGothicM
 /HGPGyoshotai
 /HGPKyokashotai
 /HGPMinchoB
 /HGPMinchoE
 /HGPSoeiKakugothicUB
 /HGPSoeiKakupoptai
 /HGPSoeiPresenceEB
 /HGSeikaishotaiPRO
 /HGSGothicE
 /HGSGothicM
 /HGSGyoshotai
 /HGSKyokashotai
 /HGSMinchoB
 /HGSMinchoE
 /HGSoeiKakugothicUB
 /HGSoeiKakupoptai
 /HGSoeiPresenceEB
 /HGSSoeiKakugothicUB
 /HGSSoeiKakupoptai
 /HGSSoeiPresenceEB
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MingLiU
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /NewCenturySchlbk-Bold
 /NewCenturySchlbkBoldCn
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbkBoldLeftie
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewCenturySchlbkRomanCn
 /NewCenturySchlbkRomanLeft
 /NewGulim
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OCRB
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /UnDotum
 /UnDotum-Bold
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

