Fast Detection of Node Mergers Using Logic Implications -

Yung-Chih Chen and Chun-Yao Wang
Department of Computer Science, National Tsing Hua University, HsinChu, Taiwan
{ycchen, wcyao} @ cs.nthu.edu.tw

ABSTRACT

In this paper, we propose a new node merging algorithm using
logic implications. The proposed algorithm only requires two
logic implications to find the substitute nodes for a given target
node, and thus can efficiently detect node mergers. Further-
more, we also apply the node merger identification algorithm for
area optimization in VLSI circuits. We conduct experiments on
a set of IWLS 2005 benchmarks. The experimental results show
that our algorithm has a competitive capability on area opti-
mization compared to a global observability don’t care (ODC)-
based node merging algorithm which is highly time-consuming.
Our speedup is approximately 86 times for overall benchmarks.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids— Optimization

General Terms
Algorithms

Keywords

Logic implication, node merging, observability don’t care

1. INTRODUCTION

Node merging is a popular and efficient logic restructuring
technique. It replaces a node with another node by rewiring,
and then removes the replaced node without changing the over-
all functionality of the circuit. A major application of the tech-
nique is to reduce the size of a logic circuit. As two nodes are
merged, one of them can be removed from the circuit, and this
merger may cause other redundancies in the circuit such that
the resultant circuit is minimized. Circuit minimization also can
be a pre-process before performing equivalence checking [3].

SAT sweeping [7] is a method that merges two functionally
equivalent nodes. Firstly, it simulates the circuit by applying
a set of random patterns. Next, node merger candidates are
derived by searching two nodes that have the same simulation
values. Finally, it uses a SAT solver to check if the nodes are
actually equivalent. However, functional equivalence is not a
necessary condition for node merging. In fact, if the functional
differences of two nodes are never observed at any primary out-
put (PO), these two nodes can be merged as well. Based on
this observation, a node merging algorithm under local observ-
ability don’t cares (ODCs) is proposed in [16]. The algorithm
can identify additional node mergers that are not functionally
equivalent to each other.

The local ODC-based algorithm [16] extends the SAT sweep-
ing method by performing ODC analysis when deriving can-
didate node mergers. According to the simulation results, it
computes the observability of each node and collects the pairs
of nodes whose differences are not observable as candidates.
Since full observability computation is very time-consuming,
however, the method sets a k-bounded depth to extract local

*This work was supported in part by the National Science Coun-
cil of R.O.C. under Grants NSC 98-2220-E-007-015 and NSC
98-2220-E-007-023.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ICCAD’09, November 2-5, 2009, San Jose, California, USA.

Copyright 2009 ACM 978-1-60558-800-1/09/11...$10.00.

:) & Z)
4&@ Jiox ®
L

(@) (®)
Figure 1: An example of ODC-based node merging.
(a) The original circuit. (b) The resultant circuit of
replacing vz with v;.

ODCs. With larger values of k, the method can identify more
node mergers but spends more CPU time.

To enhance the local ODC-based algorithm, the work in [11]
proposes a node merging algorithm under global ODCs using
the SAT sweeping technique as well. To reduce the complexity
of full observability computation, the method computes approx-
imate observability for each node instead of bounded-depth ob-
servability. Although the method detects certain node mergers
that cannot be identified by the local ODC-based algorithm, it
potentially misses some other node mergers as well. Addition-
ally, since the approximate observability computation is global,
the method expends a great amount of CPU time for large cir-
cuits.

Recently, a similar algorithm that merges nodes while consid-
ering sequential ODCs is proposed in [4]. It also employs SAT
sweeping to identify node mergers under sequential ODCs for
sequential circuit optimization.

Although both the works in [16] and [11] propose methods
to decrease the complexity of observability computation, they
cannot avoid performing ODC analysis in searching for a node
merger. Additionally, they need to simulate a large amount of
random patterns, collect candidate node mergers, and then per-
form SAT solving. This procedure can be very time-consuming
due to a large number of SAT solving calls when the number of
candidates is enormous.

Thus, in this work, we propose a new scheme — a sufficient
condition for merging two nodes for node merger identification.
In this condition, only two logic implications are required to
find the substitute nodes for a given target node. The pro-
posed approach is ODC-based, but does not need to perform
observability computation, random pattern simulation, candi-
date collection, and SAT solving. As a result, it can globally
and efficiently detect node mergers. Furthermore, we also apply
the approach to area optimization in VLSI circuits.

We conduct experiments on a set of IWLS 2005 benchmarks
[17]. The experimental results show that the proposed approach
can efficiently identify node mergers within 175 seconds for each
benchmark. In addition, an average of 6.52% of nodes can be
replaced by other nodes in a circuit, and each replaceable node
has an average of 2.79 substitute nodes. For area optimization,
as compared to the state-of-the-art [11], the proposed approach
has a speedup of 86 times for overall benchmarks while possess-
ing a competitive capacity for circuit size reduction.

The rest of this paper is organized as follows: Section 2 uses
an example to show the ODC-based node merging and presents
the problem formulation. It also reviews the related concepts in
VLSI testing used in this paper. Section 3 presents the proposed
node merging algorithm. Its application for area optimization
is introduced in Section 4. Finally, the experimental results and
conclusion are presented in Sections 5 and 6.

785

Correct Circuit C Incorrect Circuit C’

w1 wl
Wo @ Wo
Wws Wws

(n)——

Figure 2: The misplaced wire error.
2. PRELIMINARIES

2.1 An example

We use an example in Fig. 1 to demonstrate ODC-based
node merging. The circuit in Fig. 1(a) is presented by using
an And-Inverter Graph (AIG), which is an efficient and scalable
representation for Boolean networks. Here, a, b, ¢, and d are
primary inputs (PIs). v1 ~ vs are 2-input AND gates. Their
connectivities are presented by directed edges. A dot marked
on an edge indicates that an inverter (INV) is in between two
nodes.

In this circuit, v1 and vs are not functionally equivalent, and
thus, merging them potentially affects the overall functionality
of the circuit. However, the values of v; and vs only differ
when d = 1 and b = ¢. Additionally, b = ¢ implies v2 = 0.
Since v2 = 0 is an input-controlling value of vs, it prevents the
value of v3 from being observed at vs. This situation makes the
different value of vs with respect to v; never observed. Thus,
replacing vs with v; does not change the overall functionality.
The resultant circuit is shown in Fig. 1(b).

The problem formulation of this work is as follows: Given
a target node v in a circuit, find other nodes called substitute
nodes for v which can replace v without altering the function-
ality of the circuit.

For ease of discussion, we only consider circuits presented as
AIGs, which is a popular and simple representation. Circuits
having complex gates can also be handled by transforming them
into AIGs first.

2.2 Background

An input of a gate g has an input-controlling value of g if this
value determines the output value of g regardless of the other
inputs. The inverse of the input-controlling value is called the
input-noncontrolling value. For example, the input-controlling
value of an AND gate is 0 and its input-noncontrolling value is
1. A gate g is in the transitive fanout cone of a gate g5 if there
exists a path from gs to g, and gs is in the transitive fanin cone
of g.

The dominators [6] of a gate g are a set of gates G such that
all paths from g to any PO have to pass through all gates in G.
Consider the dominators G of a gate g, the side inputs of G are
the inputs of G that are not in the transitive fanout cone of g.

In VLSI testing, a stuck-at fault is a fault model used to
represent a manufacturing defect within a circuit. The effect of
the fault is as if the faulty wire were stuck at either 1 (stuck-
at 1) or 0 (stuck-at 0). A stuck-at fault test is a process to
find a test which can generate the different output values in
the fault-free and faulty circuits. Given a stuck-at fault f, if
there exists such a test, f is said to be testable; otherwise, f
is untestable. To make a stuck-at fault on a wire w testable, a
test needs to activate and propagate the fault effect to a PO. In
a combinational circuit, an untestable stuck-at fault on a wire
indicates that the wire is redundant and can be replaced with
a constant value 0 or 1.

The mandatory assignments (MAs) are the unique value as-
signments to nodes necessary for a test to exist. Consider a
stuck-at fault on a wire w; the assignments obtained by setting
w to the fault-activating value and by setting the side inputs of
dominators of w to the fault-propagating values are MAs. Then,
these assignments can be propagated forward or backward to in-
fer additional MAs by performing logic implications. Recursive
learning [8], a learning method in automatic test pattern gener-
ation (ATPG), can be used to perform logic implications more
completely. If the MAs of the fault are inconsistent, the fault is
untestable, and therefore, w is redundant [13].

786

[0}

Figure 3: An example of a test for a replacement error.

3. SUBSTITUTE NODE IDENTIFICATION

In this section, we first discuss the effect of merging two nodes
regarding to the functionality of circuit. Next, we present a suf-
ficient condition for correctly replacing one node with another
node. Finally, according to the condition, an algorithm is pre-
sented to identify substitute nodes for a given target node.

3.1 Effect of merging two nodes

Suppose C' is a combinational circuit. Let’s consider the effect
of replacing a node n; with another node n, in C regarding to
the functionality of circuit. The behavior of the replacement is
to use ns to drive the wires originally driven by n;. We can
regard the replacement as setting an error in C, and it can
be modeled as the misplaced wire error which is included in the
typical design error models [1]. The design error models are very
popular and widely used in the techniques about design error
diagnosis and correction [12] [14] [15]. For example, in Fig. 2,
the left and right figures indicate the correct (original) circuit C'
and incorrect (resultant) circuit C’, respectively. The misplaced
wire error is that the wires, w; ~ ws, should be connected with
n: instead of ns.

However, for some n; and ns; nodes, the replacement error
is undetectable when the error effect is never observed at any
PO. Thus, n: can be correctly replaced with ns. Based on the
observation, the problem of finding the substitute nodes for n
can be transformed to finding n, such that the replacement
error is undetectable.

To check whether a replacement error is detectable or not, we
can try to find an input pattern that can distinguish the func-
tional difference between C' and C’. We name such an input
pattern a test for replacement error detection. Given a replace-
ment error, if no test exists for it, the error is undetectable.
As a result, to identify an undetectable replacement error, we
can prove that no test exists for it. Theorem 1 below states
the necessary and sufficient condition for an input pattern to
be a test of a replacement error. Here, we consider an input
pattern in C not in C’. This is because we do not first perform
the replacement and then check if the replacement is detectable.

Theorem 1: Let f denote an error of replacing n, with ns.
An input pattern t in C will be a test for f, if and only if t
generates the different values for ny and ns and propagates the
value of ny to a PO.

Proof: Generating the different values for n; and n, is equiv-
alent to activating the error effect of ny # ns, and propagating
the value of ns to a PO is equivalent to propagating the error
effect to a PO. If an input pattern ¢ can simultaneously activate
and propagate the error effect, the error effect can be observed
at a PO, and hence, ¢ can detect f. Otherwise, ¢ cannot detect

f. O

For example, Fig. 3 shows that same circuit as Fig. 1(a),
consider the error of replacing vz (n:) with b (ns). Here, the
input vector (a =1,b=1, ¢ =0, d = 0) is a test, because it
generates vs # b (v3 = 0, b = 1) and propagates vz = 0 to Os.

According to the value of n;, we can classify the complete
test set of f into two subsets: The first one Ty and the second
one 71 which consist of the input patterns having n; = 0 and
nt = 1, respectively. Since a test for f propagates the value of
nt to a PO, each pattern in Ty is exactly a test for the stuck-at
1 fault on n;. Similarly, each pattern in T} is exactly a test for
the stuck-at 0 fault on n;. However, the converse relationship
does not hold because a test for the stuck-at fault on n; may
not satisfy generating the different values for n; and n.

Based on the relationship between the test sets for f and the
stuck-at faults on n;, we can divide the detection of f into the

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

Find_Substitute_Node(Node n;)
1. Compute MAs(n; = sa0).
2. Compute MAs(n¢ = sal).
3. SubstituteNodes +«— mnodes having different values in
MAs(n; = sa0) and MAs(n; = sal), and not in the transi-
tive fanout cone of ng.

Figure 4: The substitute node identification algorithm.

detection of two stuck-at faults. One is fo: the stuck-at 0 fault
on n; under ns = 0, and the other one is fi: the stuck-at 1 fault
on n: under ngs = 1. Here, the constraints, under n, = 0 and
ns = 1, are used to make a test have n; # ns. For example,
consider the detection of fy. Besides activating and propagating
the fault effect of ny = 1, a test must simultaneously cause
ns = 0. Therefore, T} is the complete test set for fy, and Ty
is the complete test set for fi. If fo and fi are simultaneously
untestable, f is undetectable as well. Furthermore, a node ns
that renders fo and f; untestable is a substitute node of n;.

Next, we introduce a sufficient condition as presented in Con-
dition 1 for ns that renders f undetectable based on the untestable
fo and fi1. Then, we propose an algorithm to efficiently find ns
according to Condition 1.

Condition 1: Let f denote an error of replacing ny with ns.
Ifns =1 and ns = 0 are MAs for the stuck-at 0 and stuck-at 1
fault tests on ng, respectively, f is undetectable.

Since generating ns = 0 is necessary in a test for fo, if ng =1
is also an MA for the stuck-at 0 fault on n, then fy is untestable
due to the contradiction on the value of n,. Similarly, if n, =0
is also an MA for the stuck-at 1 fault on n:, f1 is untestable.
As a result, when Condition 1 is held, f is undetectable.

3.2 Proposed algorithm

Given a target node n:, we can use the sufficient condition in
Condition 1 to find its substitute nodes. Firstly, we compute
the MAs for the stuck-at 0 and stuck-at 1 fault tests on ny,
respectively. Then, we collect the MAs that satisfy Condition
1. Finally, the corresponding nodes are the substitute nodes
of ny. Based on Condition 1, we can identify more than one
substitute nodes simultaneously by performing only two logic
implications.

For example, consider finding the substitute nodes of vz in
the circuit of Fig. 1(a). Firstly, we compute the MAs for the
stuck-at 0 fault on vs. To activate the fault effect, vs is set to 1.
To propagate the fault effect, v2 is set to 1. We then perform
logic implications to derive additional MAs. They are d = 1,
c=0,b=1,v; =1, v4 =0, and vs5 = 1. Thus, the set of
MAs for the stuck-at 0 fault on vz is {vs =1, v2 =1, d = 1,
¢c=0,b=1,v3 = 1, vs =0, vs = 1}. Secondly, we use the
same method to compute the MAs for the stuck-at 1 fault on
vs. They are {vs =0,v2=1,d =0,¢c=0,b=1, v; = 0,
vs = 0}. Finally, d and v; are the substitute nodes of vz due
to the satisfaction of Condition 1. Note that although vs also
satisfies Condition 1, it is excluded from being a substitute node
of v3. This is because vs is in the transitive fanout cone of vs,
replacing vs with vs will result in a cyclic combinational circuit.

Furthermore, Condition 1 can be modified by reversing the
value of ns to find another kind of substitute node that replaces
a target node with an additional INv. That is, if ns, = 0 and
ns = 1 are MAs for the stuck-at 0 and stuck-at 1 fault tests on
n¢, respectively, n; can be replaced by ns with an additional INV.
Finding this kind of substitute node can increase the possibility
of replacing a target node.

Fig. 4 shows the proposed algorithm for substitute node iden-
tification. Given a target node n;, the algorithm computes
MAs(n; = sa0) and MAs(n; = sal). Then, nodes which have
different values in MAs(n; = sa0) and MAs(n¢ = sal), and are
not in the transitive fanout cone of n; are the substitute nodes.
Therefore, only two logic implications are required to identify
the substitute nodes for n;: one is for the stuck-at 0 fault test
on n; and the other one is for the stuck-at 1 fault test on n;.

4. AREA OPTIMIZATION

During optimization, each node of a circuit is visited and re-
placed if applicable. To determine the optimization order, we
conducted some experiments on a set of IWLS 2005 benchmarks
[17] and observed that iteratively selecting a target node from

Area Optimization(Circuit C)
For each node n in C' in the DFS order from POs to PIs

1. Compute MAs(n = sa0).

2. Compute MAs(n = sal).

3. SubstituteNodes «— nodes having the different values in
MAs(n = sa0) and MAs(n = sal), and not in the transitive
fanout cone of n.

4. Replace n with a node which is in the set of Substitute Nodes
and closest to Pls.

Figure 5: The overall algorithm for area optimization.

Table 1: The experimental results of substitute node
identification.

benchmark N N % Ny ratio time (s)
C3540 1038 29 2.79 33 1.14 0.27
rot 1063 42 3.95 59 1.4 0.15
simple_spi 1079 26 2.41 125 4.81 0.11
i2¢ 1306 80 6.13 174 2.18 0.21
pci_spoci. 1451 170 11.72 890 5.24 0.62
dalu 1740 217 12.47 560 2.58 0.95
C5315 1773 33 1.86 113 3.42 0.16
$9234 1958 175 8.94 270 1.54 0.37
C7552 2074 60 2.89 104 1.73 0.41
C6288 2337 2 0.09 2 1 0.45
i10 2673 626 23.42 1076 1.72 1.35
s13207 2719 159 5.85 231 1.45 0.64
systemcdes 3190 147 4.61 301 2.05 1.51
i8 3310 1533 46.31 11622 7.58 3.84
spi 4053 65 1.6 91 1.4 3.35
des_area 4857 80 1.65 152 1.9 5.58
alud 5270 206 3.91 236 1.15 54.87
s38417 9219 173 1.88 257 1.49 1.45
tv80 9609 496 5.16 3864 7.79 17.19
b20 12219 849 6.95 1640 1.93 17.28
s38584 12400 549 4.43 1109 2.02 17.02
b21 12782 1094 8.56 2066 1.89 19.34
systemcaes 13054 202 1.55 380 1.88 17.71
ac97_ctrl 14496 98 0.68 242 2.47 3.22
mem_ctrl 15641 1537 9.83 3588 2.33 98.8
usb_funct 15894 370 2.33 1271 3.44 6.33
b22 18488 1047 5.66 2127 2.03 24.95
aes_core 21513 452 2.1 1742 3.85 15.17
pcibridge32 24369 309 1.27 621 2.01 21.69
wb_conmax 48429 5608 11.58 41996 7.49 28.18
b17 52920 1565 2.96 5515 3.52 174.49
des_perf 79288 2505 3.16 6195 2.47 51.37
average 6.52 2.79

total 589.03

POs to PIs in the depth-first search (DFS) order and replacing
it with a substitute node closest to Pls results in better simplifi-
cation for most benchmarks. Thus, we use this order for circuit
optimization in this work.

Fig. 5 shows the overall algorithm of applying node merging
for area optimization. Given a circuit C, the algorithm itera-
tively selects a node n as a target node in the DFS order from
POs to Pls, and then replaces n with one of its substitute nodes
if applicable. Firstly, the algorithm computes MAs(n = sa0)
and MAs(n = sal), respectively. Then, the nodes which have
the different values in MAs(n = sa0) and MAs(n = sal), and
are not in the transitive fanout cone of n are the substitute
nodes of n. Finally, the algorithm selects one substitute node
which is closest to Pls to replace n.

5. EXPERIMENTAL RESULTS

We implemented our algorithms in C language within an ABC
[2] environment. The experiments were conducted on a 3.0 GHz
Linux platform (CentOS 4.6). The benchmarks are from the
IWLS 2005 suite [17]. Each benchmark is initially transformed
to an AIG format and we only consider its combinational por-
tion. Additionally, in order to perform logic implications more
completely with reasonable CPU time overhead, a recursive
learning technique [8] is applied with the recursion depth 1 in
our algorithms.

The experimental results consist of two parts: The first one
is to show the efficiency and effectiveness of our approach for
substitute node identification. The second one is to show the
capability of our approach for area optimization as compared
to the state-of-the-art in [11].

5.1 Substitute node identification
In the experiments, each node in a benchmark is considered

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

787

a target node. We identify its substitute nodes by using the
proposed algorithm as shown in Fig. 4 and measure the CPU
time in seconds.

Table 1 summarizes the experimental results of substitute
node identification. Column 1 lists the benchmarks. Column
2 lists the number of nodes in each benchmark represented by
AIG N. Columns 3 and 4 list the number of target nodes identi-
fied having substitute nodes N; and its percentage with respect
to N, respectively. Column 5 lists the number of pair of target
node and substitute node Ns. It also represents the total num-
ber of substitute nodes identified. Column 6 lists the ratio of
N, with respect to N¢. Column 7 lists the CPU time.

According to Table 1, we can find the substitute nodes for an
average of 6.52% of nodes in a benchmark, with 2.79 substitute
nodes for each on average. Additionally, the experimental re-
sults also show that our approach can efficiently identify substi-
tute nodes. The most time-consuming benchmark is b17, which
costs only 174.49 seconds. All the other benchmarks cost less
than 100 seconds.

However, the aluj benchmark takes much more CPU time,
54.87 seconds, than the other benchmarks of similar size such
as the des_area and the s88417 benchmarks. This phenomenon
occurs due to the different logic structures. We find that an
logic implication computes an average of 1680.41 MAs for the
alu4 benchmark, but only an average of 581.06 and 35.72 MAs
for the des_area and the s38417 benchmarks, respectively. Ad-
ditionally, 44.53 out of 54.87 seconds are spent on performing
recursive learning.

5.2 Area optimization

In the experiments, we compare our approach with that in
[11] for area optimization. To have a fair comparison, we ini-
tially optimize each benchmark by using the resyn2 script in the
ABC package as performed by [11], which performs local circuit
rewriting optimization [9]. After the initialization, we optimize
the benchmarks by using the proposed algorithm as shown in
Fig. 5. After the end of optimization, we also apply an equiva-
lence checking tool, cec [10], in the ABC package to verify the
correctness of our optimization. Among these benchmarks, the
b17 benchmark takes the most CPU time, 10.37 seconds, to
perform cec.

Table 2 summarizes the experimental results. Columns 1 and
2 list the benchmarks and the number of nodes in each bench-
mark represented by AIG, respectively. Columns 3 to 6 list the
results of our approach. These columns contain the number of
node mergers identified, the number of nodes in the resultant
benchmark N, the percentage of area reduction in terms of
node count, and the CPU time, respectively. Columns 7 and 8
list the corresponding results reported in [11], the percentage of
area reduction and the CPU time, respectively. The maximal
CPU time in Column 8 is 5000 seconds, which is the run time
limit set by that work.

According to Table 2, our approach can obtain an average
of 3.94% area reduction for the benchmarks. However, because
our approach only focuses on area optimization, it may decrease
or increase the number of logic levels of the benchmarks. From
the aspect of quality comparison, the simplification capability
of our approach is not as strong as that of the approach in [11],
which obtains an average of 5.04% area reduction. The key
reason behinds this result is the completeness of MA compu-
tation. If MAs are inferred more completely in our approach,
more node mergers can be identified. Unfortunately, finding
all MAs of a stuck-at fault requires exponential time complex-
ity. It is equivalent to finding all patterns that can detect a
fault [5]. Therefore, the recursive learning technique is used in
our approach to infer more MAs for improving results. On the
other hand, from the aspect of efficiency comparison, our over-
all CPU time is only 254.24 seconds, which is much less than
21 887 seconds required by the approach in [11]. Our approach
has a speedup of 86 times.

6. CONCLUSION

In this paper, we propose an ODC-based node merging al-
gorithm that can quickly detect node mergers using logic im-
plications. The algorithm is based on a sufficient condition for
replacing a node with another node, and only two logic implica-

788

Table 2: The experimental results of our approach and
[12] for area optimization.

our approach 11

benchmark N Z mergers N, % time (s) % [tm]le (s)
pci_spoci. 878 59 782 10.93 0.24| 9.2 6
i2¢ 941 15 923 191 0.11| 3.2 3
dalu 1057 37 985 6.81 0.3 12 10
C5315 1310 6 1304 0.46 0.09| 0.7 2
$9234 1353 14 1331 1.63 0.16| 1.2 8
C7552 1410 33 1371 2.77 0.28| 3.4 8
i10 1852 72 1755 5.24 0.64| 1.3 12
s13207 2108 36 2063 2.13 0.48| 1.8 17
alu4 2471 164 1941 21.45 5.29(22.9 64
systemcdes 2641 33 2600 1.55 0.94| 4.7 9
spi 3429 16 3411 0.52 2.71| 1.3 84
tv80 7233 151 6960 3.77 10.6 | 7.1 1445
s38417 8185 41 8136 0.6 1.15 1 275
mem_ctrl 8815 258 7257 17.67 6.76| 18 738
$38584 9990 99 9846 1.44 11.44| 0.8 223
ac97_ctrl 10395 16 10379 0.15 1.96 2 188
systemcaes 10585 50 10521 0.6 13.09| 3.8 360
usb_funct 13320 215 13026 2.21 5.89| 1.4 681
pci_bridge32 17814 83 17729 0.48 12.04| 0.1 1134
aes_core 20509 138 20371 0.67 13.23| 8.6 1620
b17 34523 422 33979 1.58 72.4| 1.6 5000
wb_conmax 41070 1199 39266 4.39 31.88| 6.2 5000
des_perf 71327 1159 70081 1.75 62.56 | 3.7 5000
average 3.94 5.04

total 254.24 21887
ratio 1 86.09

tions are required for finding substitute nodes of a given target
node. Moreover, based on the node merging algorithm, we also
propose an efficient algorithm for area optimization in combina-
tional circuits. The experimental results show that the proposed
algorithm has a competitive capability of area optimization and
expends much less CPU time compared to the state-of-the-art.

7. REFERENCES

M. S. Abadir, J. Ferguson, and T. E. Kirkland, “Logic Design
Verification via Test Generation,” IEEE Trans. Computer-Aided
Design, vol. 7, pp. 138-148, Jan. 1988.

Berkeley Logic Synthesis and Verification Group, “ABC: A System
for Sequential Synthesis and Verification,”
http://www.eecs.berkeley.edu/ alanmi/abc/.

P. Bjesse and A. Boralv, “DAG-Aware Circuit Compression for
Formal Verification”, in Proc. Int. Conf. on Computer-Aided
Design, 2004, pp. 42-49.

M. Case, V. Kravets, A. Mishchenko, and R. Brayton, “Merging
Nodes Under Sequential Observability,” in Proc. Design
Automation Conf., 2008, pp. 540-545.

C. W. Jim Chang, M. F. Hsiao, and M. M. Sadowska, “A New
Reasoning Scheme for Efficient Redundancy Addition and
Removal,” IEEE Trans. Computer-Aided Design, vol. 22,

pp. 945-952, July 2003.

T. Kirkland and M. R. Mercer, “A Topological Search Algorithm
for ATPG,” in Proc. Design Automation Conf., 1987, pp. 502-508.
A. Kuehlmann, “Dynamic Transition Relation Simplification for
Bounded Propery Checking,” in Proc. Int. Conf. on
Computer-Aided Design, 2004, pp. 50-57.

W. Kunz and D. K. Pradhan, “Recursive Learning: An Attractive
Alternative to the Decision Tree for Test Generation for Digital
Circuits,” in Proc. Int. Test Conf., 1992, pp. 816-825.

A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-Aware AIG
Rewriting: A Fresh Look at Combinational Logic Synthesis,” in
Proc. Design Automation Conf., 2006, pp. 532-536.

A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een,
“Improvements to Combinational Equivalence Checking, ” in
Proc. Int. Conf. on Computer-Aided Design, 2006, pp. 836-843.
S. Plaza, K. H. Chang, I. Markov, and V. Bertacco, “Node Mergers
in the Presence of Don’t Cares,” in Proc. Asia South Pacific
Design Automation Conf., 2007, pp. 414-419.

I. Pomeranz and S. M. Reddy, “On Correction of Multiple Design
Errors,” IEEE Trans. Computer-Aided Design, vol. 14,

pp- 255-264, Feb. 1995.

M. H. Schulz amd E. Auth, “Advanced Automatic Test Pattern
Generation and Redundancy Identification Techniques,” in

Proc. Int. Fault-Tolerant Computing Symp., 1988, pp. 30-35.

A. Veneris and 1. N. Hajj, “Design Error Diagnosis and Correction
via Test Vector Simulation,” IEEE Trans. Computer-Aided
Design, vol. 18, pp. 1803-1816, Dec. 1999.

A. Veneris, J. B. Liu, M. Amiri, and M. S. Abadir, “Incremental
Diagnosis and Correction of Multiple Faults and Errors,” in

Proc. Design, Automation and Test in FEurope Conf., 2002,

pp. 716-721.

Q. Zhu, N. Kitchen, A. Kuehlmann, and

A. Sangiovanni-Vincentelli, “SAT Sweeping with Local
Observability Don’t Cares,” in Proc. Design Automation Conf.,
2006, pp. 229-234.

http://iwls.org/iwls2005/benchmarks.html.

1]

[2]

3]

4]

5]

(6]

[7]

8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Times-Italic
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

