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ABSTRACT

The sequential depth determines the completeness of bounded
model checking in design verification. Recently, a SAT-
based method is proposed to compute the sequential depth
of a design by searching the state space. Unfortunately, it
suffers from the search space explosion due to the exponen-
tial growth of design complexity. To alleviate the impact
of state space explosion, we propose a search space reduc-
tion method. We collect the learned states and consider
them constraints for further path searching. Furthermore,
we propose a heuristic to guide the SAT-solver to efficiently
find a shortest path. The experimental results show that as
compared to another method which also enhances the previ-
ous SAT-based method using a branch-and-bound strategy,
our approach obtains more improvements.
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1. INTRODUCTION
Bounded Model Checking (BMC) [1] [2] [3] has become

an important technique in modern design verification. The
basic idea of BMC is to search an error violating a property
within a bounded depth k in a finite state system. If no
error is found, BMC repeats the search by incrementing k

until either an error is found or a pre-computed bound is
reached. This bound can be considered a threshold of the
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design which determines the completeness of BMC. This is
because when BMC has explored the complete state space
and no error is found, it ensures that certain property holds
in the design. With the threshold, BMC can be used not
only to find errors, but also to prove correctness.

Previously, many work have addressed the problem of
computing the threshold for BMC. In [6], Sheeran et al. ob-
serve that no more iterations should be performed if no new
states exist in future iterations. They present a SAT-based
method to identify a path of length i starting from the ini-
tial state. If a path exists, a new state exists, and then they
repeat to identify a longer path by incrementing i until no
path exists. However, the computed value, i, is always an
over-approximated solution and may be much larger than
the threshold. On the other hand, in [7], Yen et al. propose
a simulation-based method to estimate the threshold, but
the method may result in over- or under-approximations.

Recently, Mneimneh et al. [4] propose a SAT-based method
to identify the sequential depth. The proposed algorithm it-
eratively uses a SAT-solver to search the largest path of all
shortest paths starting from an initial state to any other
reachable states. The sequential depth of a design is the
length of the identified largest path and it is the exact thresh-
old of the design. Additionally, Mneimneh et al. formulate
a shortest path identification as a logical inference problem
for Quantified Boolean Formulas (QBFs). They simplify
the QBFs by applying simple transformations to the cir-
cuit netlist and use a SAT-solver to check their satisfiability.
However, since the method exhaustively searches a path and
then checks whether it is the shortest, the method tends to
spend much CPU time while staying at the same iteration
especially for large circuits having enormous search space.

To prevent the problem, Yen and Jou [8] present an al-
gorithm to improve [4] by applying an effective branch-and-
bound strategy. The algorithm starts by performing an ex-
haustive search for a short period of time to calculate the ini-
tial solution. Then, based on the initial solution, it uses the
branching method to divide the entire problem into many
sub-problems, and the bounding method to avoid solving
useless sub-problems. With this strategy, they may elim-
inate many unnecessary states and thus compute a more
accurate sequential depth in large circuits.

To improve the exhaustive-search approach [4], we pro-
pose a method to prune search space. We collect the learned
states once finding a path, and consider them constraints to
prune certain non-shortest paths for further path searching.
Since having a smaller search space, we can more efficiently
find the sequential depth. Additionally, we propose a heuris-



tic to guide the SAT-solver to find a shortest path. The
experimental results show that our method reports a more
accurate sequential depth in most large circuits as compared
to [4] and [8] within a run time limit of 3,600 seconds. The
more accurate sequential depths we provide in the large cir-
cuits can be the valuable information for further research on
sequential depth computation.

This paper is organized as follows. Section 2 reviews
some preliminaries. Section 3 briefly describes the previ-
ous method in [4]. Section 4 presents the proposed method
of pruning search space. Section 5 introduces the proposed
heuristic of guiding the SAT-solver. Finally, results and con-
clusion are presented.

2. PRELIMINARIES
A synchronous sequential circuit can be modeled using a

finite state machine (FSM) M . The state transition graph
of an FSM M , STG(M), is a directed graph (V , E), where
each vertex v ∈ V corresponds to a state s in M , and each
edge e ∈ E between two vertices vi and vj corresponds to a
transition from state si to sj in M .

Given a directed graph (V , E). A walk of length k is a
succession of k directed edges v0v1, v1v2, ..., vk−1vk. Let
Walk(k, v0, vk) denote a walk of length k starting at vertex
v0 and ending at vertex vk. If the vertices in the directed
edges of a walk are all different, the walk is called a path. Let
Path(k, v0, vk) denote a path of length k starting at vertex
v0 and ending at vertex vk. A path of length k is shortest if
no path of length j that has the same start-vertex and end-
vertex exists for each j < k. In addition, the distance of two
vertices in a path is the number of edges between them. Let
Dist(vi, vj , P ) denote the distance between vi and vj in a
path P .

Consider two vertices v0 and vk in a directed graph (V ,
E). vk is reachable from v0 if a path exists from v0 to
vk. Given an FSM M with a single initial state s0. The
sequential depth of M is the length of the longest of all
the shortest paths starting at s0 and ending at any states
reachable from s0.

3. PREVIOUS WORK
In [4], Mneimneh et al. propose a SAT-based approach to

sequential depth computation. Given an FSM M with an
initial state s0. The approach starts from k = 0. Then it
iteratively searches a shortest path of length k + 1 starting
at s0 and increments k. The approach stops when it cannot
find any shortest path of length k + 1. Finally, the length
of the longest of all the shortest paths is k, and k is the
sequential depth of M .

The approach uses a two-stage algorithm to identify a
shortest path of length k + 1. At the first stage, it tries to
identify a path of length k + 1. It constructs a Conjunctive

Normal Form (CNF) formula to present a path of length
k + 1 starting at s0 and uses a SAT-solver to find a satisfi-
able assignment. If the CNF formula is satisfiable, a path,
Path(k + 1, s0, sk+1), is found. Next, at the second stage,
the approach checks whether the path is the shortest. It first
modifies the given FSM M such that each state in M has
a directed transition to s0. That is each vertex in STG(M)
has a directed edge to the vertex of s0. Then it constructs
a CNF formula to present a walk, Walk(k, s0, s = sk+1),
and uses the SAT-solver to solve it. If the CNF formula is

Figure 1: Example of pruning search space.

Figure 2: An example of sequential depth computa-

tion.

unsatisfiable, the path is the shortest. Otherwise, the path
is non-shortest.

The procedure is as follows. The algorithm starts by read-
ing the sequential circuit and setting the variable k = 0.
Consider the iteration k of the algorithm, the algorithm
first searches a path which satisfies Path(k + 1, s0, s). If no
such path exists, the algorithm terminates and returns k as
the sequential depth. If the path exists, the algorithm then
checks if there exists a walk which satisfies Walk(k, s0, s).
If no such walk exists, the algorithm has found a shortest
path of length k+1. Then it increments k and continues the
next iteration. If a walk exists, the path is not shortest and
the algorithm adds the learned clause to the path formula to
force the SAT-solver to find another path having a different
end-state.

The drawback of this algorithm is that it may spend much
run time to search a large amount of paths while they are
not the shortest. As a result, the program execution stays at
the same iteration and the k value remains unchanged for a
long time. To deal with this drawback, we present a search
space reduction method described in the following section.

4. SEARCH SPACE REDUCTION METHOD
Firstly, we use an example in Fig. 1 to demonstrate our

basic idea of pruning search space. Fig. 1 shows two paths,
PA and PB . PA starts at an initial state s0 with a length
n. PB also starts at s0 but ends at a different state with a
longer length m. In addition, the state s1

A in PA is identical
to the state si

B in PB . Let’s consider the sequential depth
computation using the algorithm mentioned in Section 3.
The algorithm exhaustively searches a path and then check
whether it is the shortest. When k = (n − 1), PA can be a
solution while searching a path. Also, PB can be a solution
when k = (m − 1). After identifying PB , the algorithm
will find that PB is not a shortest path since there exists a
shorter path also starting at s0 and ending at sm

B . Because
s1

A is identical to si
B , the shorter path can be s0 → s1

A →
si+1

B ··· sm
B .

Our objective of search space reduction is to prune paths



that cannot be the shortest. In this example, PB is obviously
not a shortest path because there is a transition from s0 to
si

B and si
B is identical to s1

A. As a result, we can exploit s1
A

to prune PB at the iteration k = (m − 1). More precisely,
once we find a path, we can consider the states of the path
constraints to prune certain non-shortest paths during fur-
ther path searching. The following observation states the
principle of the search space reduction method.

Observation 1. Suppose s is a state in a path P and

Dist(s0, s, P ) = i. According to s, each path P ′ having

Dist(s0, s, P ′) > i cannot be a shortest path.

Since the distance between s0 and s in P is shorter than
that in P ′, P ′ is not a shortest path. Let’s review the algo-
rithm mentioned in Section 3. The algorithm always iden-
tifies a path and then checks whether the path is the short-
est. It may waste much run time while finding non-shortest
paths. To improve it, once it finds a path, we can record
the learned states and their distances from the initial state
in the path. Then, we add them as constraints to the CNF
formula to avoid the algorithm finding certain non-shortest
paths during further path searching. These non-shortest
paths are the paths that also have the learned states with
longer distances.

The details of the search space reduction method are as
follows: First, let’s consider collecting the learned states.
We construct a table to record the learned states and their
distances from the initial state. When a path is found, we
check if a state in the path has been recorded in the table.
If not, we add it and its distance to the table. If it has been
recorded and its new distance is shorter than the original
one, we update its distance. Otherwise, the data of the
table is intact. In addition, if the found path is not the
shortest, we also decrement and update the distance of its
end-state. Next, let’s consider adding constraints to the
CNF formula. Suppose s is a learned state and its distance
from the initial state is i. When we want to find a path P ′

of length k + 1, the added constraints based on s can be

formulated as
k+1∏

j=i+1

(sj �= s), where sj is the jth state in P ′.

Based on this formulation, when we want to find a path, we
will add all learned states in the table as constraints to the
CNF formula.

Let’s take the example in Fig. 2 to demonstrate the search
space reduction method. Fig. 2 shows the STG of a sequen-
tial circuit, and its corresponding computation tree that
results from unrolling the STG with an initial state 000.
Consider integrating the algorithm mentioned in Section 3
and the search space reduction method. At the first itera-
tion k = 0, we construct a CNF formula corresponding to
Path(1, 000, s1) and use a SAT-solver to find a satisfiable
assignment. One solution is 000 → 010. We then record
the learned state 010 and its distance 1. The table includes
(State, Distance) = {(010, 1)}. Since 000 → 010 is the short-
est, we increment k and continue the next iteration.

At the iteration k = 1, we add the constraint (s2 �= 010)
and construct a CNF formula corresponding to Path(2, 000,

s2) ·(s2 �= 010). One satisfying solution is 000 → 100 → 011.
Again, we record the learned states and their distances. The
table becomes (State, Distance) = {(010, 1), (100, 1), (011, 2)}.
Then, to check if 000 → 100 → 011 is the shortest, we con-
struct a CNF formula corresponding to Walk(1, 000, 011).
Since the formula is satisfiable, the path is not the shortest

and then we update the distance of 011 by decrementing it to
1. The table becomes (State, Distance) = {(010, 1), (100, 1),
(011, 1)}. Next, we add the constraints and construct a
CNF formula corresponding to Path(2, 000, s2) · (s2 �= 010) ·
(s2 �= 100) · (s2 �= 011). A satisfying solution is 000 →
100 → 110. Since 100 has been recorded and its distance
is the shortest, we only record the new learned state 110
and its distance 2. The table becomes (State, Distance) =
{(010, 1), (100, 1), (011, 1), (110, 2)}. Furthermore, the for-
mula corresponding to Walk(1, 000, 110) is unsatisfiable. Thus,
000 → 100 → 110 is the shortest. We then increment k and
continue the next iteration.

Again, at the iteration k = 2, we add the constraints and
construct a CNF formula corresponding to Path(3, 000, s3) ·
(s2 �= 010) · (s3 �= 010) · (s2 �= 100) · (s3 �= 100) · (s2 �=
011) · (s3 �= 011) · (s3 �= 110). A satisfying solution is 000 →
010 → 110 → 001. Similarly, we record the new learned
state 001 and its distance 3. Then we check whether there
is a walk of length 2 ending at 001. The checking returns
none. Thus, the path is the shortest. We then increment k

and continue the next iteration.
Finally, at the iteration k = 3, we also add the constraints

to the corresponding path formula. We find that the formula
is unsatisfiable. Thus, the sequential depth is 3.

In conclusion, since we perform search space reduction, we
can more efficiently identify the sequential depth than the
original algorithm. For example, consider at the iteration
k = 3. The original algorithm needs to iteratively find 5
paths (they are the paths ending at 001, 100, 101, 110 and
111, respectively) and check all of them are not the shortest.
Then, it identifies the sequential depth of 3. However, by
pruning the search space, we can directly determine that no
shortest path exists and identify that the sequential depth
is 3 as well.

5. HEURISTIC
Although pruning the search space can speed up the SAT-

based sequential depth computation, its improvement is lim-
ited for large circuits having enormous search space. In this
section, we present a heuristic for sequential depth compu-
tation of large circuits. With this heuristic, we can obtain
more accurate sequential depths in large circuits, and they
can be valuable information for further research on sequen-
tial depth computation.

Let’s consider the process of SAT-based sequential depth
computation. Suppose a circuit’s sequential depth is n. We
can divide the process into two parts: The first part is to
search a shortest path during each iteration k = 0 ∼ (n−1).
The second part is to identify that no shortest path exists
at the iteration k = n. The spent run time at the first part
depends on how fast we can find a shortest path. Thus, if
we can make the SAT-solver find a shortest path faster, we
can speed up the computation process as well. Based on
this idea, we propose a heuristic to guide the SAT-solver.
The following observation shows a necessary condition of a
shortest path, and it is the basic of the heuristic.

Observation 2. Suppose P is a path s0 → s1 → ··· →
sn−1 → sn. The partial path of P , s0 → s1 → ··· → sn−1,

being a shortest path is a necessary condition for P to be a

shortest path.

According to Observation 2, when we use a SAT-solver
to find a path of length n, if we can confine s0 → s1 →



Table 1: The improvements by pruning the search space and

guiding the SAT-solver. The run time limit is 3,600 seconds.

Circuit #FFs
Seq. Depth

[4] Ours P Ours PG [8]

s1269 37 9 9 9 *

s1423 74 20 22 81 37

s3271 116 14 14 14 *

s3330 132 7 7 7 *

s3384 183 12 12 13 *

s4863 104 4 4 4 *

s5378 164 16 16 17 38

s6669 239 5 5 5 *

s9234 211 22 23 34 25

s13207 669 61 65 80 40

s15850 597 83 86 86 60

s35932 1728 19 19 66 17

s38417 1636 15 15 70 22

s38584 1452 44 44 46 62

··· → sn−1 to a shortest path, the SAT-solver has a higher
possibility to return a shortest path. However, during the
SAT-based sequential depth computation process, the short-
est paths we know are only that found at each iteration.
Thus, at each iteration k, when we want to find a path,
Path(k + 1, s0, sk+1), we first add constraints to confine
s0 → s1 → ··· → sk to the shortest path found at the last
iteration. Then, if the path is the shortest, we continue the
next iteration. Otherwise, we remove the constraints and
continue to find another path.

In summary, the heuristic exploits the previously found
shortest path to find a path at the beginning of each itera-
tion. Additionally, it is only used one time at each iteration.
Once the found path is not the shortest, we remove the con-
straints and continue to find another path. The benefits of
the heuristic are demonstrated in the experimental results.

6. EXPERIMENTAL RESULTS
The experiments are conducted over a set of ISCAS’89

benchmarks within SIS [5] environment on a Sun Blade 2500
workstation with 4GB main memory. We implement the
proposed method in C language and use the MiniSat [9] as
our SAT-solver. For comparison, we also reimplement [4]
according to the algorithm mentioned in Section 3. The
experimental results are summarized in Table 1.

Table 1 shows the improvements on large circuits by prun-
ing the search space and guiding the SAT-solver. In this
experiment, we set the run time limit to 3,600 seconds for
each approach. Column 1 lists the benchmarks. All these
benchmarks have enormous search space. Column 2 lists
the number of FFs in each benchmark. Column 3 shows
the sequential depth of each benchmark reported by [4].
Additionally, Columns 4 and 5 show the sequential depth
reported by Ours P and Ours PG, respectively. Ours P de-
notes our method of just pruning the search space. Ours PG
denotes our method of both pruning the search space and
guiding the SAT-solver. For each benchmark, these three
approaches all reach the run time limit. Column 6 shows
the results reported in [8]. The work in [8] also set the same
run time limit. “*” indicates that the result with respect to
the benchmark is not reported in [8]. For example, s1423
benchmark has 74 FFs. Its sequential depth reported by [4],
Ours P, Ours PG, and [8] within a run time limit of 3,600
seconds are 20, 22, 81 and 37, respectively.

According to Table 1, 4 out of 14 benchmarks’ more ac-
curate sequential depths are obtained by pruning the search
space. They are s1423, s9234, s13207 and s15850 bench-
marks. However, the improvements are limited. On the
other hand, with simultaneously pruning the search space
and guiding the SAT-solver, we can obtain a more accurate
sequential depth for 9 benchmarks. Especially, the improve-
ments are up to 61 steps for s1423 benchmark. Additionally,
as compared to [8], we can obtain a more accurate sequen-
tial depth for most benchmarks, except for s5378 and s38584
benchmarks.

7. CONCLUSION
We propose an approach to speed up a SAT-based sequen-

tial depth computation algorithm [4] by pruning the search
space. We collect the learned states, and then consider them
constraints to prune certain non-shortest paths. Addition-
ally, for large circuits having enormous search space, we also
propose a heuristic to make the SAT-solver have a higher
possibility to find a shortest path. The experimental re-
sults show that as compared with [4] and [8], we report a
more accurate sequential depth for most benchmarks within
a certain time limit. The reported more accurate sequential
depths in the large circuits can be the valuable information
for further research on sequential depth computation.
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